Show commands: Magma
Group invariants
Abstract group: | $C_2^5.C_2\wr C_2^2$ |
| |
Order: | $2048=2^{11}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $7$ |
|
Group action invariants
Degree $n$: | $16$ |
| |
Transitive number $t$: | $1455$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,6,11,14,3,7,10,16)(2,5,12,13,4,8,9,15)$, $(5,6)(9,12,10,11)(13,16)(14,15)$, $(1,12,2,11)(3,10,4,9)(7,8)(13,16,14,15)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 3 $32$: $Z_8 : Z_8^\times$, $C_2^2 \wr C_2$, 16T44 $64$: $(C_4^2 : C_2):C_2$, $(((C_4 \times C_2): C_2):C_2):C_2$, 32T329 $128$: 16T336, 16T345, 16T389 $256$: 32T5717 $512$: 16T981 $1024$: 32T67457 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $(C_4^2 : C_2):C_2$
Low degree siblings
16T1444 x 4, 16T1455 x 3, 32T99046 x 4, 32T99047 x 2, 32T99048 x 2, 32T99049 x 2, 32T99050 x 2, 32T99051 x 2, 32T99052 x 2, 32T99149 x 2, 32T99150 x 2, 32T99151 x 2, 32T99152 x 2, 32T99153 x 2, 32T99154 x 2, 32T122208 x 2, 32T122212 x 2, 32T122236 x 2, 32T122237 x 2, 32T122242 x 2, 32T122243 x 2, 32T145654, 32T145678, 32T145682, 32T145692 x 2, 32T145702, 32T180476, 32T180521, 32T180547, 32T180557 x 2, 32T180558, 32T181406, 32T181450, 32T181476, 32T181477, 32T181485 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2B | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
2C | $2^{2},1^{12}$ | $4$ | $2$ | $2$ | $(1,2)(3,4)$ |
2D | $2^{4},1^{8}$ | $4$ | $2$ | $4$ | $(1,2)(3,4)(5,6)(7,8)$ |
2E | $2^{6},1^{4}$ | $4$ | $2$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)$ |
2F | $2^{8}$ | $8$ | $2$ | $8$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)$ |
2G | $2^{8}$ | $8$ | $2$ | $8$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,11)(10,12)(13,16)(14,15)$ |
2H | $2^{4},1^{8}$ | $16$ | $2$ | $4$ | $( 1, 2)( 5, 6)( 9,10)(15,16)$ |
2I | $2^{6},1^{4}$ | $32$ | $2$ | $6$ | $( 1, 3)( 2, 4)( 5,13)( 6,14)( 7,16)( 8,15)$ |
2J | $2^{6},1^{4}$ | $32$ | $2$ | $6$ | $( 1, 3)( 2, 4)( 5, 6)( 9,11)(10,12)(15,16)$ |
2K | $2^{8}$ | $32$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5,16)( 6,15)( 7,13)( 8,14)( 9,11)(10,12)$ |
2L | $2^{8}$ | $32$ | $2$ | $8$ | $( 1, 7)( 2, 8)( 3, 6)( 4, 5)( 9,16)(10,15)(11,13)(12,14)$ |
4A | $4^{2},2^{2},1^{4}$ | $8$ | $4$ | $8$ | $( 1, 2)( 3, 4)( 5, 7, 6, 8)(13,15,14,16)$ |
4B | $4^{2},2^{4}$ | $8$ | $4$ | $10$ | $( 1, 2)( 3, 4)( 5, 7, 6, 8)( 9,10)(11,12)(13,15,14,16)$ |
4C | $4^{2},2^{2},1^{4}$ | $8$ | $4$ | $8$ | $( 1, 2)( 3, 4)( 5, 8, 6, 7)(13,15,14,16)$ |
4D | $4^{2},1^{8}$ | $8$ | $4$ | $6$ | $( 1, 3, 2, 4)( 9,11,10,12)$ |
4E | $4^{4}$ | $16$ | $4$ | $12$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)$ |
4F | $4^{2},2^{2},1^{4}$ | $32$ | $4$ | $8$ | $( 1, 3)( 2, 4)( 5,14, 6,13)( 7,15, 8,16)$ |
4G | $4^{2},2^{4}$ | $32$ | $4$ | $10$ | $( 1, 2)( 3, 4)( 5,15, 6,16)( 7,14, 8,13)( 9,11)(10,12)$ |
4H | $4^{4}$ | $32$ | $4$ | $12$ | $( 1, 8, 2, 7)( 3, 5, 4, 6)( 9,16,10,15)(11,13,12,14)$ |
4I1 | $4,2^{3},1^{6}$ | $32$ | $4$ | $6$ | $( 1, 4, 2, 3)( 5, 6)(13,16)(14,15)$ |
4I-1 | $4,2^{3},1^{6}$ | $32$ | $4$ | $6$ | $( 1, 3, 2, 4)( 5, 6)(13,16)(14,15)$ |
4J1 | $4,2^{5},1^{2}$ | $32$ | $4$ | $8$ | $( 3, 4)( 5, 7, 6, 8)( 9,11)(10,12)(13,14)(15,16)$ |
4J-1 | $4,2^{5},1^{2}$ | $32$ | $4$ | $8$ | $( 1, 2)( 5, 7, 6, 8)( 9,11)(10,12)(13,14)(15,16)$ |
4K | $4^{4}$ | $64$ | $4$ | $12$ | $( 1,11, 4, 9)( 2,12, 3,10)( 5,15, 7,13)( 6,16, 8,14)$ |
4L | $4^{2},2^{4}$ | $64$ | $4$ | $10$ | $( 1, 6, 2, 5)( 3, 8, 4, 7)( 9,13)(10,14)(11,15)(12,16)$ |
4M | $4^{4}$ | $64$ | $4$ | $12$ | $( 1, 9, 3,11)( 2,10, 4,12)( 5,16, 8,13)( 6,15, 7,14)$ |
4N | $4,2^{5},1^{2}$ | $64$ | $4$ | $8$ | $( 1, 2)( 5,13)( 6,14)( 7,16)( 8,15)( 9,11,10,12)$ |
4O | $4^{3},2,1^{2}$ | $64$ | $4$ | $10$ | $( 1,12, 2,11)( 3, 9, 4,10)( 5, 8, 6, 7)(13,14)$ |
4P1 | $4^{2},2^{4}$ | $64$ | $4$ | $10$ | $( 1, 9, 2,10)( 3,12)( 4,11)( 5,15, 6,16)( 7,13)( 8,14)$ |
4P-1 | $4^{2},2^{4}$ | $64$ | $4$ | $10$ | $( 1,10, 2, 9)( 3,12)( 4,11)( 5,16, 6,15)( 7,13)( 8,14)$ |
4Q1 | $4^{2},2^{4}$ | $64$ | $4$ | $10$ | $( 1, 7, 2, 8)( 3, 5)( 4, 6)( 9,14)(10,13)(11,15,12,16)$ |
4Q-1 | $4^{2},2^{4}$ | $64$ | $4$ | $10$ | $( 1, 8, 2, 7)( 3, 5)( 4, 6)( 9,14)(10,13)(11,16,12,15)$ |
4R | $4^{4}$ | $128$ | $4$ | $12$ | $( 1,16, 3,13)( 2,15, 4,14)( 5, 9, 8,12)( 6,10, 7,11)$ |
8A | $8,2,1^{6}$ | $64$ | $8$ | $8$ | $( 1,11, 3,10, 2,12, 4, 9)( 5, 6)$ |
8B | $8,2^{3},1^{2}$ | $64$ | $8$ | $10$ | $( 1, 9, 3,11, 2,10, 4,12)( 7, 8)(13,14)(15,16)$ |
8C1 | $8,4,2^{2}$ | $64$ | $8$ | $12$ | $( 1, 3, 2, 4)( 5,15, 8,14, 6,16, 7,13)( 9,12)(10,11)$ |
8C-1 | $8,4,2^{2}$ | $64$ | $8$ | $12$ | $( 1, 4, 2, 3)( 5,13, 7,16, 6,14, 8,15)( 9,12)(10,11)$ |
8D | $8^{2}$ | $128$ | $8$ | $14$ | $( 1, 7, 3, 6, 2, 8, 4, 5)( 9,16,11,13,10,15,12,14)$ |
8E1 | $8^{2}$ | $128$ | $8$ | $14$ | $( 1,15,11, 7, 4,13, 9, 5)( 2,16,12, 8, 3,14,10, 6)$ |
8E-1 | $8^{2}$ | $128$ | $8$ | $14$ | $( 1, 5, 9,13, 4, 7,11,15)( 2, 6,10,14, 3, 8,12,16)$ |
8F1 | $8^{2}$ | $128$ | $8$ | $14$ | $( 1, 5, 9,16, 3, 8,11,13)( 2, 6,10,15, 4, 7,12,14)$ |
8F3 | $8^{2}$ | $128$ | $8$ | $14$ | $( 1,16,11, 5, 3,13, 9, 8)( 2,15,12, 6, 4,14,10, 7)$ |
Malle's constant $a(G)$: $1/2$
Character table
44 x 44 character table
Regular extensions
Data not computed