Properties

Label 2.1.16.68f1.1312
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(68\)
Galois group $C_2^5.C_2\wr C_2^2$ (as 16T1455)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{13} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 12 x^{8} + 16 x^{7} + 16 x^{5} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $68$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[3, \frac{7}{2}, \frac{9}{2}, 5]$
Visible Swan slopes:$[2,\frac{5}{2},\frac{7}{2},4]$
Means:$\langle1, \frac{7}{4}, \frac{21}{8}, \frac{53}{16}\rangle$
Rams:$(2, 3, 7, 11)$
Jump set:$[1, 3, 7, 15, 31]$
Roots of unity:$2$

Intermediate fields

$\Q_{2}(\sqrt{-2})$, 2.1.4.10a1.6, 2.1.8.28a1.43

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{13} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 12 x^{8} + 16 x^{7} + 16 x^{5} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + 1$,$z^4 + 1$,$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$,$1$,$1$
Indices of inseparability:$[53, 42, 28, 16, 0]$

Invariants of the Galois closure

Galois degree: $2048$
Galois group: $C_2^5.C_2\wr C_2^2$ (as 16T1455)
Inertia group: $(C_2^2\times C_4^2):\SD_{16}$ (as 16T1273)
Wild inertia group: not computed
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, \frac{9}{2}, \frac{9}{2}, \frac{37}{8}, 5]$
Galois Swan slopes: $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},\frac{7}{2},\frac{7}{2},\frac{29}{8},4]$
Galois mean slope: $4.716796875$
Galois splitting model:$x^{16} - 8 x^{14} + 60 x^{12} - 24 x^{10} + 174 x^{8} + 168 x^{6} + 684 x^{4} + 1080 x^{2} + 729$