Properties

Label 891.2.f.c.487.1
Level $891$
Weight $2$
Character 891.487
Analytic conductor $7.115$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [891,2,Mod(82,891)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("891.82"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(891, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.f (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 487.1
Character \(\chi\) \(=\) 891.487
Dual form 891.2.f.c.730.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.12715 + 1.54546i) q^{2} +(1.51827 - 4.67274i) q^{4} +(0.193808 + 0.140810i) q^{5} +(-0.366442 + 1.12779i) q^{7} +(2.36698 + 7.28482i) q^{8} -0.629874 q^{10} +(2.93952 + 1.53597i) q^{11} +(4.88403 - 3.54845i) q^{13} +(-0.963487 - 2.96531i) q^{14} +(-8.34358 - 6.06197i) q^{16} +(1.48403 + 1.07821i) q^{17} +(-1.00736 - 3.10034i) q^{19} +(0.952219 - 0.691827i) q^{20} +(-8.62659 + 1.27568i) q^{22} -5.55040 q^{23} +(-1.52735 - 4.70070i) q^{25} +(-4.90504 + 15.0962i) q^{26} +(4.71353 + 3.42458i) q^{28} +(1.92367 - 5.92043i) q^{29} +(-3.20168 + 2.32616i) q^{31} +11.7972 q^{32} -4.82307 q^{34} +(-0.229824 + 0.166977i) q^{35} +(-1.67897 + 5.16733i) q^{37} +(6.93427 + 5.03804i) q^{38} +(-0.567033 + 1.74515i) q^{40} +(-3.29583 - 10.1435i) q^{41} +12.1439 q^{43} +(11.6402 - 11.4036i) q^{44} +(11.8065 - 8.57795i) q^{46} +(0.511346 + 1.57376i) q^{47} +(4.52548 + 3.28795i) q^{49} +(10.5137 + 7.63862i) q^{50} +(-9.16576 - 28.2093i) q^{52} +(6.99142 - 5.07956i) q^{53} +(0.353422 + 0.711596i) q^{55} -9.08313 q^{56} +(5.05789 + 15.5666i) q^{58} +(-1.21376 + 3.73558i) q^{59} +(8.67742 + 6.30451i) q^{61} +(3.21546 - 9.89616i) q^{62} +(-8.40715 + 6.10815i) q^{64} +1.44622 q^{65} +9.22102 q^{67} +(7.29134 - 5.29747i) q^{68} +(0.230812 - 0.710368i) q^{70} +(-5.77707 - 4.19728i) q^{71} +(-0.172710 + 0.531546i) q^{73} +(-4.41451 - 13.5865i) q^{74} -16.0165 q^{76} +(-2.80943 + 2.75233i) q^{77} +(-3.57826 + 2.59976i) q^{79} +(-0.763468 - 2.34971i) q^{80} +(22.6872 + 16.4832i) q^{82} +(12.4742 + 9.06302i) q^{83} +(0.135794 + 0.417930i) q^{85} +(-25.8319 + 18.7680i) q^{86} +(-4.23151 + 25.0495i) q^{88} -0.0625956 q^{89} +(2.21221 + 6.80848i) q^{91} +(-8.42699 + 25.9356i) q^{92} +(-3.51990 - 2.55735i) q^{94} +(0.241323 - 0.742716i) q^{95} +(-4.92941 + 3.58143i) q^{97} -14.7078 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 2 q^{2} - 8 q^{4} + 4 q^{5} + 7 q^{7} + 10 q^{8} - 16 q^{10} + 5 q^{11} + 7 q^{13} + 13 q^{14} + 2 q^{16} - 5 q^{17} + 4 q^{19} + 27 q^{20} - 2 q^{22} + 6 q^{23} - 2 q^{25} - 34 q^{26} - 9 q^{28}+ \cdots + 68 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.12715 + 1.54546i −1.50412 + 1.09281i −0.535417 + 0.844588i \(0.679845\pi\)
−0.968704 + 0.248219i \(0.920155\pi\)
\(3\) 0 0
\(4\) 1.51827 4.67274i 0.759133 2.33637i
\(5\) 0.193808 + 0.140810i 0.0866735 + 0.0629720i 0.630278 0.776369i \(-0.282941\pi\)
−0.543605 + 0.839341i \(0.682941\pi\)
\(6\) 0 0
\(7\) −0.366442 + 1.12779i −0.138502 + 0.426266i −0.996118 0.0880245i \(-0.971945\pi\)
0.857616 + 0.514290i \(0.171945\pi\)
\(8\) 2.36698 + 7.28482i 0.836854 + 2.57557i
\(9\) 0 0
\(10\) −0.629874 −0.199184
\(11\) 2.93952 + 1.53597i 0.886299 + 0.463114i
\(12\) 0 0
\(13\) 4.88403 3.54845i 1.35459 0.984164i 0.355816 0.934556i \(-0.384203\pi\)
0.998769 0.0496079i \(-0.0157972\pi\)
\(14\) −0.963487 2.96531i −0.257503 0.792512i
\(15\) 0 0
\(16\) −8.34358 6.06197i −2.08590 1.51549i
\(17\) 1.48403 + 1.07821i 0.359929 + 0.261504i 0.753023 0.657995i \(-0.228595\pi\)
−0.393093 + 0.919499i \(0.628595\pi\)
\(18\) 0 0
\(19\) −1.00736 3.10034i −0.231105 0.711267i −0.997614 0.0690339i \(-0.978008\pi\)
0.766510 0.642233i \(-0.221992\pi\)
\(20\) 0.952219 0.691827i 0.212923 0.154697i
\(21\) 0 0
\(22\) −8.62659 + 1.27568i −1.83919 + 0.271975i
\(23\) −5.55040 −1.15734 −0.578670 0.815562i \(-0.696428\pi\)
−0.578670 + 0.815562i \(0.696428\pi\)
\(24\) 0 0
\(25\) −1.52735 4.70070i −0.305470 0.940141i
\(26\) −4.90504 + 15.0962i −0.961958 + 2.96060i
\(27\) 0 0
\(28\) 4.71353 + 3.42458i 0.890774 + 0.647185i
\(29\) 1.92367 5.92043i 0.357216 1.09940i −0.597498 0.801870i \(-0.703838\pi\)
0.954714 0.297526i \(-0.0961616\pi\)
\(30\) 0 0
\(31\) −3.20168 + 2.32616i −0.575039 + 0.417790i −0.836932 0.547307i \(-0.815653\pi\)
0.261893 + 0.965097i \(0.415653\pi\)
\(32\) 11.7972 2.08546
\(33\) 0 0
\(34\) −4.82307 −0.827150
\(35\) −0.229824 + 0.166977i −0.0388473 + 0.0282242i
\(36\) 0 0
\(37\) −1.67897 + 5.16733i −0.276020 + 0.849504i 0.712927 + 0.701238i \(0.247369\pi\)
−0.988948 + 0.148265i \(0.952631\pi\)
\(38\) 6.93427 + 5.03804i 1.12489 + 0.817278i
\(39\) 0 0
\(40\) −0.567033 + 1.74515i −0.0896557 + 0.275932i
\(41\) −3.29583 10.1435i −0.514722 1.58415i −0.783787 0.621030i \(-0.786715\pi\)
0.269065 0.963122i \(-0.413285\pi\)
\(42\) 0 0
\(43\) 12.1439 1.85193 0.925964 0.377612i \(-0.123255\pi\)
0.925964 + 0.377612i \(0.123255\pi\)
\(44\) 11.6402 11.4036i 1.75482 1.71916i
\(45\) 0 0
\(46\) 11.8065 8.57795i 1.74078 1.26475i
\(47\) 0.511346 + 1.57376i 0.0745874 + 0.229557i 0.981399 0.191980i \(-0.0614909\pi\)
−0.906811 + 0.421537i \(0.861491\pi\)
\(48\) 0 0
\(49\) 4.52548 + 3.28795i 0.646497 + 0.469708i
\(50\) 10.5137 + 7.63862i 1.48686 + 1.08026i
\(51\) 0 0
\(52\) −9.16576 28.2093i −1.27106 3.91193i
\(53\) 6.99142 5.07956i 0.960345 0.697732i 0.00711436 0.999975i \(-0.497735\pi\)
0.953231 + 0.302243i \(0.0977354\pi\)
\(54\) 0 0
\(55\) 0.353422 + 0.711596i 0.0476554 + 0.0959516i
\(56\) −9.08313 −1.21378
\(57\) 0 0
\(58\) 5.05789 + 15.5666i 0.664134 + 2.04399i
\(59\) −1.21376 + 3.73558i −0.158019 + 0.486332i −0.998454 0.0555800i \(-0.982299\pi\)
0.840436 + 0.541912i \(0.182299\pi\)
\(60\) 0 0
\(61\) 8.67742 + 6.30451i 1.11103 + 0.807210i 0.982825 0.184538i \(-0.0590787\pi\)
0.128204 + 0.991748i \(0.459079\pi\)
\(62\) 3.21546 9.89616i 0.408364 1.25681i
\(63\) 0 0
\(64\) −8.40715 + 6.10815i −1.05089 + 0.763519i
\(65\) 1.44622 0.179381
\(66\) 0 0
\(67\) 9.22102 1.12653 0.563263 0.826277i \(-0.309546\pi\)
0.563263 + 0.826277i \(0.309546\pi\)
\(68\) 7.29134 5.29747i 0.884205 0.642412i
\(69\) 0 0
\(70\) 0.230812 0.710368i 0.0275874 0.0849052i
\(71\) −5.77707 4.19728i −0.685612 0.498126i 0.189603 0.981861i \(-0.439280\pi\)
−0.875215 + 0.483735i \(0.839280\pi\)
\(72\) 0 0
\(73\) −0.172710 + 0.531546i −0.0202141 + 0.0622127i −0.960655 0.277745i \(-0.910413\pi\)
0.940441 + 0.339958i \(0.110413\pi\)
\(74\) −4.41451 13.5865i −0.513176 1.57939i
\(75\) 0 0
\(76\) −16.0165 −1.83722
\(77\) −2.80943 + 2.75233i −0.320164 + 0.313657i
\(78\) 0 0
\(79\) −3.57826 + 2.59976i −0.402585 + 0.292495i −0.770593 0.637327i \(-0.780040\pi\)
0.368008 + 0.929823i \(0.380040\pi\)
\(80\) −0.763468 2.34971i −0.0853583 0.262706i
\(81\) 0 0
\(82\) 22.6872 + 16.4832i 2.50538 + 1.82026i
\(83\) 12.4742 + 9.06302i 1.36922 + 0.994795i 0.997798 + 0.0663309i \(0.0211293\pi\)
0.371421 + 0.928465i \(0.378871\pi\)
\(84\) 0 0
\(85\) 0.135794 + 0.417930i 0.0147289 + 0.0453309i
\(86\) −25.8319 + 18.7680i −2.78552 + 2.02380i
\(87\) 0 0
\(88\) −4.23151 + 25.0495i −0.451080 + 2.67028i
\(89\) −0.0625956 −0.00663512 −0.00331756 0.999994i \(-0.501056\pi\)
−0.00331756 + 0.999994i \(0.501056\pi\)
\(90\) 0 0
\(91\) 2.21221 + 6.80848i 0.231902 + 0.713722i
\(92\) −8.42699 + 25.9356i −0.878575 + 2.70397i
\(93\) 0 0
\(94\) −3.51990 2.55735i −0.363050 0.263771i
\(95\) 0.241323 0.742716i 0.0247592 0.0762010i
\(96\) 0 0
\(97\) −4.92941 + 3.58143i −0.500506 + 0.363639i −0.809210 0.587519i \(-0.800105\pi\)
0.308704 + 0.951158i \(0.400105\pi\)
\(98\) −14.7078 −1.48571
\(99\) 0 0
\(100\) −24.2841 −2.42841
\(101\) 12.3436 8.96815i 1.22823 0.892365i 0.231478 0.972840i \(-0.425644\pi\)
0.996757 + 0.0804755i \(0.0256439\pi\)
\(102\) 0 0
\(103\) 3.86162 11.8849i 0.380497 1.17105i −0.559198 0.829034i \(-0.688891\pi\)
0.939695 0.342015i \(-0.111109\pi\)
\(104\) 37.4102 + 27.1801i 3.66837 + 2.66523i
\(105\) 0 0
\(106\) −7.02150 + 21.6100i −0.681989 + 2.09894i
\(107\) 3.33446 + 10.2624i 0.322354 + 0.992105i 0.972621 + 0.232399i \(0.0746574\pi\)
−0.650266 + 0.759706i \(0.725343\pi\)
\(108\) 0 0
\(109\) −5.16947 −0.495146 −0.247573 0.968869i \(-0.579633\pi\)
−0.247573 + 0.968869i \(0.579633\pi\)
\(110\) −1.85153 0.967470i −0.176536 0.0922447i
\(111\) 0 0
\(112\) 9.89409 7.18848i 0.934904 0.679247i
\(113\) 0.629758 + 1.93820i 0.0592427 + 0.182330i 0.976298 0.216429i \(-0.0694410\pi\)
−0.917056 + 0.398759i \(0.869441\pi\)
\(114\) 0 0
\(115\) −1.07571 0.781550i −0.100311 0.0728799i
\(116\) −24.7440 17.9776i −2.29743 1.66918i
\(117\) 0 0
\(118\) −3.19135 9.82197i −0.293788 0.904185i
\(119\) −1.75981 + 1.27857i −0.161321 + 0.117207i
\(120\) 0 0
\(121\) 6.28156 + 9.03006i 0.571051 + 0.820914i
\(122\) −28.2015 −2.55325
\(123\) 0 0
\(124\) 6.00853 + 18.4924i 0.539582 + 1.66066i
\(125\) 0.736031 2.26527i 0.0658326 0.202612i
\(126\) 0 0
\(127\) 0.969141 + 0.704122i 0.0859974 + 0.0624808i 0.629953 0.776633i \(-0.283074\pi\)
−0.543956 + 0.839114i \(0.683074\pi\)
\(128\) 1.15227 3.54633i 0.101847 0.313454i
\(129\) 0 0
\(130\) −3.07632 + 2.23508i −0.269811 + 0.196029i
\(131\) −5.76699 −0.503864 −0.251932 0.967745i \(-0.581066\pi\)
−0.251932 + 0.967745i \(0.581066\pi\)
\(132\) 0 0
\(133\) 3.86568 0.335197
\(134\) −19.6145 + 14.2507i −1.69443 + 1.23108i
\(135\) 0 0
\(136\) −4.34189 + 13.3630i −0.372314 + 1.14586i
\(137\) −0.108211 0.0786196i −0.00924505 0.00671693i 0.583153 0.812362i \(-0.301819\pi\)
−0.592398 + 0.805645i \(0.701819\pi\)
\(138\) 0 0
\(139\) 3.44404 10.5997i 0.292120 0.899053i −0.692054 0.721846i \(-0.743294\pi\)
0.984174 0.177207i \(-0.0567061\pi\)
\(140\) 0.431305 + 1.32742i 0.0364519 + 0.112188i
\(141\) 0 0
\(142\) 18.7754 1.57560
\(143\) 19.8070 2.92901i 1.65635 0.244936i
\(144\) 0 0
\(145\) 1.20647 0.876555i 0.100192 0.0727939i
\(146\) −0.454106 1.39759i −0.0375820 0.115666i
\(147\) 0 0
\(148\) 21.5965 + 15.6908i 1.77522 + 1.28977i
\(149\) −3.19148 2.31875i −0.261456 0.189959i 0.449333 0.893365i \(-0.351662\pi\)
−0.710789 + 0.703406i \(0.751662\pi\)
\(150\) 0 0
\(151\) −0.827284 2.54612i −0.0673235 0.207200i 0.911735 0.410778i \(-0.134743\pi\)
−0.979059 + 0.203578i \(0.934743\pi\)
\(152\) 20.2010 14.6769i 1.63852 1.19045i
\(153\) 0 0
\(154\) 1.72245 10.1965i 0.138799 0.821655i
\(155\) −0.948056 −0.0761497
\(156\) 0 0
\(157\) −3.29874 10.1525i −0.263268 0.810257i −0.992087 0.125550i \(-0.959930\pi\)
0.728819 0.684706i \(-0.240070\pi\)
\(158\) 3.59365 11.0601i 0.285896 0.879896i
\(159\) 0 0
\(160\) 2.28638 + 1.66115i 0.180754 + 0.131326i
\(161\) 2.03390 6.25971i 0.160294 0.493334i
\(162\) 0 0
\(163\) −5.97347 + 4.33998i −0.467878 + 0.339933i −0.796614 0.604489i \(-0.793378\pi\)
0.328736 + 0.944422i \(0.393378\pi\)
\(164\) −52.4020 −4.09191
\(165\) 0 0
\(166\) −40.5410 −3.14659
\(167\) 8.35056 6.06704i 0.646186 0.469481i −0.215784 0.976441i \(-0.569231\pi\)
0.861970 + 0.506960i \(0.169231\pi\)
\(168\) 0 0
\(169\) 7.24498 22.2977i 0.557306 1.71521i
\(170\) −0.934749 0.679135i −0.0716920 0.0520873i
\(171\) 0 0
\(172\) 18.4377 56.7454i 1.40586 4.32679i
\(173\) 4.96625 + 15.2845i 0.377577 + 1.16206i 0.941724 + 0.336388i \(0.109205\pi\)
−0.564147 + 0.825675i \(0.690795\pi\)
\(174\) 0 0
\(175\) 5.86111 0.443058
\(176\) −15.2151 30.6348i −1.14688 2.30919i
\(177\) 0 0
\(178\) 0.133150 0.0967392i 0.00998002 0.00725091i
\(179\) −1.14818 3.53374i −0.0858191 0.264124i 0.898933 0.438085i \(-0.144343\pi\)
−0.984752 + 0.173961i \(0.944343\pi\)
\(180\) 0 0
\(181\) 12.2247 + 8.88174i 0.908652 + 0.660174i 0.940674 0.339313i \(-0.110195\pi\)
−0.0320216 + 0.999487i \(0.510195\pi\)
\(182\) −15.2279 11.0637i −1.12877 0.820100i
\(183\) 0 0
\(184\) −13.1377 40.4337i −0.968524 2.98081i
\(185\) −1.05301 + 0.765054i −0.0774185 + 0.0562479i
\(186\) 0 0
\(187\) 2.70623 + 5.44884i 0.197899 + 0.398459i
\(188\) 8.13014 0.592951
\(189\) 0 0
\(190\) 0.634510 + 1.95282i 0.0460322 + 0.141673i
\(191\) 3.70323 11.3974i 0.267956 0.824685i −0.723041 0.690805i \(-0.757256\pi\)
0.990998 0.133880i \(-0.0427437\pi\)
\(192\) 0 0
\(193\) 18.2299 + 13.2448i 1.31221 + 0.953379i 0.999994 + 0.00336958i \(0.00107257\pi\)
0.312220 + 0.950010i \(0.398927\pi\)
\(194\) 4.95062 15.2364i 0.355434 1.09391i
\(195\) 0 0
\(196\) 22.2347 16.1544i 1.58819 1.15389i
\(197\) −9.95308 −0.709127 −0.354564 0.935032i \(-0.615371\pi\)
−0.354564 + 0.935032i \(0.615371\pi\)
\(198\) 0 0
\(199\) −15.5617 −1.10314 −0.551570 0.834128i \(-0.685971\pi\)
−0.551570 + 0.834128i \(0.685971\pi\)
\(200\) 30.6285 22.2529i 2.16577 1.57352i
\(201\) 0 0
\(202\) −12.3967 + 38.1532i −0.872230 + 2.68445i
\(203\) 5.97211 + 4.33899i 0.419160 + 0.304538i
\(204\) 0 0
\(205\) 0.789548 2.42998i 0.0551444 0.169717i
\(206\) 10.1534 + 31.2488i 0.707418 + 2.17721i
\(207\) 0 0
\(208\) −62.2609 −4.31702
\(209\) 1.80088 10.6608i 0.124570 0.737422i
\(210\) 0 0
\(211\) 1.93750 1.40768i 0.133383 0.0969084i −0.519093 0.854718i \(-0.673730\pi\)
0.652476 + 0.757809i \(0.273730\pi\)
\(212\) −13.1207 40.3812i −0.901131 2.77339i
\(213\) 0 0
\(214\) −22.9531 16.6764i −1.56904 1.13997i
\(215\) 2.35358 + 1.70998i 0.160513 + 0.116620i
\(216\) 0 0
\(217\) −1.45019 4.46324i −0.0984456 0.302984i
\(218\) 10.9962 7.98923i 0.744759 0.541099i
\(219\) 0 0
\(220\) 3.86170 0.571057i 0.260356 0.0385007i
\(221\) 11.0740 0.744918
\(222\) 0 0
\(223\) 4.01224 + 12.3484i 0.268679 + 0.826910i 0.990823 + 0.135167i \(0.0431570\pi\)
−0.722144 + 0.691743i \(0.756843\pi\)
\(224\) −4.32298 + 13.3048i −0.288841 + 0.888962i
\(225\) 0 0
\(226\) −4.33500 3.14956i −0.288360 0.209506i
\(227\) 5.70156 17.5476i 0.378426 1.16467i −0.562712 0.826653i \(-0.690242\pi\)
0.941138 0.338022i \(-0.109758\pi\)
\(228\) 0 0
\(229\) −16.2934 + 11.8379i −1.07670 + 0.782267i −0.977104 0.212761i \(-0.931755\pi\)
−0.0995945 + 0.995028i \(0.531755\pi\)
\(230\) 3.49605 0.230523
\(231\) 0 0
\(232\) 47.6825 3.13051
\(233\) 5.95367 4.32560i 0.390038 0.283379i −0.375433 0.926850i \(-0.622506\pi\)
0.765471 + 0.643470i \(0.222506\pi\)
\(234\) 0 0
\(235\) −0.122498 + 0.377009i −0.00799087 + 0.0245934i
\(236\) 15.6126 + 11.3432i 1.01629 + 0.738381i
\(237\) 0 0
\(238\) 1.76738 5.43943i 0.114562 0.352586i
\(239\) 2.97454 + 9.15470i 0.192407 + 0.592168i 0.999997 + 0.00242388i \(0.000771547\pi\)
−0.807590 + 0.589744i \(0.799228\pi\)
\(240\) 0 0
\(241\) −26.5631 −1.71108 −0.855540 0.517736i \(-0.826775\pi\)
−0.855540 + 0.517736i \(0.826775\pi\)
\(242\) −27.3174 9.50034i −1.75603 0.610705i
\(243\) 0 0
\(244\) 42.6340 30.9754i 2.72936 1.98300i
\(245\) 0.414098 + 1.27446i 0.0264557 + 0.0814224i
\(246\) 0 0
\(247\) −15.9214 11.5676i −1.01305 0.736026i
\(248\) −24.5239 17.8177i −1.55727 1.13142i
\(249\) 0 0
\(250\) 1.93525 + 5.95608i 0.122396 + 0.376695i
\(251\) −20.1137 + 14.6135i −1.26957 + 0.922394i −0.999185 0.0403590i \(-0.987150\pi\)
−0.270382 + 0.962753i \(0.587150\pi\)
\(252\) 0 0
\(253\) −16.3155 8.52528i −1.02575 0.535980i
\(254\) −3.14970 −0.197630
\(255\) 0 0
\(256\) −3.39282 10.4420i −0.212051 0.652627i
\(257\) 4.14394 12.7537i 0.258492 0.795556i −0.734630 0.678468i \(-0.762644\pi\)
0.993122 0.117088i \(-0.0373559\pi\)
\(258\) 0 0
\(259\) −5.21244 3.78706i −0.323885 0.235316i
\(260\) 2.19574 6.75781i 0.136174 0.419101i
\(261\) 0 0
\(262\) 12.2672 8.91267i 0.757873 0.550627i
\(263\) −0.781901 −0.0482141 −0.0241071 0.999709i \(-0.507674\pi\)
−0.0241071 + 0.999709i \(0.507674\pi\)
\(264\) 0 0
\(265\) 2.07024 0.127174
\(266\) −8.22288 + 5.97427i −0.504177 + 0.366306i
\(267\) 0 0
\(268\) 14.0000 43.0875i 0.855184 2.63199i
\(269\) 8.62814 + 6.26871i 0.526067 + 0.382210i 0.818884 0.573958i \(-0.194593\pi\)
−0.292818 + 0.956168i \(0.594593\pi\)
\(270\) 0 0
\(271\) −7.60141 + 23.3947i −0.461753 + 1.42113i 0.401268 + 0.915961i \(0.368570\pi\)
−0.863021 + 0.505168i \(0.831430\pi\)
\(272\) −5.84603 17.9922i −0.354468 1.09094i
\(273\) 0 0
\(274\) 0.351684 0.0212460
\(275\) 2.73048 16.1638i 0.164654 0.974713i
\(276\) 0 0
\(277\) 7.25869 5.27374i 0.436132 0.316869i −0.347964 0.937508i \(-0.613127\pi\)
0.784096 + 0.620639i \(0.213127\pi\)
\(278\) 9.05542 + 27.8697i 0.543108 + 1.67151i
\(279\) 0 0
\(280\) −1.76038 1.27899i −0.105203 0.0764344i
\(281\) −13.5317 9.83136i −0.807234 0.586490i 0.105794 0.994388i \(-0.466262\pi\)
−0.913027 + 0.407898i \(0.866262\pi\)
\(282\) 0 0
\(283\) −1.80836 5.56556i −0.107496 0.330838i 0.882812 0.469726i \(-0.155647\pi\)
−0.990308 + 0.138888i \(0.955647\pi\)
\(284\) −28.3840 + 20.6221i −1.68428 + 1.22370i
\(285\) 0 0
\(286\) −37.6058 + 36.8415i −2.22368 + 2.17848i
\(287\) 12.6475 0.746560
\(288\) 0 0
\(289\) −4.21349 12.9678i −0.247852 0.762811i
\(290\) −1.21167 + 3.72912i −0.0711515 + 0.218982i
\(291\) 0 0
\(292\) 2.22156 + 1.61406i 0.130007 + 0.0944555i
\(293\) 4.62996 14.2495i 0.270485 0.832467i −0.719894 0.694084i \(-0.755810\pi\)
0.990379 0.138383i \(-0.0441905\pi\)
\(294\) 0 0
\(295\) −0.761243 + 0.553075i −0.0443213 + 0.0322013i
\(296\) −41.6171 −2.41895
\(297\) 0 0
\(298\) 10.3723 0.600850
\(299\) −27.1083 + 19.6953i −1.56771 + 1.13901i
\(300\) 0 0
\(301\) −4.45004 + 13.6958i −0.256496 + 0.789414i
\(302\) 5.69469 + 4.13743i 0.327693 + 0.238083i
\(303\) 0 0
\(304\) −10.3892 + 31.9745i −0.595859 + 1.83387i
\(305\) 0.794015 + 2.44373i 0.0454652 + 0.139927i
\(306\) 0 0
\(307\) 6.52424 0.372358 0.186179 0.982516i \(-0.440390\pi\)
0.186179 + 0.982516i \(0.440390\pi\)
\(308\) 8.59546 + 17.3065i 0.489772 + 0.986129i
\(309\) 0 0
\(310\) 2.01665 1.46519i 0.114538 0.0832169i
\(311\) 4.45446 + 13.7094i 0.252589 + 0.777390i 0.994295 + 0.106664i \(0.0340170\pi\)
−0.741706 + 0.670725i \(0.765983\pi\)
\(312\) 0 0
\(313\) −12.7327 9.25081i −0.719692 0.522887i 0.166594 0.986026i \(-0.446723\pi\)
−0.886286 + 0.463139i \(0.846723\pi\)
\(314\) 22.7072 + 16.4978i 1.28144 + 0.931022i
\(315\) 0 0
\(316\) 6.71524 + 20.6674i 0.377762 + 1.16263i
\(317\) −23.7184 + 17.2325i −1.33216 + 0.967871i −0.332466 + 0.943115i \(0.607881\pi\)
−0.999694 + 0.0247558i \(0.992119\pi\)
\(318\) 0 0
\(319\) 14.7483 14.4485i 0.825746 0.808962i
\(320\) −2.48946 −0.139165
\(321\) 0 0
\(322\) 5.34774 + 16.4587i 0.298018 + 0.917205i
\(323\) 1.84786 5.68713i 0.102818 0.316440i
\(324\) 0 0
\(325\) −24.1398 17.5386i −1.33904 0.972868i
\(326\) 5.99917 18.4636i 0.332263 1.02260i
\(327\) 0 0
\(328\) 66.0925 48.0190i 3.64935 2.65141i
\(329\) −1.96226 −0.108183
\(330\) 0 0
\(331\) 13.4116 0.737169 0.368584 0.929594i \(-0.379843\pi\)
0.368584 + 0.929594i \(0.379843\pi\)
\(332\) 61.2883 44.5285i 3.36363 2.44382i
\(333\) 0 0
\(334\) −8.38649 + 25.8110i −0.458888 + 1.41231i
\(335\) 1.78711 + 1.29841i 0.0976400 + 0.0709396i
\(336\) 0 0
\(337\) 3.99318 12.2897i 0.217522 0.669465i −0.781443 0.623977i \(-0.785516\pi\)
0.998965 0.0454877i \(-0.0144842\pi\)
\(338\) 19.0492 + 58.6274i 1.03614 + 3.18891i
\(339\) 0 0
\(340\) 2.15905 0.117091
\(341\) −12.9843 + 1.92009i −0.703141 + 0.103979i
\(342\) 0 0
\(343\) −12.0820 + 8.77807i −0.652365 + 0.473971i
\(344\) 28.7444 + 88.4661i 1.54979 + 4.76977i
\(345\) 0 0
\(346\) −34.1856 24.8373i −1.83783 1.33526i
\(347\) 28.2314 + 20.5113i 1.51554 + 1.10111i 0.963643 + 0.267195i \(0.0860968\pi\)
0.551899 + 0.833911i \(0.313903\pi\)
\(348\) 0 0
\(349\) −1.14963 3.53819i −0.0615382 0.189395i 0.915561 0.402179i \(-0.131747\pi\)
−0.977099 + 0.212784i \(0.931747\pi\)
\(350\) −12.4674 + 9.05813i −0.666413 + 0.484177i
\(351\) 0 0
\(352\) 34.6780 + 18.1202i 1.84834 + 0.965807i
\(353\) −3.95252 −0.210371 −0.105186 0.994453i \(-0.533544\pi\)
−0.105186 + 0.994453i \(0.533544\pi\)
\(354\) 0 0
\(355\) −0.528622 1.62693i −0.0280564 0.0863486i
\(356\) −0.0950368 + 0.292493i −0.00503694 + 0.0155021i
\(357\) 0 0
\(358\) 7.90361 + 5.74231i 0.417719 + 0.303491i
\(359\) −2.28796 + 7.04162i −0.120754 + 0.371643i −0.993104 0.117240i \(-0.962595\pi\)
0.872350 + 0.488883i \(0.162595\pi\)
\(360\) 0 0
\(361\) 6.77400 4.92160i 0.356526 0.259031i
\(362\) −39.7301 −2.08817
\(363\) 0 0
\(364\) 35.1730 1.84357
\(365\) −0.108319 + 0.0786985i −0.00566969 + 0.00411927i
\(366\) 0 0
\(367\) −7.85395 + 24.1720i −0.409973 + 1.26177i 0.506698 + 0.862123i \(0.330866\pi\)
−0.916671 + 0.399643i \(0.869134\pi\)
\(368\) 46.3103 + 33.6464i 2.41409 + 1.75394i
\(369\) 0 0
\(370\) 1.05754 3.25476i 0.0549787 0.169207i
\(371\) 3.16675 + 9.74624i 0.164409 + 0.506000i
\(372\) 0 0
\(373\) −4.77475 −0.247227 −0.123614 0.992330i \(-0.539448\pi\)
−0.123614 + 0.992330i \(0.539448\pi\)
\(374\) −14.1775 7.40812i −0.733102 0.383065i
\(375\) 0 0
\(376\) −10.2542 + 7.45012i −0.528820 + 0.384211i
\(377\) −11.6131 35.7416i −0.598107 1.84079i
\(378\) 0 0
\(379\) 14.1162 + 10.2560i 0.725100 + 0.526816i 0.888009 0.459825i \(-0.152088\pi\)
−0.162910 + 0.986641i \(0.552088\pi\)
\(380\) −3.10413 2.25528i −0.159238 0.115693i
\(381\) 0 0
\(382\) 9.73690 + 29.9671i 0.498183 + 1.53325i
\(383\) −2.74105 + 1.99149i −0.140061 + 0.101760i −0.655610 0.755100i \(-0.727588\pi\)
0.515548 + 0.856861i \(0.327588\pi\)
\(384\) 0 0
\(385\) −0.932043 + 0.137828i −0.0475013 + 0.00702436i
\(386\) −59.2469 −3.01559
\(387\) 0 0
\(388\) 9.25093 + 28.4714i 0.469645 + 1.44542i
\(389\) 5.79538 17.8363i 0.293837 0.904339i −0.689772 0.724027i \(-0.742289\pi\)
0.983609 0.180312i \(-0.0577108\pi\)
\(390\) 0 0
\(391\) −8.23695 5.98449i −0.416560 0.302649i
\(392\) −13.2404 + 40.7498i −0.668742 + 2.05818i
\(393\) 0 0
\(394\) 21.1717 15.3821i 1.06661 0.774940i
\(395\) −1.05956 −0.0533125
\(396\) 0 0
\(397\) 10.7157 0.537806 0.268903 0.963167i \(-0.413339\pi\)
0.268903 + 0.963167i \(0.413339\pi\)
\(398\) 33.1021 24.0501i 1.65926 1.20552i
\(399\) 0 0
\(400\) −15.7519 + 48.4795i −0.787597 + 2.42397i
\(401\) −2.29166 1.66499i −0.114440 0.0831457i 0.529093 0.848564i \(-0.322532\pi\)
−0.643533 + 0.765418i \(0.722532\pi\)
\(402\) 0 0
\(403\) −7.38284 + 22.7220i −0.367765 + 1.13186i
\(404\) −23.1650 71.2945i −1.15250 3.54704i
\(405\) 0 0
\(406\) −19.4093 −0.963268
\(407\) −12.8722 + 12.6106i −0.638053 + 0.625085i
\(408\) 0 0
\(409\) −19.0473 + 13.8387i −0.941827 + 0.684278i −0.948860 0.315698i \(-0.897761\pi\)
0.00703246 + 0.999975i \(0.497761\pi\)
\(410\) 2.07596 + 6.38914i 0.102524 + 0.315537i
\(411\) 0 0
\(412\) −49.6719 36.0887i −2.44716 1.77796i
\(413\) −3.76819 2.73775i −0.185421 0.134716i
\(414\) 0 0
\(415\) 1.14143 + 3.51297i 0.0560307 + 0.172445i
\(416\) 57.6177 41.8617i 2.82494 2.05244i
\(417\) 0 0
\(418\) 12.6451 + 25.4603i 0.618493 + 1.24530i
\(419\) 21.1174 1.03165 0.515826 0.856693i \(-0.327485\pi\)
0.515826 + 0.856693i \(0.327485\pi\)
\(420\) 0 0
\(421\) −7.26722 22.3662i −0.354183 1.09006i −0.956482 0.291792i \(-0.905748\pi\)
0.602299 0.798271i \(-0.294252\pi\)
\(422\) −1.94584 + 5.98867i −0.0947218 + 0.291524i
\(423\) 0 0
\(424\) 53.5522 + 38.9080i 2.60073 + 1.88954i
\(425\) 2.80171 8.62277i 0.135903 0.418266i
\(426\) 0 0
\(427\) −10.2900 + 7.47610i −0.497966 + 0.361794i
\(428\) 53.0162 2.56264
\(429\) 0 0
\(430\) −7.64913 −0.368874
\(431\) 4.02881 2.92710i 0.194061 0.140994i −0.486512 0.873674i \(-0.661731\pi\)
0.680573 + 0.732680i \(0.261731\pi\)
\(432\) 0 0
\(433\) −7.90629 + 24.3331i −0.379952 + 1.16937i 0.560124 + 0.828409i \(0.310753\pi\)
−0.940076 + 0.340964i \(0.889247\pi\)
\(434\) 9.98255 + 7.25274i 0.479178 + 0.348143i
\(435\) 0 0
\(436\) −7.84863 + 24.1556i −0.375881 + 1.15684i
\(437\) 5.59126 + 17.2081i 0.267466 + 0.823177i
\(438\) 0 0
\(439\) −4.66005 −0.222412 −0.111206 0.993797i \(-0.535471\pi\)
−0.111206 + 0.993797i \(0.535471\pi\)
\(440\) −4.34731 + 4.25895i −0.207250 + 0.203037i
\(441\) 0 0
\(442\) −23.5560 + 17.1145i −1.12045 + 0.814052i
\(443\) −7.14563 21.9920i −0.339499 1.04487i −0.964463 0.264217i \(-0.914886\pi\)
0.624964 0.780653i \(-0.285114\pi\)
\(444\) 0 0
\(445\) −0.0121315 0.00881406i −0.000575089 0.000417827i
\(446\) −27.6186 20.0661i −1.30778 0.950157i
\(447\) 0 0
\(448\) −3.80800 11.7198i −0.179911 0.553709i
\(449\) −11.1354 + 8.09035i −0.525512 + 0.381807i −0.818676 0.574255i \(-0.805292\pi\)
0.293164 + 0.956062i \(0.405292\pi\)
\(450\) 0 0
\(451\) 5.89203 34.8794i 0.277445 1.64241i
\(452\) 10.0128 0.470964
\(453\) 0 0
\(454\) 14.9911 + 46.1379i 0.703567 + 2.16536i
\(455\) −0.529956 + 1.63104i −0.0248447 + 0.0764641i
\(456\) 0 0
\(457\) −8.76935 6.37131i −0.410213 0.298037i 0.363475 0.931604i \(-0.381590\pi\)
−0.773688 + 0.633567i \(0.781590\pi\)
\(458\) 16.3635 50.3617i 0.764617 2.35325i
\(459\) 0 0
\(460\) −5.28520 + 3.83992i −0.246424 + 0.179037i
\(461\) 2.92792 0.136367 0.0681833 0.997673i \(-0.478280\pi\)
0.0681833 + 0.997673i \(0.478280\pi\)
\(462\) 0 0
\(463\) −27.0835 −1.25867 −0.629337 0.777132i \(-0.716674\pi\)
−0.629337 + 0.777132i \(0.716674\pi\)
\(464\) −51.9397 + 37.7364i −2.41124 + 1.75187i
\(465\) 0 0
\(466\) −5.97929 + 18.4024i −0.276985 + 0.852473i
\(467\) 9.14721 + 6.64584i 0.423282 + 0.307533i 0.778957 0.627077i \(-0.215749\pi\)
−0.355675 + 0.934610i \(0.615749\pi\)
\(468\) 0 0
\(469\) −3.37897 + 10.3994i −0.156026 + 0.480200i
\(470\) −0.322083 0.991270i −0.0148566 0.0457239i
\(471\) 0 0
\(472\) −30.0860 −1.38482
\(473\) 35.6973 + 18.6527i 1.64136 + 0.857654i
\(474\) 0 0
\(475\) −13.0352 + 9.47061i −0.598095 + 0.434541i
\(476\) 3.30259 + 10.1643i 0.151374 + 0.465882i
\(477\) 0 0
\(478\) −20.4755 14.8764i −0.936530 0.680429i
\(479\) 24.5826 + 17.8603i 1.12321 + 0.816059i 0.984692 0.174302i \(-0.0557668\pi\)
0.138516 + 0.990360i \(0.455767\pi\)
\(480\) 0 0
\(481\) 10.1359 + 31.1951i 0.462157 + 1.42237i
\(482\) 56.5037 41.0523i 2.57367 1.86988i
\(483\) 0 0
\(484\) 51.7322 15.6421i 2.35147 0.711004i
\(485\) −1.45966 −0.0662796
\(486\) 0 0
\(487\) −0.988742 3.04303i −0.0448042 0.137893i 0.926152 0.377150i \(-0.123096\pi\)
−0.970956 + 0.239257i \(0.923096\pi\)
\(488\) −25.3879 + 78.1361i −1.14926 + 3.53705i
\(489\) 0 0
\(490\) −2.85048 2.07100i −0.128772 0.0935581i
\(491\) −1.84843 + 5.68887i −0.0834183 + 0.256735i −0.984063 0.177822i \(-0.943095\pi\)
0.900644 + 0.434557i \(0.143095\pi\)
\(492\) 0 0
\(493\) 9.23823 6.71197i 0.416069 0.302292i
\(494\) 51.7444 2.32809
\(495\) 0 0
\(496\) 40.8146 1.83263
\(497\) 6.85063 4.97727i 0.307293 0.223261i
\(498\) 0 0
\(499\) 9.07808 27.9395i 0.406391 1.25074i −0.513338 0.858187i \(-0.671591\pi\)
0.919728 0.392555i \(-0.128409\pi\)
\(500\) −9.46754 6.87857i −0.423401 0.307619i
\(501\) 0 0
\(502\) 20.2003 62.1700i 0.901582 2.77478i
\(503\) −4.45188 13.7015i −0.198500 0.610919i −0.999918 0.0128145i \(-0.995921\pi\)
0.801418 0.598104i \(-0.204079\pi\)
\(504\) 0 0
\(505\) 3.65509 0.162649
\(506\) 47.8810 7.08052i 2.12857 0.314767i
\(507\) 0 0
\(508\) 4.76160 3.45950i 0.211262 0.153491i
\(509\) −13.5477 41.6956i −0.600492 1.84812i −0.525230 0.850961i \(-0.676021\pi\)
−0.0752625 0.997164i \(-0.523979\pi\)
\(510\) 0 0
\(511\) −0.536186 0.389562i −0.0237195 0.0172332i
\(512\) 29.3882 + 21.3518i 1.29879 + 0.943624i
\(513\) 0 0
\(514\) 10.8957 + 33.5334i 0.480587 + 1.47909i
\(515\) 2.42191 1.75962i 0.106722 0.0775382i
\(516\) 0 0
\(517\) −0.914145 + 5.41151i −0.0402040 + 0.237998i
\(518\) 16.9404 0.744317
\(519\) 0 0
\(520\) 3.42317 + 10.5354i 0.150116 + 0.462009i
\(521\) 6.23122 19.1777i 0.272995 0.840191i −0.716748 0.697332i \(-0.754370\pi\)
0.989743 0.142859i \(-0.0456296\pi\)
\(522\) 0 0
\(523\) −31.6906 23.0245i −1.38573 1.00679i −0.996318 0.0857293i \(-0.972678\pi\)
−0.389413 0.921063i \(-0.627322\pi\)
\(524\) −8.75583 + 26.9477i −0.382500 + 1.17721i
\(525\) 0 0
\(526\) 1.66322 1.20840i 0.0725198 0.0526887i
\(527\) −7.25946 −0.316227
\(528\) 0 0
\(529\) 7.80699 0.339434
\(530\) −4.40371 + 3.19948i −0.191285 + 0.138977i
\(531\) 0 0
\(532\) 5.86914 18.0633i 0.254459 0.783145i
\(533\) −52.0907 37.8461i −2.25630 1.63930i
\(534\) 0 0
\(535\) −0.798802 + 2.45846i −0.0345352 + 0.106288i
\(536\) 21.8260 + 67.1734i 0.942738 + 2.90145i
\(537\) 0 0
\(538\) −28.0414 −1.20895
\(539\) 8.25253 + 16.6160i 0.355462 + 0.715703i
\(540\) 0 0
\(541\) −14.5837 + 10.5957i −0.627002 + 0.455544i −0.855360 0.518034i \(-0.826664\pi\)
0.228358 + 0.973577i \(0.426664\pi\)
\(542\) −19.9864 61.5118i −0.858489 2.64216i
\(543\) 0 0
\(544\) 17.5073 + 12.7198i 0.750620 + 0.545357i
\(545\) −1.00188 0.727911i −0.0429160 0.0311803i
\(546\) 0 0
\(547\) −0.0276786 0.0851858i −0.00118345 0.00364228i 0.950463 0.310838i \(-0.100610\pi\)
−0.951646 + 0.307195i \(0.900610\pi\)
\(548\) −0.531662 + 0.386275i −0.0227115 + 0.0165008i
\(549\) 0 0
\(550\) 19.1724 + 38.6026i 0.817514 + 1.64602i
\(551\) −20.2932 −0.864518
\(552\) 0 0
\(553\) −1.62076 4.98819i −0.0689218 0.212120i
\(554\) −7.28992 + 22.4361i −0.309719 + 0.953217i
\(555\) 0 0
\(556\) −44.3006 32.1863i −1.87876 1.36500i
\(557\) −0.950270 + 2.92463i −0.0402642 + 0.123921i −0.969168 0.246400i \(-0.920752\pi\)
0.928904 + 0.370321i \(0.120752\pi\)
\(558\) 0 0
\(559\) 59.3112 43.0921i 2.50859 1.82260i
\(560\) 2.92976 0.123805
\(561\) 0 0
\(562\) 43.9779 1.85510
\(563\) −14.4119 + 10.4709i −0.607390 + 0.441294i −0.848494 0.529205i \(-0.822490\pi\)
0.241105 + 0.970499i \(0.422490\pi\)
\(564\) 0 0
\(565\) −0.150865 + 0.464313i −0.00634692 + 0.0195338i
\(566\) 12.4480 + 9.04401i 0.523229 + 0.380148i
\(567\) 0 0
\(568\) 16.9022 52.0197i 0.709202 2.18270i
\(569\) −1.31301 4.04103i −0.0550442 0.169409i 0.919755 0.392493i \(-0.128387\pi\)
−0.974799 + 0.223085i \(0.928387\pi\)
\(570\) 0 0
\(571\) −45.0573 −1.88559 −0.942795 0.333373i \(-0.891813\pi\)
−0.942795 + 0.333373i \(0.891813\pi\)
\(572\) 16.3858 97.0002i 0.685126 4.05578i
\(573\) 0 0
\(574\) −26.9032 + 19.5463i −1.12292 + 0.815846i
\(575\) 8.47741 + 26.0908i 0.353533 + 1.08806i
\(576\) 0 0
\(577\) 12.3578 + 8.97845i 0.514461 + 0.373778i 0.814513 0.580145i \(-0.197004\pi\)
−0.300052 + 0.953923i \(0.597004\pi\)
\(578\) 29.0039 + 21.0726i 1.20640 + 0.876504i
\(579\) 0 0
\(580\) −2.26417 6.96839i −0.0940144 0.289347i
\(581\) −14.7923 + 10.7472i −0.613687 + 0.445870i
\(582\) 0 0
\(583\) 28.3535 4.19284i 1.17428 0.173650i
\(584\) −4.28101 −0.177150
\(585\) 0 0
\(586\) 12.1735 + 37.4663i 0.502884 + 1.54772i
\(587\) −13.1598 + 40.5017i −0.543163 + 1.67168i 0.182154 + 0.983270i \(0.441693\pi\)
−0.725318 + 0.688414i \(0.758307\pi\)
\(588\) 0 0
\(589\) 10.4371 + 7.58302i 0.430054 + 0.312453i
\(590\) 0.764518 2.35295i 0.0314747 0.0968692i
\(591\) 0 0
\(592\) 45.3328 32.9362i 1.86317 1.35367i
\(593\) −10.6230 −0.436236 −0.218118 0.975922i \(-0.569992\pi\)
−0.218118 + 0.975922i \(0.569992\pi\)
\(594\) 0 0
\(595\) −0.521100 −0.0213630
\(596\) −15.6804 + 11.3925i −0.642295 + 0.466655i
\(597\) 0 0
\(598\) 27.2250 83.7898i 1.11331 3.42642i
\(599\) −28.1278 20.4360i −1.14927 0.834994i −0.160887 0.986973i \(-0.551436\pi\)
−0.988384 + 0.151978i \(0.951436\pi\)
\(600\) 0 0
\(601\) 2.80823 8.64285i 0.114550 0.352549i −0.877303 0.479937i \(-0.840659\pi\)
0.991853 + 0.127388i \(0.0406594\pi\)
\(602\) −11.7005 36.0104i −0.476876 1.46767i
\(603\) 0 0
\(604\) −13.1534 −0.535204
\(605\) −0.0541032 + 2.63460i −0.00219961 + 0.107112i
\(606\) 0 0
\(607\) 12.6176 9.16720i 0.512131 0.372085i −0.301500 0.953466i \(-0.597487\pi\)
0.813631 + 0.581381i \(0.197487\pi\)
\(608\) −11.8840 36.5752i −0.481960 1.48332i
\(609\) 0 0
\(610\) −5.46568 3.97105i −0.221299 0.160783i
\(611\) 8.08184 + 5.87180i 0.326956 + 0.237548i
\(612\) 0 0
\(613\) −8.59141 26.4417i −0.347004 1.06797i −0.960502 0.278272i \(-0.910238\pi\)
0.613498 0.789696i \(-0.289762\pi\)
\(614\) −13.8780 + 10.0830i −0.560071 + 0.406916i
\(615\) 0 0
\(616\) −26.7000 13.9515i −1.07578 0.562120i
\(617\) −8.03380 −0.323428 −0.161714 0.986838i \(-0.551702\pi\)
−0.161714 + 0.986838i \(0.551702\pi\)
\(618\) 0 0
\(619\) 1.11249 + 3.42391i 0.0447149 + 0.137618i 0.970922 0.239398i \(-0.0769501\pi\)
−0.926207 + 0.377016i \(0.876950\pi\)
\(620\) −1.43940 + 4.43002i −0.0578078 + 0.177914i
\(621\) 0 0
\(622\) −30.6627 22.2777i −1.22946 0.893256i
\(623\) 0.0229377 0.0705949i 0.000918979 0.00282833i
\(624\) 0 0
\(625\) −19.5317 + 14.1906i −0.781266 + 0.567623i
\(626\) 41.3810 1.65392
\(627\) 0 0
\(628\) −52.4483 −2.09292
\(629\) −8.06309 + 5.85818i −0.321496 + 0.233581i
\(630\) 0 0
\(631\) −6.25432 + 19.2488i −0.248981 + 0.766283i 0.745976 + 0.665973i \(0.231984\pi\)
−0.994956 + 0.100310i \(0.968016\pi\)
\(632\) −27.4084 19.9134i −1.09025 0.792111i
\(633\) 0 0
\(634\) 23.8205 73.3119i 0.946033 2.91159i
\(635\) 0.0886799 + 0.272929i 0.00351916 + 0.0108308i
\(636\) 0 0
\(637\) 33.7697 1.33800
\(638\) −9.04211 + 53.5271i −0.357981 + 2.11916i
\(639\) 0 0
\(640\) 0.722676 0.525055i 0.0285663 0.0207546i
\(641\) 8.61501 + 26.5143i 0.340272 + 1.04725i 0.964066 + 0.265662i \(0.0855904\pi\)
−0.623794 + 0.781589i \(0.714410\pi\)
\(642\) 0 0
\(643\) −0.0723797 0.0525869i −0.00285437 0.00207382i 0.586357 0.810053i \(-0.300562\pi\)
−0.589212 + 0.807979i \(0.700562\pi\)
\(644\) −26.1620 19.0078i −1.03093 0.749013i
\(645\) 0 0
\(646\) 4.85858 + 14.9532i 0.191158 + 0.588324i
\(647\) −38.1698 + 27.7320i −1.50061 + 1.09026i −0.530473 + 0.847702i \(0.677986\pi\)
−0.970137 + 0.242556i \(0.922014\pi\)
\(648\) 0 0
\(649\) −9.30565 + 9.11651i −0.365279 + 0.357854i
\(650\) 78.4543 3.07723
\(651\) 0 0
\(652\) 11.2103 + 34.5017i 0.439029 + 1.35119i
\(653\) −5.34005 + 16.4350i −0.208972 + 0.643151i 0.790554 + 0.612392i \(0.209792\pi\)
−0.999527 + 0.0307590i \(0.990208\pi\)
\(654\) 0 0
\(655\) −1.11769 0.812048i −0.0436717 0.0317293i
\(656\) −33.9907 + 104.613i −1.32711 + 4.08443i
\(657\) 0 0
\(658\) 4.17401 3.03259i 0.162720 0.118223i
\(659\) 12.0864 0.470818 0.235409 0.971896i \(-0.424357\pi\)
0.235409 + 0.971896i \(0.424357\pi\)
\(660\) 0 0
\(661\) 38.5830 1.50071 0.750353 0.661037i \(-0.229884\pi\)
0.750353 + 0.661037i \(0.229884\pi\)
\(662\) −28.5285 + 20.7271i −1.10879 + 0.805583i
\(663\) 0 0
\(664\) −36.4963 + 112.324i −1.41633 + 4.35902i
\(665\) 0.749199 + 0.544325i 0.0290527 + 0.0211080i
\(666\) 0 0
\(667\) −10.6771 + 32.8608i −0.413420 + 1.27237i
\(668\) −15.6713 48.2314i −0.606342 1.86613i
\(669\) 0 0
\(670\) −5.80808 −0.224386
\(671\) 15.8239 + 31.8605i 0.610874 + 1.22996i
\(672\) 0 0
\(673\) −23.3342 + 16.9533i −0.899466 + 0.653500i −0.938329 0.345745i \(-0.887626\pi\)
0.0388631 + 0.999245i \(0.487626\pi\)
\(674\) 10.4993 + 32.3134i 0.404416 + 1.24467i
\(675\) 0 0
\(676\) −93.1918 67.7078i −3.58430 2.60415i
\(677\) −5.70123 4.14218i −0.219116 0.159197i 0.472813 0.881163i \(-0.343239\pi\)
−0.691929 + 0.721966i \(0.743239\pi\)
\(678\) 0 0
\(679\) −2.23277 6.87174i −0.0856857 0.263713i
\(680\) −2.72312 + 1.97847i −0.104427 + 0.0758707i
\(681\) 0 0
\(682\) 24.6522 24.1511i 0.943980 0.924794i
\(683\) −32.5733 −1.24638 −0.623191 0.782070i \(-0.714164\pi\)
−0.623191 + 0.782070i \(0.714164\pi\)
\(684\) 0 0
\(685\) −0.00990166 0.0304742i −0.000378323 0.00116436i
\(686\) 12.1340 37.3445i 0.463277 1.42582i
\(687\) 0 0
\(688\) −101.324 73.6160i −3.86293 2.80658i
\(689\) 16.1217 49.6174i 0.614187 1.89027i
\(690\) 0 0
\(691\) −34.9341 + 25.3811i −1.32895 + 0.965542i −0.329181 + 0.944267i \(0.606772\pi\)
−0.999774 + 0.0212748i \(0.993228\pi\)
\(692\) 78.9608 3.00164
\(693\) 0 0
\(694\) −91.7519 −3.48285
\(695\) 2.16002 1.56935i 0.0819342 0.0595287i
\(696\) 0 0
\(697\) 6.04573 18.6068i 0.228998 0.704784i
\(698\) 7.91357 + 5.74955i 0.299533 + 0.217624i
\(699\) 0 0
\(700\) 8.89872 27.3875i 0.336340 1.03515i
\(701\) −8.39620 25.8408i −0.317120 0.975995i −0.974873 0.222761i \(-0.928493\pi\)
0.657753 0.753234i \(-0.271507\pi\)
\(702\) 0 0
\(703\) 17.7118 0.668013
\(704\) −34.0949 + 5.04187i −1.28500 + 0.190023i
\(705\) 0 0
\(706\) 8.40759 6.10847i 0.316424 0.229895i
\(707\) 5.59101 + 17.2073i 0.210271 + 0.647149i
\(708\) 0 0
\(709\) 17.3625 + 12.6146i 0.652063 + 0.473751i 0.863973 0.503538i \(-0.167969\pi\)
−0.211911 + 0.977289i \(0.567969\pi\)
\(710\) 3.63882 + 2.64376i 0.136563 + 0.0992185i
\(711\) 0 0
\(712\) −0.148163 0.455998i −0.00555263 0.0170892i
\(713\) 17.7706 12.9111i 0.665515 0.483525i
\(714\) 0 0
\(715\) 4.25119 + 2.22135i 0.158985 + 0.0830740i
\(716\) −18.2555 −0.682240
\(717\) 0 0
\(718\) −6.01574 18.5145i −0.224505 0.690956i
\(719\) −5.61293 + 17.2748i −0.209327 + 0.644242i 0.790181 + 0.612874i \(0.209987\pi\)
−0.999508 + 0.0313684i \(0.990013\pi\)
\(720\) 0 0
\(721\) 11.9886 + 8.71023i 0.446479 + 0.324386i
\(722\) −6.80314 + 20.9379i −0.253187 + 0.779229i
\(723\) 0 0
\(724\) 60.0624 43.6379i 2.23220 1.62179i
\(725\) −30.7683 −1.14271
\(726\) 0 0
\(727\) −25.5506 −0.947619 −0.473810 0.880627i \(-0.657122\pi\)
−0.473810 + 0.880627i \(0.657122\pi\)
\(728\) −44.3622 + 32.2311i −1.64417 + 1.19456i
\(729\) 0 0
\(730\) 0.108785 0.334807i 0.00402633 0.0123918i
\(731\) 18.0219 + 13.0937i 0.666563 + 0.484287i
\(732\) 0 0
\(733\) −12.5884 + 38.7430i −0.464962 + 1.43101i 0.394068 + 0.919081i \(0.371067\pi\)
−0.859030 + 0.511925i \(0.828933\pi\)
\(734\) −20.6504 63.5553i −0.762219 2.34587i
\(735\) 0 0
\(736\) −65.4790 −2.41359
\(737\) 27.1054 + 14.1633i 0.998439 + 0.521710i
\(738\) 0 0
\(739\) 25.9774 18.8737i 0.955596 0.694281i 0.00347186 0.999994i \(-0.498895\pi\)
0.952124 + 0.305713i \(0.0988949\pi\)
\(740\) 1.97616 + 6.08198i 0.0726449 + 0.223578i
\(741\) 0 0
\(742\) −21.7986 15.8376i −0.800252 0.581417i
\(743\) −14.5318 10.5580i −0.533121 0.387335i 0.288403 0.957509i \(-0.406876\pi\)
−0.821524 + 0.570174i \(0.806876\pi\)
\(744\) 0 0
\(745\) −0.292032 0.898782i −0.0106992 0.0329288i
\(746\) 10.1566 7.37920i 0.371859 0.270172i
\(747\) 0 0
\(748\) 29.5698 4.37270i 1.08118 0.159882i
\(749\) −12.7958 −0.467547
\(750\) 0 0
\(751\) −7.68948 23.6658i −0.280593 0.863577i −0.987685 0.156455i \(-0.949993\pi\)
0.707092 0.707122i \(-0.250007\pi\)
\(752\) 5.27363 16.2306i 0.192309 0.591868i
\(753\) 0 0
\(754\) 79.9402 + 58.0799i 2.91125 + 2.11515i
\(755\) 0.198184 0.609947i 0.00721265 0.0221983i
\(756\) 0 0
\(757\) 26.3079 19.1138i 0.956178 0.694704i 0.00391833 0.999992i \(-0.498753\pi\)
0.952260 + 0.305288i \(0.0987528\pi\)
\(758\) −45.8775 −1.66635
\(759\) 0 0
\(760\) 5.98175 0.216981
\(761\) 7.13808 5.18612i 0.258755 0.187997i −0.450843 0.892603i \(-0.648877\pi\)
0.709598 + 0.704607i \(0.248877\pi\)
\(762\) 0 0
\(763\) 1.89431 5.83010i 0.0685787 0.211064i
\(764\) −47.6345 34.6085i −1.72336 1.25209i
\(765\) 0 0
\(766\) 2.75285 8.47239i 0.0994644 0.306120i
\(767\) 7.32748 + 22.5517i 0.264580 + 0.814294i
\(768\) 0 0
\(769\) −26.9649 −0.972378 −0.486189 0.873854i \(-0.661613\pi\)
−0.486189 + 0.873854i \(0.661613\pi\)
\(770\) 1.76958 1.73362i 0.0637714 0.0624753i
\(771\) 0 0
\(772\) 89.5672 65.0744i 3.22359 2.34208i
\(773\) −8.24081 25.3626i −0.296401 0.912230i −0.982747 0.184954i \(-0.940786\pi\)
0.686346 0.727276i \(-0.259214\pi\)
\(774\) 0 0
\(775\) 15.8247 + 11.4973i 0.568439 + 0.412995i
\(776\) −37.7579 27.4327i −1.35543 0.984776i
\(777\) 0 0
\(778\) 15.2378 + 46.8971i 0.546301 + 1.68134i
\(779\) −28.1283 + 20.4364i −1.00780 + 0.732209i
\(780\) 0 0
\(781\) −10.5349 21.2114i −0.376968 0.759005i
\(782\) 26.7700 0.957294
\(783\) 0 0
\(784\) −17.8273 54.8666i −0.636688 1.95952i
\(785\) 0.790245 2.43213i 0.0282051 0.0868063i
\(786\) 0 0
\(787\) 13.3855 + 9.72517i 0.477143 + 0.346665i 0.800219 0.599708i \(-0.204717\pi\)
−0.323075 + 0.946373i \(0.604717\pi\)
\(788\) −15.1114 + 46.5082i −0.538322 + 1.65679i
\(789\) 0 0
\(790\) 2.25385 1.63752i 0.0801884 0.0582603i
\(791\) −2.41666 −0.0859264
\(792\) 0 0
\(793\) 64.7520 2.29941
\(794\) −22.7939 + 16.5607i −0.808924 + 0.587718i
\(795\) 0 0
\(796\) −23.6268 + 72.7159i −0.837431 + 2.57735i
\(797\) −36.0162 26.1673i −1.27576 0.926894i −0.276344 0.961059i \(-0.589123\pi\)
−0.999416 + 0.0341648i \(0.989123\pi\)
\(798\) 0 0
\(799\) −0.937991 + 2.88684i −0.0331837 + 0.102129i
\(800\) −18.0184 55.4550i −0.637047 1.96063i
\(801\) 0 0
\(802\) 7.44789 0.262994
\(803\) −1.32412 + 1.29721i −0.0467274 + 0.0457776i
\(804\) 0 0
\(805\) 1.27561 0.926787i 0.0449595 0.0326650i
\(806\) −19.4117 59.7430i −0.683747 2.10436i
\(807\) 0 0
\(808\) 94.5484 + 68.6934i 3.32620 + 2.41663i
\(809\) 39.7013 + 28.8447i 1.39582 + 1.01413i 0.995198 + 0.0978851i \(0.0312078\pi\)
0.400627 + 0.916241i \(0.368792\pi\)
\(810\) 0 0
\(811\) −13.2047 40.6400i −0.463681 1.42706i −0.860634 0.509224i \(-0.829933\pi\)
0.396953 0.917839i \(-0.370067\pi\)
\(812\) 29.3423 21.3184i 1.02971 0.748129i
\(813\) 0 0
\(814\) 7.89192 46.7182i 0.276612 1.63747i
\(815\) −1.76882 −0.0619589
\(816\) 0 0
\(817\) −12.2333 37.6502i −0.427989 1.31721i
\(818\) 19.1292 58.8737i 0.668838 2.05847i
\(819\) 0 0
\(820\) −10.1559 7.37871i −0.354660 0.257676i
\(821\) 8.95439 27.5588i 0.312510 0.961808i −0.664257 0.747504i \(-0.731252\pi\)
0.976767 0.214303i \(-0.0687481\pi\)
\(822\) 0 0
\(823\) −15.5570 + 11.3028i −0.542282 + 0.393991i −0.824932 0.565232i \(-0.808787\pi\)
0.282650 + 0.959223i \(0.408787\pi\)
\(824\) 95.7193 3.33454
\(825\) 0 0
\(826\) 12.2466 0.426114
\(827\) 35.2773 25.6305i 1.22671 0.891259i 0.230074 0.973173i \(-0.426103\pi\)
0.996639 + 0.0819138i \(0.0261032\pi\)
\(828\) 0 0
\(829\) 6.68209 20.5654i 0.232078 0.714264i −0.765417 0.643535i \(-0.777467\pi\)
0.997496 0.0707296i \(-0.0225327\pi\)
\(830\) −7.85715 5.70856i −0.272726 0.198147i
\(831\) 0 0
\(832\) −19.3862 + 59.6647i −0.672097 + 2.06850i
\(833\) 3.17083 + 9.75882i 0.109863 + 0.338123i
\(834\) 0 0
\(835\) 2.47270 0.0855713
\(836\) −47.0809 24.6010i −1.62833 0.850843i
\(837\) 0 0
\(838\) −44.9198 + 32.6361i −1.55173 + 1.12740i
\(839\) 6.86129 + 21.1169i 0.236878 + 0.729036i 0.996867 + 0.0790995i \(0.0252045\pi\)
−0.759989 + 0.649936i \(0.774796\pi\)
\(840\) 0 0
\(841\) −7.88954 5.73208i −0.272053 0.197658i
\(842\) 50.0246 + 36.3450i 1.72396 + 1.25253i
\(843\) 0 0
\(844\) −3.63607 11.1907i −0.125159 0.385199i
\(845\) 4.54387 3.30131i 0.156314 0.113569i
\(846\) 0 0
\(847\) −12.4859 + 3.77531i −0.429020 + 0.129721i
\(848\) −89.1256 −3.06059
\(849\) 0 0
\(850\) 7.36653 + 22.6718i 0.252670 + 0.777638i
\(851\) 9.31894 28.6808i 0.319449 0.983164i
\(852\) 0 0
\(853\) −21.2902 15.4682i −0.728962 0.529622i 0.160273 0.987073i \(-0.448763\pi\)
−0.889235 + 0.457451i \(0.848763\pi\)
\(854\) 10.3342 31.8055i 0.353630 1.08836i
\(855\) 0 0
\(856\) −66.8672 + 48.5819i −2.28547 + 1.66049i
\(857\) 27.9702 0.955442 0.477721 0.878512i \(-0.341463\pi\)
0.477721 + 0.878512i \(0.341463\pi\)
\(858\) 0 0
\(859\) 15.3807 0.524784 0.262392 0.964961i \(-0.415489\pi\)
0.262392 + 0.964961i \(0.415489\pi\)
\(860\) 11.5637 8.40149i 0.394317 0.286488i
\(861\) 0 0
\(862\) −4.04615 + 12.4528i −0.137812 + 0.424143i
\(863\) −26.5699 19.3041i −0.904449 0.657121i 0.0351559 0.999382i \(-0.488807\pi\)
−0.939605 + 0.342261i \(0.888807\pi\)
\(864\) 0 0
\(865\) −1.18971 + 3.66156i −0.0404514 + 0.124497i
\(866\) −20.7880 63.9789i −0.706405 2.17409i
\(867\) 0 0
\(868\) −23.0573 −0.782617
\(869\) −14.5115 + 2.14592i −0.492269 + 0.0727954i
\(870\) 0 0
\(871\) 45.0357 32.7204i 1.52598 1.10869i
\(872\) −12.2360 37.6586i −0.414364 1.27528i
\(873\) 0 0
\(874\) −38.4880 27.9632i −1.30188 0.945868i
\(875\) 2.28505 + 1.66018i 0.0772486 + 0.0561244i
\(876\) 0 0
\(877\) 15.4562 + 47.5693i 0.521919 + 1.60630i 0.770330 + 0.637646i \(0.220092\pi\)
−0.248411 + 0.968655i \(0.579908\pi\)
\(878\) 9.91262 7.20194i 0.334535 0.243054i
\(879\) 0 0
\(880\) 1.36487 8.07970i 0.0460098 0.272367i
\(881\) 32.0798 1.08080 0.540399 0.841409i \(-0.318273\pi\)
0.540399 + 0.841409i \(0.318273\pi\)
\(882\) 0 0
\(883\) 14.4035 + 44.3294i 0.484716 + 1.49180i 0.832392 + 0.554188i \(0.186971\pi\)
−0.347676 + 0.937615i \(0.613029\pi\)
\(884\) 16.8133 51.7459i 0.565492 1.74040i
\(885\) 0 0
\(886\) 49.1876 + 35.7369i 1.65249 + 1.20060i
\(887\) −9.06966 + 27.9136i −0.304530 + 0.937245i 0.675323 + 0.737522i \(0.264004\pi\)
−0.979852 + 0.199723i \(0.935996\pi\)
\(888\) 0 0
\(889\) −1.14924 + 0.834971i −0.0385442 + 0.0280040i
\(890\) 0.0394273 0.00132161
\(891\) 0 0
\(892\) 63.7925 2.13593
\(893\) 4.36408 3.17069i 0.146038 0.106103i
\(894\) 0 0
\(895\) 0.275058 0.846541i 0.00919417 0.0282967i
\(896\) 3.57729 + 2.59905i 0.119509 + 0.0868282i
\(897\) 0 0
\(898\) 11.1833 34.4187i 0.373192 1.14857i
\(899\) 7.61290 + 23.4301i 0.253904 + 0.781437i
\(900\) 0 0
\(901\) 15.8523 0.528116
\(902\) 41.3716 + 83.2996i 1.37752 + 2.77357i
\(903\) 0 0
\(904\) −12.6288 + 9.17534i −0.420027 + 0.305167i
\(905\) 1.11860 + 3.44270i 0.0371835 + 0.114439i
\(906\) 0 0
\(907\) 20.3221 + 14.7649i 0.674786 + 0.490260i 0.871624 0.490176i \(-0.163067\pi\)
−0.196838 + 0.980436i \(0.563067\pi\)
\(908\) −73.3389 53.2838i −2.43384 1.76829i
\(909\) 0 0
\(910\) −1.39341 4.28848i −0.0461912 0.142162i
\(911\) 2.24012 1.62754i 0.0742186 0.0539230i −0.550057 0.835127i \(-0.685394\pi\)
0.624276 + 0.781204i \(0.285394\pi\)
\(912\) 0 0
\(913\) 22.7475 + 45.8009i 0.752833 + 1.51579i
\(914\) 28.5003 0.942707
\(915\) 0 0
\(916\) 30.5775 + 94.1079i 1.01031 + 3.10941i
\(917\) 2.11327 6.50398i 0.0697863 0.214780i
\(918\) 0 0
\(919\) −9.58156 6.96141i −0.316066 0.229636i 0.418429 0.908250i \(-0.362581\pi\)
−0.734495 + 0.678614i \(0.762581\pi\)
\(920\) 3.14726 9.68627i 0.103762 0.319347i
\(921\) 0 0
\(922\) −6.22811 + 4.52499i −0.205112 + 0.149022i
\(923\) −43.1092 −1.41896
\(924\) 0 0
\(925\) 26.8544 0.882969
\(926\) 57.6105 41.8565i 1.89320 1.37549i
\(927\) 0 0
\(928\) 22.6938 69.8443i 0.744960 2.29275i
\(929\) 9.10833 + 6.61759i 0.298835 + 0.217116i 0.727091 0.686541i \(-0.240872\pi\)
−0.428256 + 0.903657i \(0.640872\pi\)
\(930\) 0 0
\(931\) 5.63498 17.3427i 0.184679 0.568383i
\(932\) −11.1731 34.3874i −0.365988 1.12640i
\(933\) 0 0
\(934\) −29.7284 −0.972742
\(935\) −0.242762 + 1.43709i −0.00793916 + 0.0469979i
\(936\) 0 0
\(937\) 25.6860 18.6619i 0.839123 0.609659i −0.0830022 0.996549i \(-0.526451\pi\)
0.922126 + 0.386891i \(0.126451\pi\)
\(938\) −8.88433 27.3431i −0.290084 0.892785i
\(939\) 0 0
\(940\) 1.57568 + 1.14480i 0.0513931 + 0.0373393i
\(941\) 10.2016 + 7.41190i 0.332563 + 0.241621i 0.741517 0.670934i \(-0.234106\pi\)
−0.408954 + 0.912555i \(0.634106\pi\)
\(942\) 0 0
\(943\) 18.2932 + 56.3006i 0.595708 + 1.83340i
\(944\) 32.7721 23.8104i 1.06664 0.774961i
\(945\) 0 0
\(946\) −104.760 + 15.4917i −3.40606 + 0.503678i
\(947\) 0.369770 0.0120159 0.00600796 0.999982i \(-0.498088\pi\)
0.00600796 + 0.999982i \(0.498088\pi\)
\(948\) 0 0
\(949\) 1.04265 + 3.20894i 0.0338457 + 0.104166i
\(950\) 13.0913 40.2908i 0.424737 1.30721i
\(951\) 0 0
\(952\) −13.4796 9.79351i −0.436877 0.317409i
\(953\) −5.23478 + 16.1110i −0.169571 + 0.521886i −0.999344 0.0362151i \(-0.988470\pi\)
0.829773 + 0.558101i \(0.188470\pi\)
\(954\) 0 0
\(955\) 2.32257 1.68745i 0.0751567 0.0546046i
\(956\) 47.2937 1.52959
\(957\) 0 0
\(958\) −79.8933 −2.58124
\(959\) 0.128320 0.0932297i 0.00414366 0.00301054i
\(960\) 0 0
\(961\) −4.73977 + 14.5875i −0.152896 + 0.470565i
\(962\) −69.7714 50.6919i −2.24952 1.63437i
\(963\) 0 0
\(964\) −40.3299 + 124.123i −1.29894 + 3.99772i
\(965\) 1.66810 + 5.13388i 0.0536980 + 0.165265i
\(966\) 0 0
\(967\) 24.8161 0.798031 0.399016 0.916944i \(-0.369352\pi\)
0.399016 + 0.916944i \(0.369352\pi\)
\(968\) −50.9140 + 67.1340i −1.63644 + 2.15777i
\(969\) 0 0
\(970\) 3.10491 2.25585i 0.0996925 0.0724309i
\(971\) −3.75006 11.5415i −0.120345 0.370384i 0.872679 0.488294i \(-0.162381\pi\)
−0.993024 + 0.117910i \(0.962381\pi\)
\(972\) 0 0
\(973\) 10.6922 + 7.76834i 0.342776 + 0.249042i
\(974\) 6.80610 + 4.94492i 0.218081 + 0.158445i
\(975\) 0 0
\(976\) −34.1830 105.204i −1.09417 3.36751i
\(977\) −28.6201 + 20.7937i −0.915639 + 0.665251i −0.942435 0.334390i \(-0.891470\pi\)
0.0267954 + 0.999641i \(0.491470\pi\)
\(978\) 0 0
\(979\) −0.184001 0.0961453i −0.00588070 0.00307282i
\(980\) 6.58394 0.210316
\(981\) 0 0
\(982\) −4.86006 14.9577i −0.155091 0.477321i
\(983\) 6.94854 21.3854i 0.221624 0.682088i −0.776993 0.629509i \(-0.783256\pi\)
0.998617 0.0525789i \(-0.0167441\pi\)
\(984\) 0 0
\(985\) −1.92898 1.40149i −0.0614625 0.0446551i
\(986\) −9.27798 + 28.5547i −0.295471 + 0.909366i
\(987\) 0 0
\(988\) −78.2252 + 56.8339i −2.48867 + 1.80813i
\(989\) −67.4036 −2.14331
\(990\) 0 0
\(991\) 16.2761 0.517028 0.258514 0.966008i \(-0.416767\pi\)
0.258514 + 0.966008i \(0.416767\pi\)
\(992\) −37.7708 + 27.4421i −1.19922 + 0.871287i
\(993\) 0 0
\(994\) −6.88011 + 21.1748i −0.218224 + 0.671624i
\(995\) −3.01598 2.19124i −0.0956130 0.0694669i
\(996\) 0 0
\(997\) 1.42895 4.39786i 0.0452553 0.139282i −0.925876 0.377828i \(-0.876671\pi\)
0.971131 + 0.238547i \(0.0766710\pi\)
\(998\) 23.8690 + 73.4612i 0.755560 + 2.32537i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.f.c.487.1 24
3.2 odd 2 891.2.f.d.487.6 yes 24
9.2 odd 6 891.2.n.j.190.1 48
9.4 even 3 891.2.n.k.784.1 48
9.5 odd 6 891.2.n.j.784.6 48
9.7 even 3 891.2.n.k.190.6 48
11.2 odd 10 9801.2.a.cl.1.1 12
11.4 even 5 inner 891.2.f.c.730.1 yes 24
11.9 even 5 9801.2.a.cg.1.12 12
33.2 even 10 9801.2.a.cf.1.12 12
33.20 odd 10 9801.2.a.ck.1.1 12
33.26 odd 10 891.2.f.d.730.6 yes 24
99.4 even 15 891.2.n.k.136.6 48
99.59 odd 30 891.2.n.j.136.1 48
99.70 even 15 891.2.n.k.433.1 48
99.92 odd 30 891.2.n.j.433.6 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
891.2.f.c.487.1 24 1.1 even 1 trivial
891.2.f.c.730.1 yes 24 11.4 even 5 inner
891.2.f.d.487.6 yes 24 3.2 odd 2
891.2.f.d.730.6 yes 24 33.26 odd 10
891.2.n.j.136.1 48 99.59 odd 30
891.2.n.j.190.1 48 9.2 odd 6
891.2.n.j.433.6 48 99.92 odd 30
891.2.n.j.784.6 48 9.5 odd 6
891.2.n.k.136.6 48 99.4 even 15
891.2.n.k.190.6 48 9.7 even 3
891.2.n.k.433.1 48 99.70 even 15
891.2.n.k.784.1 48 9.4 even 3
9801.2.a.cf.1.12 12 33.2 even 10
9801.2.a.cg.1.12 12 11.9 even 5
9801.2.a.ck.1.1 12 33.20 odd 10
9801.2.a.cl.1.1 12 11.2 odd 10