Normalized defining polynomial
\( x^{16} - 8x^{14} + 60x^{12} - 24x^{10} + 174x^{8} + 168x^{6} + 684x^{4} + 1080x^{2} + 729 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(17428188652935605013970944\)
\(\medspace = 2^{68}\cdot 3^{10}\)
|
| |
Root discriminant: | \(37.81\) |
| |
Galois root discriminant: | $2^{2415/512}3^{7/8}\approx 68.76674068410085$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-2}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{7}-\frac{1}{4}a^{6}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{4}a^{8}-\frac{1}{4}$, $\frac{1}{4}a^{9}-\frac{1}{4}a$, $\frac{1}{24}a^{10}+\frac{1}{24}a^{8}-\frac{1}{4}a^{6}-\frac{1}{4}a^{4}+\frac{3}{8}a^{2}+\frac{3}{8}$, $\frac{1}{24}a^{11}+\frac{1}{24}a^{9}-\frac{1}{4}a^{6}-\frac{1}{4}a^{4}-\frac{3}{8}a^{3}-\frac{1}{4}a^{2}-\frac{3}{8}a-\frac{1}{4}$, $\frac{1}{72}a^{12}+\frac{1}{72}a^{10}+\frac{1}{12}a^{8}-\frac{1}{12}a^{6}-\frac{5}{24}a^{4}+\frac{11}{24}a^{2}-\frac{1}{2}$, $\frac{1}{144}a^{13}-\frac{1}{144}a^{12}-\frac{1}{72}a^{11}+\frac{1}{72}a^{10}-\frac{5}{48}a^{9}+\frac{5}{48}a^{8}+\frac{1}{12}a^{7}-\frac{1}{12}a^{6}-\frac{11}{48}a^{5}+\frac{11}{48}a^{4}-\frac{11}{24}a^{3}+\frac{11}{24}a^{2}+\frac{7}{16}a-\frac{7}{16}$, $\frac{1}{34201872}a^{14}-\frac{43481}{34201872}a^{12}+\frac{198715}{11400624}a^{10}+\frac{85633}{11400624}a^{8}+\frac{2430541}{11400624}a^{6}-\frac{1925605}{11400624}a^{4}+\frac{1864943}{3800208}a^{2}-\frac{26465}{1266736}$, $\frac{1}{102605616}a^{15}+\frac{12127}{6412851}a^{13}-\frac{1}{144}a^{12}+\frac{40373}{34201872}a^{11}+\frac{1}{72}a^{10}+\frac{109264}{2137617}a^{9}+\frac{5}{48}a^{8}+\frac{530437}{34201872}a^{7}+\frac{1}{6}a^{6}+\frac{1003055}{8550468}a^{5}-\frac{1}{48}a^{4}+\frac{2973337}{11400624}a^{3}-\frac{7}{24}a^{2}+\frac{290275}{950052}a+\frac{5}{16}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{1349}{834192}a^{14}+\frac{7537}{834192}a^{12}-\frac{5567}{92688}a^{10}-\frac{64427}{278064}a^{8}+\frac{15019}{278064}a^{6}-\frac{79087}{278064}a^{4}-\frac{83975}{30896}a^{2}-\frac{49249}{30896}$, $\frac{314177}{34201872}a^{14}+\frac{2782585}{34201872}a^{12}-\frac{7090817}{11400624}a^{10}+\frac{8678989}{11400624}a^{8}-\frac{26235329}{11400624}a^{6}+\frac{3839369}{11400624}a^{4}-\frac{23703433}{3800208}a^{2}-\frac{6336137}{1266736}$, $\frac{165595}{51302808}a^{15}+\frac{35939}{17100936}a^{14}+\frac{1217165}{51302808}a^{13}-\frac{303145}{17100936}a^{12}-\frac{2901167}{17100936}a^{11}+\frac{710869}{5700312}a^{10}-\frac{1820587}{17100936}a^{9}-\frac{129067}{5700312}a^{8}-\frac{1607407}{17100936}a^{7}-\frac{1318141}{5700312}a^{6}-\frac{15818903}{17100936}a^{5}+\frac{6495079}{5700312}a^{4}-\frac{12891931}{5700312}a^{3}+\frac{1184717}{1900104}a^{2}-\frac{4868461}{1900104}a+\frac{34759}{633368}$, $\frac{36874}{6412851}a^{15}+\frac{184669}{34201872}a^{14}+\frac{2507743}{51302808}a^{13}-\frac{1653389}{34201872}a^{12}-\frac{6272995}{17100936}a^{11}+\frac{1408453}{3800208}a^{10}+\frac{2553989}{8550468}a^{9}-\frac{5555375}{11400624}a^{8}-\frac{8391481}{8550468}a^{7}+\frac{16309777}{11400624}a^{6}-\frac{9183751}{17100936}a^{5}-\frac{786457}{11400624}a^{4}-\frac{16209053}{5700312}a^{3}+\frac{4692041}{1266736}a^{2}-\frac{2278631}{475026}a+\frac{3919295}{1266736}$, $\frac{219575}{102605616}a^{15}+\frac{4669}{3800208}a^{14}+\frac{1693105}{102605616}a^{13}-\frac{6115}{1266736}a^{12}-\frac{4716523}{34201872}a^{11}+\frac{74557}{1266736}a^{10}+\frac{3413365}{34201872}a^{9}+\frac{337465}{3800208}a^{8}-\frac{33281207}{34201872}a^{7}+\frac{1724893}{1266736}a^{6}-\frac{63402871}{34201872}a^{5}+\frac{2542487}{1266736}a^{4}-\frac{41289923}{11400624}a^{3}+\frac{3585359}{1266736}a^{2}-\frac{10866281}{3800208}a+\frac{266785}{1266736}$, $\frac{679939}{102605616}a^{15}+\frac{28993}{950052}a^{14}-\frac{4509731}{102605616}a^{13}-\frac{1533049}{5700312}a^{12}+\frac{10350305}{34201872}a^{11}+\frac{11637251}{5700312}a^{10}+\frac{20280607}{34201872}a^{9}-\frac{2193419}{950052}a^{8}-\frac{22438457}{34201872}a^{7}+\frac{3117041}{475026}a^{6}+\frac{174134129}{34201872}a^{5}+\frac{1985789}{1900104}a^{4}+\frac{406717}{11400624}a^{3}+\frac{33023605}{1900104}a^{2}+\frac{59252521}{3800208}a+\frac{1621198}{79171}$, $\frac{36874}{6412851}a^{15}+\frac{184669}{34201872}a^{14}-\frac{2507743}{51302808}a^{13}-\frac{1653389}{34201872}a^{12}+\frac{6272995}{17100936}a^{11}+\frac{1408453}{3800208}a^{10}-\frac{2553989}{8550468}a^{9}-\frac{5555375}{11400624}a^{8}+\frac{8391481}{8550468}a^{7}+\frac{16309777}{11400624}a^{6}+\frac{9183751}{17100936}a^{5}-\frac{786457}{11400624}a^{4}+\frac{16209053}{5700312}a^{3}+\frac{4692041}{1266736}a^{2}+\frac{2278631}{475026}a+\frac{3919295}{1266736}$
|
| |
Regulator: | \( 2939783.638539585 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 2939783.638539585 \cdot 1}{2\cdot\sqrt{17428188652935605013970944}}\cr\approx \mathstrut & 0.855260064413630 \end{aligned}\] (assuming GRH)
Galois group
$C_2^5.C_2\wr C_2^2$ (as 16T1455):
A solvable group of order 2048 |
The 44 conjugacy class representatives for $C_2^5.C_2\wr C_2^2$ |
Character table for $C_2^5.C_2\wr C_2^2$ |
Intermediate fields
\(\Q(\sqrt{-2}) \), 4.0.3072.2, 8.0.7247757312.8 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{5}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{5}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.68f1.1312 | $x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{13} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 12 x^{8} + 16 x^{7} + 16 x^{5} + 2$ | $16$ | $1$ | $68$ | 16T1455 | $$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, \frac{9}{2}, \frac{9}{2}, \frac{37}{8}, 5]^{2}$$ |
\(3\)
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
3.2.2.2a1.1 | $x^{4} + 4 x^{3} + 8 x^{2} + 11 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
3.1.8.7a1.2 | $x^{8} + 6$ | $8$ | $1$ | $7$ | $QD_{16}$ | $$[\ ]_{8}^{2}$$ |