Normalized defining polynomial
\( x^{16} - 8x^{14} + 40x^{12} - 120x^{10} + 252x^{8} - 192x^{6} + 96x^{4} + 144x^{2} + 108 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(3267785372425425940119552\)
\(\medspace = 2^{64}\cdot 3^{11}\)
|
| |
Root discriminant: | \(34.05\) |
| |
Galois root discriminant: | $2^{2415/512}3^{7/8}\approx 68.76674068410085$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q(\sqrt{3}) \) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-2}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}$, $\frac{1}{4}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{4}a^{10}-\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{11}-\frac{1}{2}a^{7}-\frac{1}{2}a^{3}$, $\frac{1}{12}a^{12}+\frac{1}{12}a^{10}-\frac{1}{6}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{12}a^{13}+\frac{1}{12}a^{11}+\frac{1}{12}a^{9}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{7957188}a^{14}+\frac{6013}{1989297}a^{12}-\frac{194267}{7957188}a^{10}+\frac{43545}{442066}a^{8}-\frac{1853}{221033}a^{6}+\frac{196442}{663099}a^{4}+\frac{312811}{1326198}a^{2}+\frac{9839}{221033}$, $\frac{1}{7957188}a^{15}+\frac{6013}{1989297}a^{13}-\frac{194267}{7957188}a^{11}+\frac{43545}{442066}a^{9}-\frac{1853}{221033}a^{7}+\frac{196442}{663099}a^{5}+\frac{312811}{1326198}a^{3}+\frac{9839}{221033}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{2}$, which has order $2$ |
| |
Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{1633}{1989297}a^{14}-\frac{46799}{7957188}a^{12}+\frac{109721}{3978594}a^{10}-\frac{33531}{442066}a^{8}+\frac{53019}{221033}a^{6}-\frac{537941}{1326198}a^{4}+\frac{468266}{663099}a^{2}-\frac{52255}{221033}$, $\frac{119}{884132}a^{14}-\frac{11241}{884132}a^{12}+\frac{22673}{221033}a^{10}-\frac{222301}{442066}a^{8}+\frac{672567}{442066}a^{6}-\frac{1422565}{442066}a^{4}+\frac{689030}{221033}a^{2}-\frac{514081}{221033}$, $\frac{13063}{7957188}a^{15}-\frac{13771}{2652396}a^{14}-\frac{58825}{3978594}a^{13}+\frac{36125}{884132}a^{12}+\frac{633151}{7957188}a^{11}-\frac{191547}{884132}a^{10}-\frac{110607}{442066}a^{9}+\frac{461569}{663099}a^{8}+\frac{107891}{221033}a^{7}-\frac{366495}{221033}a^{6}-\frac{71284}{663099}a^{5}+\frac{703309}{442066}a^{4}-\frac{1092143}{1326198}a^{3}-\frac{671243}{442066}a^{2}+\frac{327717}{221033}a-\frac{219953}{221033}$, $\frac{34823}{3978594}a^{15}-\frac{3277}{7957188}a^{14}+\frac{525581}{7957188}a^{13}+\frac{90377}{7957188}a^{12}-\frac{1302455}{3978594}a^{11}-\frac{156295}{1989297}a^{10}+\frac{640667}{663099}a^{9}+\frac{246046}{663099}a^{8}-\frac{471300}{221033}a^{7}-\frac{454319}{442066}a^{6}+\frac{2633567}{1326198}a^{5}+\frac{2246687}{1326198}a^{4}-\frac{1616378}{663099}a^{3}-\frac{296846}{663099}a^{2}-\frac{265727}{221033}a+\frac{249448}{221033}$, $\frac{34823}{3978594}a^{15}-\frac{3277}{7957188}a^{14}-\frac{525581}{7957188}a^{13}+\frac{90377}{7957188}a^{12}+\frac{1302455}{3978594}a^{11}-\frac{156295}{1989297}a^{10}-\frac{640667}{663099}a^{9}+\frac{246046}{663099}a^{8}+\frac{471300}{221033}a^{7}-\frac{454319}{442066}a^{6}-\frac{2633567}{1326198}a^{5}+\frac{2246687}{1326198}a^{4}+\frac{1616378}{663099}a^{3}-\frac{296846}{663099}a^{2}+\frac{265727}{221033}a+\frac{249448}{221033}$, $\frac{491827}{7957188}a^{15}+\frac{30409}{442066}a^{14}+\frac{3578651}{7957188}a^{13}-\frac{110981}{221033}a^{12}-\frac{17419675}{7957188}a^{11}+\frac{2156873}{884132}a^{10}+\frac{4115258}{663099}a^{9}-\frac{1544347}{221033}a^{8}-\frac{2837057}{221033}a^{7}+\frac{6527259}{442066}a^{6}+\frac{10014611}{1326198}a^{5}-\frac{2408810}{221033}a^{4}-\frac{11253895}{1326198}a^{3}+\frac{7097221}{442066}a^{2}-\frac{3325879}{221033}a+\frac{688772}{221033}$, $\frac{51803}{1326198}a^{15}+\frac{30614}{1989297}a^{14}-\frac{439331}{1326198}a^{13}-\frac{375061}{1989297}a^{12}+\frac{4237805}{2652396}a^{11}+\frac{2034290}{1989297}a^{10}-\frac{3120797}{663099}a^{9}-\frac{4644475}{1326198}a^{8}+\frac{3890049}{442066}a^{7}+\frac{1637154}{221033}a^{6}-\frac{1032920}{221033}a^{5}-\frac{5045663}{663099}a^{4}-\frac{2077489}{442066}a^{3}-\frac{4138202}{663099}a^{2}-\frac{737385}{221033}a-\frac{1111464}{221033}$
|
| |
Regulator: | \( 1279922.9352405611 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 1279922.9352405611 \cdot 2}{2\cdot\sqrt{3267785372425425940119552}}\cr\approx \mathstrut & 1.71987152440452 \end{aligned}\]
Galois group
$C_2^5.C_2\wr C_2^2$ (as 16T1444):
A solvable group of order 2048 |
The 44 conjugacy class representatives for $C_2^5.C_2\wr C_2^2$ |
Character table for $C_2^5.C_2\wr C_2^2$ |
Intermediate fields
\(\Q(\sqrt{-2}) \), 4.0.3072.2, 8.0.1358954496.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{6}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{6}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.64c1.245 | $x^{16} + 16 x^{9} + 8 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 8 x^{2} + 16 x + 2$ | $16$ | $1$ | $64$ | 16T1444 | $$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, \frac{9}{2}, \frac{9}{2}, \frac{37}{8}, 5]^{2}$$ |
\(3\)
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
3.2.2.2a1.1 | $x^{4} + 4 x^{3} + 8 x^{2} + 11 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
3.1.8.7a1.2 | $x^{8} + 6$ | $8$ | $1$ | $7$ | $QD_{16}$ | $$[\ ]_{8}^{2}$$ |