/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^16 - 8*x^14 + 60*x^12 - 24*x^10 + 174*x^8 + 168*x^6 + 684*x^4 + 1080*x^2 + 729, 16, 1455, [0, 8], 17428188652935605013970944, [2, 3], [1, a, a^2, a^3, 1/2*a^4 - 1/2, 1/2*a^5 - 1/2*a, 1/2*a^6 - 1/2*a^2, 1/4*a^7 - 1/4*a^6 - 1/4*a^5 - 1/4*a^4 + 1/4*a^3 - 1/4*a^2 - 1/4*a - 1/4, 1/4*a^8 - 1/4, 1/4*a^9 - 1/4*a, 1/24*a^10 + 1/24*a^8 - 1/4*a^6 - 1/4*a^4 + 3/8*a^2 + 3/8, 1/24*a^11 + 1/24*a^9 - 1/4*a^6 - 1/4*a^4 - 3/8*a^3 - 1/4*a^2 - 3/8*a - 1/4, 1/72*a^12 + 1/72*a^10 + 1/12*a^8 - 1/12*a^6 - 5/24*a^4 + 11/24*a^2 - 1/2, 1/144*a^13 - 1/144*a^12 - 1/72*a^11 + 1/72*a^10 - 5/48*a^9 + 5/48*a^8 + 1/12*a^7 - 1/12*a^6 - 11/48*a^5 + 11/48*a^4 - 11/24*a^3 + 11/24*a^2 + 7/16*a - 7/16, 1/34201872*a^14 - 43481/34201872*a^12 + 198715/11400624*a^10 + 85633/11400624*a^8 + 2430541/11400624*a^6 - 1925605/11400624*a^4 + 1864943/3800208*a^2 - 26465/1266736, 1/102605616*a^15 + 12127/6412851*a^13 - 1/144*a^12 + 40373/34201872*a^11 + 1/72*a^10 + 109264/2137617*a^9 + 5/48*a^8 + 530437/34201872*a^7 + 1/6*a^6 + 1003055/8550468*a^5 - 1/48*a^4 + 2973337/11400624*a^3 - 7/24*a^2 + 290275/950052*a + 5/16], 0, 1, [], 1, [ -(1349)/(834192)*a^(14) + (7537)/(834192)*a^(12) - (5567)/(92688)*a^(10) - (64427)/(278064)*a^(8) + (15019)/(278064)*a^(6) - (79087)/(278064)*a^(4) - (83975)/(30896)*a^(2) - (49249)/(30896) , -(314177)/(34201872)*a^(14) + (2782585)/(34201872)*a^(12) - (7090817)/(11400624)*a^(10) + (8678989)/(11400624)*a^(8) - (26235329)/(11400624)*a^(6) + (3839369)/(11400624)*a^(4) - (23703433)/(3800208)*a^(2) - (6336137)/(1266736) , -(165595)/(51302808)*a^(15) + (35939)/(17100936)*a^(14) + (1217165)/(51302808)*a^(13) - (303145)/(17100936)*a^(12) - (2901167)/(17100936)*a^(11) + (710869)/(5700312)*a^(10) - (1820587)/(17100936)*a^(9) - (129067)/(5700312)*a^(8) - (1607407)/(17100936)*a^(7) - (1318141)/(5700312)*a^(6) - (15818903)/(17100936)*a^(5) + (6495079)/(5700312)*a^(4) - (12891931)/(5700312)*a^(3) + (1184717)/(1900104)*a^(2) - (4868461)/(1900104)*a + (34759)/(633368) , -(36874)/(6412851)*a^(15) + (184669)/(34201872)*a^(14) + (2507743)/(51302808)*a^(13) - (1653389)/(34201872)*a^(12) - (6272995)/(17100936)*a^(11) + (1408453)/(3800208)*a^(10) + (2553989)/(8550468)*a^(9) - (5555375)/(11400624)*a^(8) - (8391481)/(8550468)*a^(7) + (16309777)/(11400624)*a^(6) - (9183751)/(17100936)*a^(5) - (786457)/(11400624)*a^(4) - (16209053)/(5700312)*a^(3) + (4692041)/(1266736)*a^(2) - (2278631)/(475026)*a + (3919295)/(1266736) , -(219575)/(102605616)*a^(15) + (4669)/(3800208)*a^(14) + (1693105)/(102605616)*a^(13) - (6115)/(1266736)*a^(12) - (4716523)/(34201872)*a^(11) + (74557)/(1266736)*a^(10) + (3413365)/(34201872)*a^(9) + (337465)/(3800208)*a^(8) - (33281207)/(34201872)*a^(7) + (1724893)/(1266736)*a^(6) - (63402871)/(34201872)*a^(5) + (2542487)/(1266736)*a^(4) - (41289923)/(11400624)*a^(3) + (3585359)/(1266736)*a^(2) - (10866281)/(3800208)*a + (266785)/(1266736) , (679939)/(102605616)*a^(15) + (28993)/(950052)*a^(14) - (4509731)/(102605616)*a^(13) - (1533049)/(5700312)*a^(12) + (10350305)/(34201872)*a^(11) + (11637251)/(5700312)*a^(10) + (20280607)/(34201872)*a^(9) - (2193419)/(950052)*a^(8) - (22438457)/(34201872)*a^(7) + (3117041)/(475026)*a^(6) + (174134129)/(34201872)*a^(5) + (1985789)/(1900104)*a^(4) + (406717)/(11400624)*a^(3) + (33023605)/(1900104)*a^(2) + (59252521)/(3800208)*a + (1621198)/(79171) , (36874)/(6412851)*a^(15) + (184669)/(34201872)*a^(14) - (2507743)/(51302808)*a^(13) - (1653389)/(34201872)*a^(12) + (6272995)/(17100936)*a^(11) + (1408453)/(3800208)*a^(10) - (2553989)/(8550468)*a^(9) - (5555375)/(11400624)*a^(8) + (8391481)/(8550468)*a^(7) + (16309777)/(11400624)*a^(6) + (9183751)/(17100936)*a^(5) - (786457)/(11400624)*a^(4) + (16209053)/(5700312)*a^(3) + (4692041)/(1266736)*a^(2) + (2278631)/(475026)*a + (3919295)/(1266736) ], 2939783.638539585, [[x^2 + 2, 1], [x^4 + 2*x^2 + 3, 1], [x^8 + 2*x^4 + 3, 1]]]