Normalized defining polynomial
\( x^{16} - 4x^{12} + 8x^{10} + 14x^{8} + 12x^{4} + 3 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(363087263602825104457728\)
\(\medspace = 2^{64}\cdot 3^{9}\)
|
| |
Root discriminant: | \(29.68\) |
| |
Galois root discriminant: | $2^{2415/512}3^{7/8}\approx 68.76674068410085$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q(\sqrt{3}) \) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-2}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{501}a^{14}-\frac{115}{501}a^{12}+\frac{65}{167}a^{10}+\frac{128}{501}a^{8}-\frac{59}{167}a^{6}-\frac{62}{167}a^{4}-\frac{47}{167}a^{2}+\frac{61}{167}$, $\frac{1}{501}a^{15}-\frac{115}{501}a^{13}+\frac{65}{167}a^{11}+\frac{128}{501}a^{9}-\frac{59}{167}a^{7}-\frac{62}{167}a^{5}-\frac{47}{167}a^{3}+\frac{61}{167}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{28}{501}a^{14}-\frac{214}{501}a^{12}-\frac{17}{167}a^{10}+\frac{1079}{501}a^{8}-\frac{483}{167}a^{6}-\frac{901}{167}a^{4}+\frac{354}{167}a^{2}-\frac{463}{167}$, $\frac{35}{501}a^{14}+\frac{17}{501}a^{12}+\frac{63}{167}a^{10}-\frac{472}{501}a^{8}-\frac{106}{167}a^{6}+\frac{166}{167}a^{4}-\frac{192}{167}a^{2}+\frac{36}{167}$, $\frac{214}{501}a^{15}-\frac{26}{501}a^{14}-\frac{61}{501}a^{13}-\frac{16}{501}a^{12}-\frac{285}{167}a^{11}-\frac{20}{167}a^{10}+\frac{1841}{501}a^{9}+\frac{179}{501}a^{8}+\frac{901}{167}a^{7}-\frac{136}{167}a^{6}-\frac{242}{167}a^{5}-\frac{559}{167}a^{4}+\frac{463}{167}a^{3}+\frac{53}{167}a^{2}-\frac{139}{167}a-\frac{250}{167}$, $\frac{214}{501}a^{15}+\frac{26}{501}a^{14}-\frac{61}{501}a^{13}+\frac{16}{501}a^{12}-\frac{285}{167}a^{11}+\frac{20}{167}a^{10}+\frac{1841}{501}a^{9}-\frac{179}{501}a^{8}+\frac{901}{167}a^{7}+\frac{136}{167}a^{6}-\frac{242}{167}a^{5}+\frac{559}{167}a^{4}+\frac{463}{167}a^{3}-\frac{53}{167}a^{2}-\frac{139}{167}a+\frac{250}{167}$, $\frac{160}{501}a^{15}-\frac{178}{501}a^{14}-\frac{137}{501}a^{13}-\frac{71}{501}a^{12}+\frac{288}{167}a^{11}+\frac{287}{167}a^{10}-\frac{941}{501}a^{9}-\frac{1241}{501}a^{8}-\frac{1248}{167}a^{7}-\frac{1188}{167}a^{6}-\frac{100}{167}a^{5}+\frac{181}{167}a^{4}-\frac{162}{167}a^{3}-\frac{485}{167}a^{2}-\frac{74}{167}a-\frac{170}{167}$, $\frac{419}{501}a^{15}-\frac{190}{501}a^{14}+\frac{89}{501}a^{13}+\frac{307}{501}a^{12}+\frac{654}{167}a^{11}+\frac{342}{167}a^{10}-\frac{3532}{501}a^{9}-\frac{2777}{501}a^{8}-\frac{2166}{167}a^{7}-\frac{480}{167}a^{6}+\frac{928}{167}a^{5}+\frac{2094}{167}a^{4}+\frac{154}{167}a^{3}+\frac{413}{167}a^{2}+\frac{660}{167}a+\frac{768}{167}$, $\frac{799}{501}a^{15}-\frac{91}{501}a^{14}+\frac{299}{501}a^{13}-\frac{56}{501}a^{12}-\frac{1171}{167}a^{11}+\frac{97}{167}a^{10}+\frac{5078}{501}a^{9}-\frac{626}{501}a^{8}+\frac{4963}{167}a^{7}-\frac{476}{167}a^{6}+\frac{729}{167}a^{5}-\frac{203}{167}a^{4}+\frac{1191}{167}a^{3}-\frac{900}{167}a^{2}+\frac{476}{167}a-\frac{708}{167}$
|
| |
Regulator: | \( 407361.7299128739 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 407361.7299128739 \cdot 1}{2\cdot\sqrt{363087263602825104457728}}\cr\approx \mathstrut & 0.821076589987395 \end{aligned}\]
Galois group
$C_2^5.C_2\wr C_2^2$ (as 16T1444):
A solvable group of order 2048 |
The 44 conjugacy class representatives for $C_2^5.C_2\wr C_2^2$ |
Character table for $C_2^5.C_2\wr C_2^2$ |
Intermediate fields
\(\Q(\sqrt{-2}) \), 4.0.3072.2, 8.0.1358954496.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{6}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{6}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{5}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.64c1.29 | $x^{16} + 16 x^{11} + 16 x^{9} + 16 x^{7} + 8 x^{2} + 16 x + 2$ | $16$ | $1$ | $64$ | 16T1444 | $$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, \frac{9}{2}, \frac{9}{2}, \frac{37}{8}, 5]^{2}$$ |
\(3\)
| 3.4.1.0a1.1 | $x^{4} + 2 x^{3} + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
3.1.8.7a1.2 | $x^{8} + 6$ | $8$ | $1$ | $7$ | $QD_{16}$ | $$[\ ]_{8}^{2}$$ |