Normalized defining polynomial
\( x^{16} - 8x^{12} + 64x^{10} + 72x^{8} + 1056x^{4} - 768x^{2} + 1296 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(1936465405881733890441216\)
\(\medspace = 2^{68}\cdot 3^{8}\)
|
| |
Root discriminant: | \(32.96\) |
| |
Galois root discriminant: | $2^{2415/512}3^{7/8}\approx 68.76674068410085$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-2}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}$, $\frac{1}{4}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{7}-\frac{1}{2}a^{3}$, $\frac{1}{32}a^{8}+\frac{1}{8}a^{4}-\frac{1}{2}a^{2}+\frac{3}{8}$, $\frac{1}{32}a^{9}-\frac{1}{8}a^{5}-\frac{1}{8}a$, $\frac{1}{64}a^{10}+\frac{1}{16}a^{6}-\frac{1}{4}a^{4}-\frac{1}{2}a^{3}+\frac{3}{16}a^{2}$, $\frac{1}{64}a^{11}+\frac{1}{16}a^{7}-\frac{5}{16}a^{3}-\frac{1}{2}a$, $\frac{1}{128}a^{12}-\frac{1}{64}a^{8}-\frac{1}{8}a^{6}-\frac{3}{32}a^{4}-\frac{1}{2}a^{3}-\frac{1}{4}a^{2}+\frac{7}{16}$, $\frac{1}{128}a^{13}-\frac{1}{64}a^{9}-\frac{1}{8}a^{7}-\frac{3}{32}a^{5}-\frac{1}{4}a^{3}+\frac{7}{16}a$, $\frac{1}{41088}a^{14}+\frac{7}{6848}a^{12}-\frac{85}{20544}a^{10}+\frac{157}{10272}a^{8}-\frac{257}{3424}a^{6}-\frac{261}{1712}a^{4}-\frac{111}{1712}a^{2}+\frac{7}{856}$, $\frac{1}{246528}a^{15}+\frac{19}{6848}a^{13}-\frac{85}{123264}a^{11}+\frac{799}{61632}a^{9}-\frac{371}{6848}a^{7}+\frac{5}{856}a^{5}-\frac{1}{4}a^{4}+\frac{1601}{10272}a^{3}-\frac{1}{2}a^{2}+\frac{863}{5136}a-\frac{1}{2}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $3$ |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{1}{3424}a^{14}-\frac{23}{6848}a^{12}+\frac{11}{856}a^{10}-\frac{7}{1712}a^{8}-\frac{129}{856}a^{6}+\frac{827}{1712}a^{4}-\frac{113}{214}a^{2}+\frac{64}{107}$, $\frac{991}{246528}a^{15}+\frac{13}{41088}a^{14}+\frac{3}{6848}a^{13}-\frac{1}{428}a^{12}+\frac{5269}{123264}a^{11}-\frac{71}{10272}a^{10}-\frac{15631}{61632}a^{9}+\frac{109}{2568}a^{8}-\frac{2559}{6848}a^{7}-\frac{131}{3424}a^{6}+\frac{251}{428}a^{5}-\frac{233}{428}a^{4}-\frac{27173}{10272}a^{3}-\frac{30}{107}a^{2}+\frac{15961}{5136}a+\frac{103}{214}$, $\frac{41}{20544}a^{14}-\frac{39}{6848}a^{12}+\frac{275}{10272}a^{10}-\frac{169}{2568}a^{8}-\frac{1019}{1712}a^{6}-\frac{105}{1712}a^{4}+\frac{57}{856}a^{2}-\frac{929}{428}$, $\frac{29}{61632}a^{15}-\frac{1}{2568}a^{14}-\frac{21}{13696}a^{13}-\frac{5}{6848}a^{12}+\frac{115}{61632}a^{11}+\frac{19}{5136}a^{10}-\frac{1199}{61632}a^{9}+\frac{7}{1284}a^{8}-\frac{131}{856}a^{7}-\frac{21}{428}a^{6}-\frac{929}{3424}a^{5}-\frac{211}{1712}a^{4}-\frac{1373}{5136}a^{3}-\frac{91}{428}a^{2}-\frac{5413}{5136}a-\frac{377}{428}$, $\frac{491}{82176}a^{15}-\frac{67}{13696}a^{14}+\frac{13}{13696}a^{13}+\frac{75}{13696}a^{12}-\frac{2573}{41088}a^{11}+\frac{345}{6848}a^{10}+\frac{3715}{10272}a^{9}-\frac{2527}{6848}a^{8}+\frac{4353}{6848}a^{7}-\frac{559}{3424}a^{6}-\frac{2533}{3424}a^{5}+\frac{4663}{3424}a^{4}+\frac{14621}{3424}a^{3}-\frac{7007}{1712}a^{2}-\frac{933}{428}a+\frac{8849}{1712}$, $\frac{491}{82176}a^{15}+\frac{67}{13696}a^{14}+\frac{13}{13696}a^{13}-\frac{75}{13696}a^{12}-\frac{2573}{41088}a^{11}-\frac{345}{6848}a^{10}+\frac{3715}{10272}a^{9}+\frac{2527}{6848}a^{8}+\frac{4353}{6848}a^{7}+\frac{559}{3424}a^{6}-\frac{2533}{3424}a^{5}-\frac{4663}{3424}a^{4}+\frac{14621}{3424}a^{3}+\frac{7007}{1712}a^{2}-\frac{933}{428}a-\frac{8849}{1712}$, $\frac{921}{27392}a^{15}-\frac{27}{1712}a^{14}+\frac{133}{13696}a^{13}+\frac{279}{6848}a^{12}+\frac{4669}{13696}a^{11}+\frac{1347}{6848}a^{10}-\frac{7617}{3424}a^{9}-\frac{4701}{3424}a^{8}-\frac{15797}{6848}a^{7}+\frac{1627}{1712}a^{6}+\frac{16227}{3424}a^{5}+\frac{12159}{1712}a^{4}-\frac{99907}{3424}a^{3}-\frac{20199}{1712}a^{2}+\frac{4295}{107}a+\frac{43507}{856}$
|
| |
Regulator: | \( 2312557.521191852 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 2312557.521191852 \cdot 1}{2\cdot\sqrt{1936465405881733890441216}}\cr\approx \mathstrut & 2.01835067241613 \end{aligned}\] (assuming GRH)
Galois group
$C_2^5.C_2\wr C_2^2$ (as 16T1455):
A solvable group of order 2048 |
The 44 conjugacy class representatives for $C_2^5.C_2\wr C_2^2$ |
Character table for $C_2^5.C_2\wr C_2^2$ |
Intermediate fields
\(\Q(\sqrt{-2}) \), 4.0.3072.2, 8.0.7247757312.8 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{6}$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{5}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.68f1.1310 | $x^{16} + 16 x^{15} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 12 x^{8} + 16 x^{7} + 16 x^{5} + 2$ | $16$ | $1$ | $68$ | 16T1455 | $$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, \frac{9}{2}, \frac{9}{2}, \frac{37}{8}, 5]^{2}$$ |
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
$\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
3.4.1.0a1.1 | $x^{4} + 2 x^{3} + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
3.1.8.7a1.2 | $x^{8} + 6$ | $8$ | $1$ | $7$ | $QD_{16}$ | $$[\ ]_{8}^{2}$$ |