Properties

Label 9801.2.a.cg.1.12
Level $9801$
Weight $2$
Character 9801.1
Self dual yes
Analytic conductor $78.261$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9801,2,Mod(1,9801)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9801.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9801, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9801 = 3^{4} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9801.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-1,0,11,2,0,-9,0,0,-8,0,0,-9,-21] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.2613790211\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} - 17 x^{10} + 16 x^{9} + 100 x^{8} - 84 x^{7} - 248 x^{6} + 152 x^{5} + 272 x^{4} + \cdots - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 891)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Root \(-2.62930\) of defining polynomial
Character \(\chi\) \(=\) 9801.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.62930 q^{2} +4.91321 q^{4} -0.239560 q^{5} -1.18583 q^{7} +7.65971 q^{8} -0.629874 q^{10} -6.03699 q^{13} -3.11791 q^{14} +10.3132 q^{16} -1.83436 q^{17} -3.25989 q^{19} -1.17701 q^{20} -5.55040 q^{23} -4.94261 q^{25} -15.8730 q^{26} -5.82625 q^{28} +6.22511 q^{29} +3.95750 q^{31} +11.7972 q^{32} -4.82307 q^{34} +0.284077 q^{35} -5.43325 q^{37} -8.57122 q^{38} -1.83496 q^{40} -10.6655 q^{41} +12.1439 q^{43} -14.5937 q^{46} +1.65475 q^{47} -5.59380 q^{49} -12.9956 q^{50} -29.6610 q^{52} -8.64187 q^{53} -9.08313 q^{56} +16.3677 q^{58} -3.92783 q^{59} -10.7259 q^{61} +10.4054 q^{62} +10.3918 q^{64} +1.44622 q^{65} +9.22102 q^{67} -9.01259 q^{68} +0.746925 q^{70} +7.14085 q^{71} -0.558900 q^{73} -14.2856 q^{74} -16.0165 q^{76} +4.42297 q^{79} -2.47063 q^{80} -28.0429 q^{82} -15.4189 q^{83} +0.439438 q^{85} +31.9300 q^{86} -0.0625956 q^{89} +7.15886 q^{91} -27.2703 q^{92} +4.35083 q^{94} +0.780938 q^{95} +6.09309 q^{97} -14.7078 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - q^{2} + 11 q^{4} + 2 q^{5} - 9 q^{7} - 8 q^{10} - 9 q^{13} - 21 q^{14} + 21 q^{16} + 5 q^{17} - 18 q^{19} + 11 q^{20} + 3 q^{23} + 14 q^{25} + 8 q^{26} - 17 q^{28} + 6 q^{29} + 6 q^{31} + 9 q^{32}+ \cdots + 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.62930 1.85920 0.929598 0.368576i \(-0.120155\pi\)
0.929598 + 0.368576i \(0.120155\pi\)
\(3\) 0 0
\(4\) 4.91321 2.45661
\(5\) −0.239560 −0.107134 −0.0535671 0.998564i \(-0.517059\pi\)
−0.0535671 + 0.998564i \(0.517059\pi\)
\(6\) 0 0
\(7\) −1.18583 −0.448203 −0.224101 0.974566i \(-0.571945\pi\)
−0.224101 + 0.974566i \(0.571945\pi\)
\(8\) 7.65971 2.70812
\(9\) 0 0
\(10\) −0.629874 −0.199184
\(11\) 0 0
\(12\) 0 0
\(13\) −6.03699 −1.67436 −0.837180 0.546928i \(-0.815797\pi\)
−0.837180 + 0.546928i \(0.815797\pi\)
\(14\) −3.11791 −0.833296
\(15\) 0 0
\(16\) 10.3132 2.57831
\(17\) −1.83436 −0.444897 −0.222449 0.974944i \(-0.571405\pi\)
−0.222449 + 0.974944i \(0.571405\pi\)
\(18\) 0 0
\(19\) −3.25989 −0.747870 −0.373935 0.927455i \(-0.621992\pi\)
−0.373935 + 0.927455i \(0.621992\pi\)
\(20\) −1.17701 −0.263187
\(21\) 0 0
\(22\) 0 0
\(23\) −5.55040 −1.15734 −0.578670 0.815562i \(-0.696428\pi\)
−0.578670 + 0.815562i \(0.696428\pi\)
\(24\) 0 0
\(25\) −4.94261 −0.988522
\(26\) −15.8730 −3.11296
\(27\) 0 0
\(28\) −5.82625 −1.10106
\(29\) 6.22511 1.15597 0.577987 0.816046i \(-0.303838\pi\)
0.577987 + 0.816046i \(0.303838\pi\)
\(30\) 0 0
\(31\) 3.95750 0.710787 0.355394 0.934717i \(-0.384347\pi\)
0.355394 + 0.934717i \(0.384347\pi\)
\(32\) 11.7972 2.08546
\(33\) 0 0
\(34\) −4.82307 −0.827150
\(35\) 0.284077 0.0480179
\(36\) 0 0
\(37\) −5.43325 −0.893221 −0.446610 0.894729i \(-0.647369\pi\)
−0.446610 + 0.894729i \(0.647369\pi\)
\(38\) −8.57122 −1.39044
\(39\) 0 0
\(40\) −1.83496 −0.290132
\(41\) −10.6655 −1.66568 −0.832838 0.553517i \(-0.813285\pi\)
−0.832838 + 0.553517i \(0.813285\pi\)
\(42\) 0 0
\(43\) 12.1439 1.85193 0.925964 0.377612i \(-0.123255\pi\)
0.925964 + 0.377612i \(0.123255\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −14.5937 −2.15172
\(47\) 1.65475 0.241370 0.120685 0.992691i \(-0.461491\pi\)
0.120685 + 0.992691i \(0.461491\pi\)
\(48\) 0 0
\(49\) −5.59380 −0.799115
\(50\) −12.9956 −1.83786
\(51\) 0 0
\(52\) −29.6610 −4.11324
\(53\) −8.64187 −1.18705 −0.593526 0.804815i \(-0.702265\pi\)
−0.593526 + 0.804815i \(0.702265\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −9.08313 −1.21378
\(57\) 0 0
\(58\) 16.3677 2.14918
\(59\) −3.92783 −0.511359 −0.255680 0.966762i \(-0.582299\pi\)
−0.255680 + 0.966762i \(0.582299\pi\)
\(60\) 0 0
\(61\) −10.7259 −1.37331 −0.686654 0.726984i \(-0.740921\pi\)
−0.686654 + 0.726984i \(0.740921\pi\)
\(62\) 10.4054 1.32149
\(63\) 0 0
\(64\) 10.3918 1.29898
\(65\) 1.44622 0.179381
\(66\) 0 0
\(67\) 9.22102 1.12653 0.563263 0.826277i \(-0.309546\pi\)
0.563263 + 0.826277i \(0.309546\pi\)
\(68\) −9.01259 −1.09294
\(69\) 0 0
\(70\) 0.746925 0.0892746
\(71\) 7.14085 0.847462 0.423731 0.905788i \(-0.360720\pi\)
0.423731 + 0.905788i \(0.360720\pi\)
\(72\) 0 0
\(73\) −0.558900 −0.0654144 −0.0327072 0.999465i \(-0.510413\pi\)
−0.0327072 + 0.999465i \(0.510413\pi\)
\(74\) −14.2856 −1.66067
\(75\) 0 0
\(76\) −16.0165 −1.83722
\(77\) 0 0
\(78\) 0 0
\(79\) 4.42297 0.497623 0.248811 0.968552i \(-0.419960\pi\)
0.248811 + 0.968552i \(0.419960\pi\)
\(80\) −2.47063 −0.276225
\(81\) 0 0
\(82\) −28.0429 −3.09682
\(83\) −15.4189 −1.69245 −0.846224 0.532828i \(-0.821129\pi\)
−0.846224 + 0.532828i \(0.821129\pi\)
\(84\) 0 0
\(85\) 0.439438 0.0476637
\(86\) 31.9300 3.44310
\(87\) 0 0
\(88\) 0 0
\(89\) −0.0625956 −0.00663512 −0.00331756 0.999994i \(-0.501056\pi\)
−0.00331756 + 0.999994i \(0.501056\pi\)
\(90\) 0 0
\(91\) 7.15886 0.750452
\(92\) −27.2703 −2.84313
\(93\) 0 0
\(94\) 4.35083 0.448754
\(95\) 0.780938 0.0801225
\(96\) 0 0
\(97\) 6.09309 0.618659 0.309330 0.950955i \(-0.399895\pi\)
0.309330 + 0.950955i \(0.399895\pi\)
\(98\) −14.7078 −1.48571
\(99\) 0 0
\(100\) −24.2841 −2.42841
\(101\) −15.2575 −1.51818 −0.759091 0.650985i \(-0.774356\pi\)
−0.759091 + 0.650985i \(0.774356\pi\)
\(102\) 0 0
\(103\) 12.4965 1.23131 0.615657 0.788014i \(-0.288891\pi\)
0.615657 + 0.788014i \(0.288891\pi\)
\(104\) −46.2416 −4.53436
\(105\) 0 0
\(106\) −22.7221 −2.20696
\(107\) 10.7905 1.04316 0.521580 0.853202i \(-0.325343\pi\)
0.521580 + 0.853202i \(0.325343\pi\)
\(108\) 0 0
\(109\) −5.16947 −0.495146 −0.247573 0.968869i \(-0.579633\pi\)
−0.247573 + 0.968869i \(0.579633\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −12.2298 −1.15560
\(113\) 2.03794 0.191713 0.0958566 0.995395i \(-0.469441\pi\)
0.0958566 + 0.995395i \(0.469441\pi\)
\(114\) 0 0
\(115\) 1.32965 0.123991
\(116\) 30.5853 2.83977
\(117\) 0 0
\(118\) −10.3274 −0.950717
\(119\) 2.17524 0.199404
\(120\) 0 0
\(121\) 0 0
\(122\) −28.2015 −2.55325
\(123\) 0 0
\(124\) 19.4440 1.74612
\(125\) 2.38185 0.213039
\(126\) 0 0
\(127\) −1.19792 −0.106299 −0.0531493 0.998587i \(-0.516926\pi\)
−0.0531493 + 0.998587i \(0.516926\pi\)
\(128\) 3.72883 0.329585
\(129\) 0 0
\(130\) 3.80254 0.333505
\(131\) −5.76699 −0.503864 −0.251932 0.967745i \(-0.581066\pi\)
−0.251932 + 0.967745i \(0.581066\pi\)
\(132\) 0 0
\(133\) 3.86568 0.335197
\(134\) 24.2448 2.09443
\(135\) 0 0
\(136\) −14.0506 −1.20483
\(137\) 0.133756 0.0114275 0.00571376 0.999984i \(-0.498181\pi\)
0.00571376 + 0.999984i \(0.498181\pi\)
\(138\) 0 0
\(139\) 11.1452 0.945320 0.472660 0.881245i \(-0.343294\pi\)
0.472660 + 0.881245i \(0.343294\pi\)
\(140\) 1.39573 0.117961
\(141\) 0 0
\(142\) 18.7754 1.57560
\(143\) 0 0
\(144\) 0 0
\(145\) −1.49128 −0.123844
\(146\) −1.46952 −0.121618
\(147\) 0 0
\(148\) −26.6947 −2.19429
\(149\) 3.94488 0.323178 0.161589 0.986858i \(-0.448338\pi\)
0.161589 + 0.986858i \(0.448338\pi\)
\(150\) 0 0
\(151\) −2.67715 −0.217863 −0.108932 0.994049i \(-0.534743\pi\)
−0.108932 + 0.994049i \(0.534743\pi\)
\(152\) −24.9698 −2.02532
\(153\) 0 0
\(154\) 0 0
\(155\) −0.948056 −0.0761497
\(156\) 0 0
\(157\) −10.6750 −0.851954 −0.425977 0.904734i \(-0.640070\pi\)
−0.425977 + 0.904734i \(0.640070\pi\)
\(158\) 11.6293 0.925178
\(159\) 0 0
\(160\) −2.82612 −0.223425
\(161\) 6.58185 0.518722
\(162\) 0 0
\(163\) 7.38361 0.578329 0.289165 0.957279i \(-0.406622\pi\)
0.289165 + 0.957279i \(0.406622\pi\)
\(164\) −52.4020 −4.09191
\(165\) 0 0
\(166\) −40.5410 −3.14659
\(167\) −10.3219 −0.798730 −0.399365 0.916792i \(-0.630769\pi\)
−0.399365 + 0.916792i \(0.630769\pi\)
\(168\) 0 0
\(169\) 23.4452 1.80348
\(170\) 1.15541 0.0886162
\(171\) 0 0
\(172\) 59.6656 4.54946
\(173\) 16.0711 1.22186 0.610932 0.791683i \(-0.290795\pi\)
0.610932 + 0.791683i \(0.290795\pi\)
\(174\) 0 0
\(175\) 5.86111 0.443058
\(176\) 0 0
\(177\) 0 0
\(178\) −0.164583 −0.0123360
\(179\) −3.71559 −0.277716 −0.138858 0.990312i \(-0.544343\pi\)
−0.138858 + 0.990312i \(0.544343\pi\)
\(180\) 0 0
\(181\) −15.1105 −1.12316 −0.561578 0.827424i \(-0.689805\pi\)
−0.561578 + 0.827424i \(0.689805\pi\)
\(182\) 18.8228 1.39524
\(183\) 0 0
\(184\) −42.5145 −3.13421
\(185\) 1.30159 0.0956946
\(186\) 0 0
\(187\) 0 0
\(188\) 8.13014 0.592951
\(189\) 0 0
\(190\) 2.05332 0.148963
\(191\) 11.9839 0.867125 0.433562 0.901124i \(-0.357256\pi\)
0.433562 + 0.901124i \(0.357256\pi\)
\(192\) 0 0
\(193\) −22.5333 −1.62199 −0.810993 0.585056i \(-0.801073\pi\)
−0.810993 + 0.585056i \(0.801073\pi\)
\(194\) 16.0205 1.15021
\(195\) 0 0
\(196\) −27.4835 −1.96311
\(197\) −9.95308 −0.709127 −0.354564 0.935032i \(-0.615371\pi\)
−0.354564 + 0.935032i \(0.615371\pi\)
\(198\) 0 0
\(199\) −15.5617 −1.10314 −0.551570 0.834128i \(-0.685971\pi\)
−0.551570 + 0.834128i \(0.685971\pi\)
\(200\) −37.8590 −2.67703
\(201\) 0 0
\(202\) −40.1166 −2.82260
\(203\) −7.38194 −0.518110
\(204\) 0 0
\(205\) 2.55503 0.178451
\(206\) 32.8570 2.28925
\(207\) 0 0
\(208\) −62.2609 −4.31702
\(209\) 0 0
\(210\) 0 0
\(211\) −2.39488 −0.164870 −0.0824352 0.996596i \(-0.526270\pi\)
−0.0824352 + 0.996596i \(0.526270\pi\)
\(212\) −42.4593 −2.91612
\(213\) 0 0
\(214\) 28.3716 1.93944
\(215\) −2.90919 −0.198405
\(216\) 0 0
\(217\) −4.69293 −0.318577
\(218\) −13.5921 −0.920572
\(219\) 0 0
\(220\) 0 0
\(221\) 11.0740 0.744918
\(222\) 0 0
\(223\) 12.9839 0.869465 0.434732 0.900560i \(-0.356843\pi\)
0.434732 + 0.900560i \(0.356843\pi\)
\(224\) −13.9895 −0.934710
\(225\) 0 0
\(226\) 5.35835 0.356432
\(227\) 18.4506 1.22461 0.612306 0.790621i \(-0.290242\pi\)
0.612306 + 0.790621i \(0.290242\pi\)
\(228\) 0 0
\(229\) 20.1398 1.33087 0.665436 0.746454i \(-0.268245\pi\)
0.665436 + 0.746454i \(0.268245\pi\)
\(230\) 3.49605 0.230523
\(231\) 0 0
\(232\) 47.6825 3.13051
\(233\) −7.35914 −0.482114 −0.241057 0.970511i \(-0.577494\pi\)
−0.241057 + 0.970511i \(0.577494\pi\)
\(234\) 0 0
\(235\) −0.396411 −0.0258590
\(236\) −19.2982 −1.25621
\(237\) 0 0
\(238\) 5.71936 0.370731
\(239\) 9.62582 0.622643 0.311321 0.950305i \(-0.399228\pi\)
0.311321 + 0.950305i \(0.399228\pi\)
\(240\) 0 0
\(241\) −26.5631 −1.71108 −0.855540 0.517736i \(-0.826775\pi\)
−0.855540 + 0.517736i \(0.826775\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −52.6985 −3.37368
\(245\) 1.34005 0.0856126
\(246\) 0 0
\(247\) 19.6799 1.25220
\(248\) 30.3133 1.92489
\(249\) 0 0
\(250\) 6.26259 0.396081
\(251\) 24.8619 1.56927 0.784635 0.619957i \(-0.212850\pi\)
0.784635 + 0.619957i \(0.212850\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −3.14970 −0.197630
\(255\) 0 0
\(256\) −10.9794 −0.686213
\(257\) 13.4101 0.836497 0.418249 0.908333i \(-0.362644\pi\)
0.418249 + 0.908333i \(0.362644\pi\)
\(258\) 0 0
\(259\) 6.44292 0.400344
\(260\) 7.10558 0.440669
\(261\) 0 0
\(262\) −15.1631 −0.936782
\(263\) −0.781901 −0.0482141 −0.0241071 0.999709i \(-0.507674\pi\)
−0.0241071 + 0.999709i \(0.507674\pi\)
\(264\) 0 0
\(265\) 2.07024 0.127174
\(266\) 10.1640 0.623197
\(267\) 0 0
\(268\) 45.3048 2.76743
\(269\) −10.6650 −0.650254 −0.325127 0.945670i \(-0.605407\pi\)
−0.325127 + 0.945670i \(0.605407\pi\)
\(270\) 0 0
\(271\) −24.5987 −1.49426 −0.747132 0.664676i \(-0.768570\pi\)
−0.747132 + 0.664676i \(0.768570\pi\)
\(272\) −18.9182 −1.14708
\(273\) 0 0
\(274\) 0.351684 0.0212460
\(275\) 0 0
\(276\) 0 0
\(277\) −8.97223 −0.539089 −0.269544 0.962988i \(-0.586873\pi\)
−0.269544 + 0.962988i \(0.586873\pi\)
\(278\) 29.3040 1.75753
\(279\) 0 0
\(280\) 2.17595 0.130038
\(281\) 16.7261 0.997796 0.498898 0.866661i \(-0.333738\pi\)
0.498898 + 0.866661i \(0.333738\pi\)
\(282\) 0 0
\(283\) −5.85197 −0.347864 −0.173932 0.984758i \(-0.555647\pi\)
−0.173932 + 0.984758i \(0.555647\pi\)
\(284\) 35.0845 2.08188
\(285\) 0 0
\(286\) 0 0
\(287\) 12.6475 0.746560
\(288\) 0 0
\(289\) −13.6351 −0.802067
\(290\) −3.92103 −0.230251
\(291\) 0 0
\(292\) −2.74600 −0.160697
\(293\) 14.9829 0.875308 0.437654 0.899144i \(-0.355810\pi\)
0.437654 + 0.899144i \(0.355810\pi\)
\(294\) 0 0
\(295\) 0.940948 0.0547841
\(296\) −41.6171 −2.41895
\(297\) 0 0
\(298\) 10.3723 0.600850
\(299\) 33.5077 1.93780
\(300\) 0 0
\(301\) −14.4006 −0.830039
\(302\) −7.03902 −0.405050
\(303\) 0 0
\(304\) −33.6200 −1.92824
\(305\) 2.56949 0.147128
\(306\) 0 0
\(307\) 6.52424 0.372358 0.186179 0.982516i \(-0.440390\pi\)
0.186179 + 0.982516i \(0.440390\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −2.49272 −0.141577
\(311\) 14.4149 0.817396 0.408698 0.912670i \(-0.365983\pi\)
0.408698 + 0.912670i \(0.365983\pi\)
\(312\) 0 0
\(313\) 15.7384 0.889588 0.444794 0.895633i \(-0.353277\pi\)
0.444794 + 0.895633i \(0.353277\pi\)
\(314\) −28.0676 −1.58395
\(315\) 0 0
\(316\) 21.7310 1.22246
\(317\) 29.3176 1.64664 0.823320 0.567577i \(-0.192119\pi\)
0.823320 + 0.567577i \(0.192119\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −2.48946 −0.139165
\(321\) 0 0
\(322\) 17.3056 0.964406
\(323\) 5.97980 0.332725
\(324\) 0 0
\(325\) 29.8385 1.65514
\(326\) 19.4137 1.07523
\(327\) 0 0
\(328\) −81.6948 −4.51084
\(329\) −1.96226 −0.108183
\(330\) 0 0
\(331\) 13.4116 0.737169 0.368584 0.929594i \(-0.379843\pi\)
0.368584 + 0.929594i \(0.379843\pi\)
\(332\) −75.7565 −4.15768
\(333\) 0 0
\(334\) −27.1393 −1.48499
\(335\) −2.20898 −0.120690
\(336\) 0 0
\(337\) 12.9222 0.703917 0.351959 0.936016i \(-0.385516\pi\)
0.351959 + 0.936016i \(0.385516\pi\)
\(338\) 61.6445 3.35302
\(339\) 0 0
\(340\) 2.15905 0.117091
\(341\) 0 0
\(342\) 0 0
\(343\) 14.9341 0.806368
\(344\) 93.0188 5.01524
\(345\) 0 0
\(346\) 42.2558 2.27168
\(347\) −34.8960 −1.87331 −0.936656 0.350250i \(-0.886097\pi\)
−0.936656 + 0.350250i \(0.886097\pi\)
\(348\) 0 0
\(349\) −3.72027 −0.199142 −0.0995709 0.995030i \(-0.531747\pi\)
−0.0995709 + 0.995030i \(0.531747\pi\)
\(350\) 15.4106 0.823732
\(351\) 0 0
\(352\) 0 0
\(353\) −3.95252 −0.210371 −0.105186 0.994453i \(-0.533544\pi\)
−0.105186 + 0.994453i \(0.533544\pi\)
\(354\) 0 0
\(355\) −1.71066 −0.0907923
\(356\) −0.307546 −0.0162999
\(357\) 0 0
\(358\) −9.76940 −0.516329
\(359\) −7.40400 −0.390768 −0.195384 0.980727i \(-0.562595\pi\)
−0.195384 + 0.980727i \(0.562595\pi\)
\(360\) 0 0
\(361\) −8.37312 −0.440691
\(362\) −39.7301 −2.08817
\(363\) 0 0
\(364\) 35.1730 1.84357
\(365\) 0.133890 0.00700812
\(366\) 0 0
\(367\) −25.4159 −1.32670 −0.663350 0.748310i \(-0.730866\pi\)
−0.663350 + 0.748310i \(0.730866\pi\)
\(368\) −57.2426 −2.98398
\(369\) 0 0
\(370\) 3.42226 0.177915
\(371\) 10.2478 0.532040
\(372\) 0 0
\(373\) −4.77475 −0.247227 −0.123614 0.992330i \(-0.539448\pi\)
−0.123614 + 0.992330i \(0.539448\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 12.6749 0.653658
\(377\) −37.5809 −1.93552
\(378\) 0 0
\(379\) −17.4486 −0.896272 −0.448136 0.893965i \(-0.647912\pi\)
−0.448136 + 0.893965i \(0.647912\pi\)
\(380\) 3.83691 0.196829
\(381\) 0 0
\(382\) 31.5093 1.61215
\(383\) 3.38813 0.173125 0.0865626 0.996246i \(-0.472412\pi\)
0.0865626 + 0.996246i \(0.472412\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −59.2469 −3.01559
\(387\) 0 0
\(388\) 29.9366 1.51980
\(389\) 18.7542 0.950878 0.475439 0.879749i \(-0.342289\pi\)
0.475439 + 0.879749i \(0.342289\pi\)
\(390\) 0 0
\(391\) 10.1814 0.514897
\(392\) −42.8469 −2.16409
\(393\) 0 0
\(394\) −26.1696 −1.31841
\(395\) −1.05956 −0.0533125
\(396\) 0 0
\(397\) 10.7157 0.537806 0.268903 0.963167i \(-0.413339\pi\)
0.268903 + 0.963167i \(0.413339\pi\)
\(398\) −40.9164 −2.05095
\(399\) 0 0
\(400\) −50.9743 −2.54872
\(401\) 2.83265 0.141456 0.0707279 0.997496i \(-0.477468\pi\)
0.0707279 + 0.997496i \(0.477468\pi\)
\(402\) 0 0
\(403\) −23.8914 −1.19011
\(404\) −74.9635 −3.72957
\(405\) 0 0
\(406\) −19.4093 −0.963268
\(407\) 0 0
\(408\) 0 0
\(409\) 23.5437 1.16416 0.582081 0.813131i \(-0.302239\pi\)
0.582081 + 0.813131i \(0.302239\pi\)
\(410\) 6.71794 0.331775
\(411\) 0 0
\(412\) 61.3978 3.02485
\(413\) 4.65774 0.229193
\(414\) 0 0
\(415\) 3.69375 0.181319
\(416\) −71.2194 −3.49182
\(417\) 0 0
\(418\) 0 0
\(419\) 21.1174 1.03165 0.515826 0.856693i \(-0.327485\pi\)
0.515826 + 0.856693i \(0.327485\pi\)
\(420\) 0 0
\(421\) −23.5172 −1.14616 −0.573080 0.819500i \(-0.694252\pi\)
−0.573080 + 0.819500i \(0.694252\pi\)
\(422\) −6.29686 −0.306526
\(423\) 0 0
\(424\) −66.1942 −3.21467
\(425\) 9.06652 0.439791
\(426\) 0 0
\(427\) 12.7191 0.615520
\(428\) 53.0162 2.56264
\(429\) 0 0
\(430\) −7.64913 −0.368874
\(431\) −4.97989 −0.239873 −0.119936 0.992782i \(-0.538269\pi\)
−0.119936 + 0.992782i \(0.538269\pi\)
\(432\) 0 0
\(433\) −25.5853 −1.22955 −0.614776 0.788702i \(-0.710753\pi\)
−0.614776 + 0.788702i \(0.710753\pi\)
\(434\) −12.3391 −0.592296
\(435\) 0 0
\(436\) −25.3987 −1.21638
\(437\) 18.0937 0.865539
\(438\) 0 0
\(439\) −4.66005 −0.222412 −0.111206 0.993797i \(-0.535471\pi\)
−0.111206 + 0.993797i \(0.535471\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 29.1168 1.38495
\(443\) −23.1237 −1.09864 −0.549321 0.835612i \(-0.685114\pi\)
−0.549321 + 0.835612i \(0.685114\pi\)
\(444\) 0 0
\(445\) 0.0149954 0.000710849 0
\(446\) 34.1385 1.61650
\(447\) 0 0
\(448\) −12.3229 −0.582204
\(449\) 13.7641 0.649569 0.324784 0.945788i \(-0.394708\pi\)
0.324784 + 0.945788i \(0.394708\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 10.0128 0.470964
\(453\) 0 0
\(454\) 48.5122 2.27679
\(455\) −1.71497 −0.0803992
\(456\) 0 0
\(457\) 10.8395 0.507051 0.253526 0.967329i \(-0.418410\pi\)
0.253526 + 0.967329i \(0.418410\pi\)
\(458\) 52.9535 2.47435
\(459\) 0 0
\(460\) 6.53287 0.304596
\(461\) 2.92792 0.136367 0.0681833 0.997673i \(-0.478280\pi\)
0.0681833 + 0.997673i \(0.478280\pi\)
\(462\) 0 0
\(463\) −27.0835 −1.25867 −0.629337 0.777132i \(-0.716674\pi\)
−0.629337 + 0.777132i \(0.716674\pi\)
\(464\) 64.2010 2.98046
\(465\) 0 0
\(466\) −19.3494 −0.896343
\(467\) −11.3066 −0.523206 −0.261603 0.965176i \(-0.584251\pi\)
−0.261603 + 0.965176i \(0.584251\pi\)
\(468\) 0 0
\(469\) −10.9346 −0.504912
\(470\) −1.04228 −0.0480769
\(471\) 0 0
\(472\) −30.0860 −1.38482
\(473\) 0 0
\(474\) 0 0
\(475\) 16.1124 0.739286
\(476\) 10.6874 0.489857
\(477\) 0 0
\(478\) 25.3092 1.15761
\(479\) −30.3858 −1.38836 −0.694181 0.719801i \(-0.744233\pi\)
−0.694181 + 0.719801i \(0.744233\pi\)
\(480\) 0 0
\(481\) 32.8005 1.49557
\(482\) −69.8424 −3.18123
\(483\) 0 0
\(484\) 0 0
\(485\) −1.45966 −0.0662796
\(486\) 0 0
\(487\) −3.19964 −0.144989 −0.0724947 0.997369i \(-0.523096\pi\)
−0.0724947 + 0.997369i \(0.523096\pi\)
\(488\) −82.1571 −3.71908
\(489\) 0 0
\(490\) 3.52339 0.159170
\(491\) −5.98163 −0.269947 −0.134974 0.990849i \(-0.543095\pi\)
−0.134974 + 0.990849i \(0.543095\pi\)
\(492\) 0 0
\(493\) −11.4191 −0.514289
\(494\) 51.7444 2.32809
\(495\) 0 0
\(496\) 40.8146 1.83263
\(497\) −8.46785 −0.379835
\(498\) 0 0
\(499\) 29.3773 1.31511 0.657554 0.753407i \(-0.271591\pi\)
0.657554 + 0.753407i \(0.271591\pi\)
\(500\) 11.7025 0.523353
\(501\) 0 0
\(502\) 65.3694 2.91758
\(503\) −14.4066 −0.642358 −0.321179 0.947019i \(-0.604079\pi\)
−0.321179 + 0.947019i \(0.604079\pi\)
\(504\) 0 0
\(505\) 3.65509 0.162649
\(506\) 0 0
\(507\) 0 0
\(508\) −5.88566 −0.261134
\(509\) −43.8413 −1.94323 −0.971616 0.236562i \(-0.923979\pi\)
−0.971616 + 0.236562i \(0.923979\pi\)
\(510\) 0 0
\(511\) 0.662762 0.0293189
\(512\) −36.3258 −1.60539
\(513\) 0 0
\(514\) 35.2591 1.55521
\(515\) −2.99365 −0.131916
\(516\) 0 0
\(517\) 0 0
\(518\) 16.9404 0.744317
\(519\) 0 0
\(520\) 11.0776 0.485785
\(521\) 20.1646 0.883429 0.441715 0.897156i \(-0.354370\pi\)
0.441715 + 0.897156i \(0.354370\pi\)
\(522\) 0 0
\(523\) 39.1717 1.71286 0.856429 0.516265i \(-0.172678\pi\)
0.856429 + 0.516265i \(0.172678\pi\)
\(524\) −28.3345 −1.23780
\(525\) 0 0
\(526\) −2.05585 −0.0896394
\(527\) −7.25946 −0.316227
\(528\) 0 0
\(529\) 7.80699 0.339434
\(530\) 5.44329 0.236441
\(531\) 0 0
\(532\) 18.9929 0.823448
\(533\) 64.3877 2.78894
\(534\) 0 0
\(535\) −2.58498 −0.111758
\(536\) 70.6303 3.05077
\(537\) 0 0
\(538\) −28.0414 −1.20895
\(539\) 0 0
\(540\) 0 0
\(541\) 18.0264 0.775017 0.387509 0.921866i \(-0.373336\pi\)
0.387509 + 0.921866i \(0.373336\pi\)
\(542\) −64.6773 −2.77813
\(543\) 0 0
\(544\) −21.6402 −0.927817
\(545\) 1.23840 0.0530471
\(546\) 0 0
\(547\) −0.0895697 −0.00382972 −0.00191486 0.999998i \(-0.500610\pi\)
−0.00191486 + 0.999998i \(0.500610\pi\)
\(548\) 0.657170 0.0280729
\(549\) 0 0
\(550\) 0 0
\(551\) −20.2932 −0.864518
\(552\) 0 0
\(553\) −5.24490 −0.223036
\(554\) −23.5907 −1.00227
\(555\) 0 0
\(556\) 54.7585 2.32228
\(557\) −3.07514 −0.130298 −0.0651489 0.997876i \(-0.520752\pi\)
−0.0651489 + 0.997876i \(0.520752\pi\)
\(558\) 0 0
\(559\) −73.3126 −3.10079
\(560\) 2.92976 0.123805
\(561\) 0 0
\(562\) 43.9779 1.85510
\(563\) 17.8141 0.750775 0.375387 0.926868i \(-0.377510\pi\)
0.375387 + 0.926868i \(0.377510\pi\)
\(564\) 0 0
\(565\) −0.488208 −0.0205391
\(566\) −15.3866 −0.646746
\(567\) 0 0
\(568\) 54.6968 2.29503
\(569\) −4.24899 −0.178127 −0.0890634 0.996026i \(-0.528387\pi\)
−0.0890634 + 0.996026i \(0.528387\pi\)
\(570\) 0 0
\(571\) −45.0573 −1.88559 −0.942795 0.333373i \(-0.891813\pi\)
−0.942795 + 0.333373i \(0.891813\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 33.2541 1.38800
\(575\) 27.4335 1.14406
\(576\) 0 0
\(577\) −15.2751 −0.635909 −0.317954 0.948106i \(-0.602996\pi\)
−0.317954 + 0.948106i \(0.602996\pi\)
\(578\) −35.8508 −1.49120
\(579\) 0 0
\(580\) −7.32700 −0.304237
\(581\) 18.2843 0.758559
\(582\) 0 0
\(583\) 0 0
\(584\) −4.28101 −0.177150
\(585\) 0 0
\(586\) 39.3944 1.62737
\(587\) −42.5860 −1.75771 −0.878856 0.477086i \(-0.841693\pi\)
−0.878856 + 0.477086i \(0.841693\pi\)
\(588\) 0 0
\(589\) −12.9010 −0.531576
\(590\) 2.47403 0.101854
\(591\) 0 0
\(592\) −56.0344 −2.30300
\(593\) −10.6230 −0.436236 −0.218118 0.975922i \(-0.569992\pi\)
−0.218118 + 0.975922i \(0.569992\pi\)
\(594\) 0 0
\(595\) −0.521100 −0.0213630
\(596\) 19.3821 0.793920
\(597\) 0 0
\(598\) 88.1018 3.60275
\(599\) 34.7679 1.42058 0.710289 0.703911i \(-0.248564\pi\)
0.710289 + 0.703911i \(0.248564\pi\)
\(600\) 0 0
\(601\) 9.08763 0.370692 0.185346 0.982673i \(-0.440659\pi\)
0.185346 + 0.982673i \(0.440659\pi\)
\(602\) −37.8636 −1.54320
\(603\) 0 0
\(604\) −13.1534 −0.535204
\(605\) 0 0
\(606\) 0 0
\(607\) −15.5962 −0.633029 −0.316515 0.948588i \(-0.602513\pi\)
−0.316515 + 0.948588i \(0.602513\pi\)
\(608\) −38.4575 −1.55966
\(609\) 0 0
\(610\) 6.75595 0.273540
\(611\) −9.98970 −0.404140
\(612\) 0 0
\(613\) −27.8024 −1.12293 −0.561464 0.827501i \(-0.689762\pi\)
−0.561464 + 0.827501i \(0.689762\pi\)
\(614\) 17.1542 0.692286
\(615\) 0 0
\(616\) 0 0
\(617\) −8.03380 −0.323428 −0.161714 0.986838i \(-0.551702\pi\)
−0.161714 + 0.986838i \(0.551702\pi\)
\(618\) 0 0
\(619\) 3.60011 0.144701 0.0723503 0.997379i \(-0.476950\pi\)
0.0723503 + 0.997379i \(0.476950\pi\)
\(620\) −4.65800 −0.187070
\(621\) 0 0
\(622\) 37.9012 1.51970
\(623\) 0.0742279 0.00297388
\(624\) 0 0
\(625\) 24.1425 0.965698
\(626\) 41.3810 1.65392
\(627\) 0 0
\(628\) −52.4483 −2.09292
\(629\) 9.96652 0.397391
\(630\) 0 0
\(631\) −20.2394 −0.805718 −0.402859 0.915262i \(-0.631984\pi\)
−0.402859 + 0.915262i \(0.631984\pi\)
\(632\) 33.8786 1.34762
\(633\) 0 0
\(634\) 77.0847 3.06143
\(635\) 0.286974 0.0113882
\(636\) 0 0
\(637\) 33.7697 1.33800
\(638\) 0 0
\(639\) 0 0
\(640\) −0.893277 −0.0353099
\(641\) 27.8787 1.10114 0.550572 0.834788i \(-0.314410\pi\)
0.550572 + 0.834788i \(0.314410\pi\)
\(642\) 0 0
\(643\) 0.0894662 0.00352820 0.00176410 0.999998i \(-0.499438\pi\)
0.00176410 + 0.999998i \(0.499438\pi\)
\(644\) 32.3380 1.27430
\(645\) 0 0
\(646\) 15.7227 0.618601
\(647\) 47.1805 1.85486 0.927428 0.374001i \(-0.122014\pi\)
0.927428 + 0.374001i \(0.122014\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 78.4543 3.07723
\(651\) 0 0
\(652\) 36.2773 1.42073
\(653\) −17.2808 −0.676249 −0.338124 0.941101i \(-0.609792\pi\)
−0.338124 + 0.941101i \(0.609792\pi\)
\(654\) 0 0
\(655\) 1.38154 0.0539812
\(656\) −109.996 −4.29463
\(657\) 0 0
\(658\) −5.15936 −0.201133
\(659\) 12.0864 0.470818 0.235409 0.971896i \(-0.424357\pi\)
0.235409 + 0.971896i \(0.424357\pi\)
\(660\) 0 0
\(661\) 38.5830 1.50071 0.750353 0.661037i \(-0.229884\pi\)
0.750353 + 0.661037i \(0.229884\pi\)
\(662\) 35.2631 1.37054
\(663\) 0 0
\(664\) −118.104 −4.58334
\(665\) −0.926061 −0.0359111
\(666\) 0 0
\(667\) −34.5519 −1.33785
\(668\) −50.7135 −1.96216
\(669\) 0 0
\(670\) −5.80808 −0.224386
\(671\) 0 0
\(672\) 0 0
\(673\) 28.8426 1.11180 0.555900 0.831249i \(-0.312374\pi\)
0.555900 + 0.831249i \(0.312374\pi\)
\(674\) 33.9763 1.30872
\(675\) 0 0
\(676\) 115.191 4.43044
\(677\) 7.04711 0.270842 0.135421 0.990788i \(-0.456761\pi\)
0.135421 + 0.990788i \(0.456761\pi\)
\(678\) 0 0
\(679\) −7.22538 −0.277285
\(680\) 3.36597 0.129079
\(681\) 0 0
\(682\) 0 0
\(683\) −32.5733 −1.24638 −0.623191 0.782070i \(-0.714164\pi\)
−0.623191 + 0.782070i \(0.714164\pi\)
\(684\) 0 0
\(685\) −0.0320424 −0.00122428
\(686\) 39.2663 1.49919
\(687\) 0 0
\(688\) 125.243 4.77484
\(689\) 52.1709 1.98755
\(690\) 0 0
\(691\) 43.1809 1.64268 0.821339 0.570441i \(-0.193228\pi\)
0.821339 + 0.570441i \(0.193228\pi\)
\(692\) 78.9608 3.00164
\(693\) 0 0
\(694\) −91.7519 −3.48285
\(695\) −2.66993 −0.101276
\(696\) 0 0
\(697\) 19.5644 0.741054
\(698\) −9.78171 −0.370243
\(699\) 0 0
\(700\) 28.7969 1.08842
\(701\) −27.1707 −1.02622 −0.513111 0.858322i \(-0.671507\pi\)
−0.513111 + 0.858322i \(0.671507\pi\)
\(702\) 0 0
\(703\) 17.7118 0.668013
\(704\) 0 0
\(705\) 0 0
\(706\) −10.3924 −0.391121
\(707\) 18.0929 0.680453
\(708\) 0 0
\(709\) −21.4612 −0.805994 −0.402997 0.915201i \(-0.632031\pi\)
−0.402997 + 0.915201i \(0.632031\pi\)
\(710\) −4.49783 −0.168801
\(711\) 0 0
\(712\) −0.479464 −0.0179687
\(713\) −21.9657 −0.822622
\(714\) 0 0
\(715\) 0 0
\(716\) −18.2555 −0.682240
\(717\) 0 0
\(718\) −19.4673 −0.726514
\(719\) −18.1638 −0.677396 −0.338698 0.940895i \(-0.609987\pi\)
−0.338698 + 0.940895i \(0.609987\pi\)
\(720\) 0 0
\(721\) −14.8187 −0.551878
\(722\) −22.0154 −0.819330
\(723\) 0 0
\(724\) −74.2412 −2.75915
\(725\) −30.7683 −1.14271
\(726\) 0 0
\(727\) −25.5506 −0.947619 −0.473810 0.880627i \(-0.657122\pi\)
−0.473810 + 0.880627i \(0.657122\pi\)
\(728\) 54.8348 2.03231
\(729\) 0 0
\(730\) 0.352037 0.0130295
\(731\) −22.2763 −0.823917
\(732\) 0 0
\(733\) −40.7368 −1.50465 −0.752324 0.658793i \(-0.771067\pi\)
−0.752324 + 0.658793i \(0.771067\pi\)
\(734\) −66.8260 −2.46659
\(735\) 0 0
\(736\) −65.4790 −2.41359
\(737\) 0 0
\(738\) 0 0
\(739\) −32.1099 −1.18118 −0.590591 0.806971i \(-0.701105\pi\)
−0.590591 + 0.806971i \(0.701105\pi\)
\(740\) 6.39497 0.235084
\(741\) 0 0
\(742\) 26.9446 0.989166
\(743\) 17.9623 0.658974 0.329487 0.944160i \(-0.393124\pi\)
0.329487 + 0.944160i \(0.393124\pi\)
\(744\) 0 0
\(745\) −0.945035 −0.0346234
\(746\) −12.5542 −0.459643
\(747\) 0 0
\(748\) 0 0
\(749\) −12.7958 −0.467547
\(750\) 0 0
\(751\) −24.8837 −0.908019 −0.454009 0.890997i \(-0.650007\pi\)
−0.454009 + 0.890997i \(0.650007\pi\)
\(752\) 17.0658 0.622327
\(753\) 0 0
\(754\) −98.8115 −3.59850
\(755\) 0.641337 0.0233406
\(756\) 0 0
\(757\) −32.5184 −1.18190 −0.590951 0.806708i \(-0.701247\pi\)
−0.590951 + 0.806708i \(0.701247\pi\)
\(758\) −45.8775 −1.66635
\(759\) 0 0
\(760\) 5.98175 0.216981
\(761\) −8.82315 −0.319839 −0.159919 0.987130i \(-0.551123\pi\)
−0.159919 + 0.987130i \(0.551123\pi\)
\(762\) 0 0
\(763\) 6.13013 0.221925
\(764\) 58.8795 2.13018
\(765\) 0 0
\(766\) 8.90840 0.321874
\(767\) 23.7122 0.856199
\(768\) 0 0
\(769\) −26.9649 −0.972378 −0.486189 0.873854i \(-0.661613\pi\)
−0.486189 + 0.873854i \(0.661613\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −110.711 −3.98458
\(773\) −26.6678 −0.959175 −0.479588 0.877494i \(-0.659214\pi\)
−0.479588 + 0.877494i \(0.659214\pi\)
\(774\) 0 0
\(775\) −19.5604 −0.702629
\(776\) 46.6713 1.67540
\(777\) 0 0
\(778\) 49.3105 1.76787
\(779\) 34.7684 1.24571
\(780\) 0 0
\(781\) 0 0
\(782\) 26.7700 0.957294
\(783\) 0 0
\(784\) −57.6902 −2.06036
\(785\) 2.55729 0.0912735
\(786\) 0 0
\(787\) −16.5454 −0.589781 −0.294891 0.955531i \(-0.595283\pi\)
−0.294891 + 0.955531i \(0.595283\pi\)
\(788\) −48.9016 −1.74205
\(789\) 0 0
\(790\) −2.78591 −0.0991183
\(791\) −2.41666 −0.0859264
\(792\) 0 0
\(793\) 64.7520 2.29941
\(794\) 28.1748 0.999886
\(795\) 0 0
\(796\) −76.4580 −2.70998
\(797\) 44.5185 1.57693 0.788463 0.615082i \(-0.210877\pi\)
0.788463 + 0.615082i \(0.210877\pi\)
\(798\) 0 0
\(799\) −3.03540 −0.107385
\(800\) −58.3088 −2.06153
\(801\) 0 0
\(802\) 7.44789 0.262994
\(803\) 0 0
\(804\) 0 0
\(805\) −1.57674 −0.0555730
\(806\) −62.8175 −2.21265
\(807\) 0 0
\(808\) −116.868 −4.11141
\(809\) −49.0736 −1.72533 −0.862667 0.505772i \(-0.831208\pi\)
−0.862667 + 0.505772i \(0.831208\pi\)
\(810\) 0 0
\(811\) −42.7314 −1.50050 −0.750251 0.661153i \(-0.770067\pi\)
−0.750251 + 0.661153i \(0.770067\pi\)
\(812\) −36.2690 −1.27279
\(813\) 0 0
\(814\) 0 0
\(815\) −1.76882 −0.0619589
\(816\) 0 0
\(817\) −39.5878 −1.38500
\(818\) 61.9035 2.16441
\(819\) 0 0
\(820\) 12.5534 0.438384
\(821\) 28.9770 1.01130 0.505652 0.862737i \(-0.331252\pi\)
0.505652 + 0.862737i \(0.331252\pi\)
\(822\) 0 0
\(823\) 19.2295 0.670298 0.335149 0.942165i \(-0.391213\pi\)
0.335149 + 0.942165i \(0.391213\pi\)
\(824\) 95.7193 3.33454
\(825\) 0 0
\(826\) 12.2466 0.426114
\(827\) −43.6052 −1.51630 −0.758150 0.652080i \(-0.773897\pi\)
−0.758150 + 0.652080i \(0.773897\pi\)
\(828\) 0 0
\(829\) 21.6237 0.751022 0.375511 0.926818i \(-0.377467\pi\)
0.375511 + 0.926818i \(0.377467\pi\)
\(830\) 9.71198 0.337108
\(831\) 0 0
\(832\) −62.7352 −2.17495
\(833\) 10.2610 0.355524
\(834\) 0 0
\(835\) 2.47270 0.0855713
\(836\) 0 0
\(837\) 0 0
\(838\) 55.5239 1.91804
\(839\) 22.2036 0.766554 0.383277 0.923634i \(-0.374796\pi\)
0.383277 + 0.923634i \(0.374796\pi\)
\(840\) 0 0
\(841\) 9.75201 0.336276
\(842\) −61.8338 −2.13093
\(843\) 0 0
\(844\) −11.7666 −0.405022
\(845\) −5.61653 −0.193214
\(846\) 0 0
\(847\) 0 0
\(848\) −89.1256 −3.06059
\(849\) 0 0
\(850\) 23.8386 0.817657
\(851\) 30.1567 1.03376
\(852\) 0 0
\(853\) 26.3161 0.901047 0.450523 0.892765i \(-0.351237\pi\)
0.450523 + 0.892765i \(0.351237\pi\)
\(854\) 33.4423 1.14437
\(855\) 0 0
\(856\) 82.6524 2.82500
\(857\) 27.9702 0.955442 0.477721 0.878512i \(-0.341463\pi\)
0.477721 + 0.878512i \(0.341463\pi\)
\(858\) 0 0
\(859\) 15.3807 0.524784 0.262392 0.964961i \(-0.415489\pi\)
0.262392 + 0.964961i \(0.415489\pi\)
\(860\) −14.2935 −0.487403
\(861\) 0 0
\(862\) −13.0936 −0.445970
\(863\) 32.8422 1.11796 0.558980 0.829181i \(-0.311193\pi\)
0.558980 + 0.829181i \(0.311193\pi\)
\(864\) 0 0
\(865\) −3.84999 −0.130904
\(866\) −67.2714 −2.28598
\(867\) 0 0
\(868\) −23.0573 −0.782617
\(869\) 0 0
\(870\) 0 0
\(871\) −55.6672 −1.88621
\(872\) −39.5966 −1.34091
\(873\) 0 0
\(874\) 47.5738 1.60921
\(875\) −2.82447 −0.0954846
\(876\) 0 0
\(877\) 50.0173 1.68896 0.844482 0.535583i \(-0.179908\pi\)
0.844482 + 0.535583i \(0.179908\pi\)
\(878\) −12.2527 −0.413507
\(879\) 0 0
\(880\) 0 0
\(881\) 32.0798 1.08080 0.540399 0.841409i \(-0.318273\pi\)
0.540399 + 0.841409i \(0.318273\pi\)
\(882\) 0 0
\(883\) 46.6107 1.56857 0.784287 0.620398i \(-0.213029\pi\)
0.784287 + 0.620398i \(0.213029\pi\)
\(884\) 54.4089 1.82997
\(885\) 0 0
\(886\) −60.7992 −2.04259
\(887\) −29.3501 −0.985478 −0.492739 0.870177i \(-0.664004\pi\)
−0.492739 + 0.870177i \(0.664004\pi\)
\(888\) 0 0
\(889\) 1.42054 0.0476433
\(890\) 0.0394273 0.00132161
\(891\) 0 0
\(892\) 63.7925 2.13593
\(893\) −5.39430 −0.180513
\(894\) 0 0
\(895\) 0.890105 0.0297529
\(896\) −4.42177 −0.147721
\(897\) 0 0
\(898\) 36.1900 1.20768
\(899\) 24.6358 0.821652
\(900\) 0 0
\(901\) 15.8523 0.528116
\(902\) 0 0
\(903\) 0 0
\(904\) 15.6100 0.519182
\(905\) 3.61987 0.120328
\(906\) 0 0
\(907\) −25.1195 −0.834081 −0.417040 0.908888i \(-0.636933\pi\)
−0.417040 + 0.908888i \(0.636933\pi\)
\(908\) 90.6519 3.00839
\(909\) 0 0
\(910\) −4.50918 −0.149478
\(911\) −2.76894 −0.0917392 −0.0458696 0.998947i \(-0.514606\pi\)
−0.0458696 + 0.998947i \(0.514606\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 28.5003 0.942707
\(915\) 0 0
\(916\) 98.9509 3.26943
\(917\) 6.83869 0.225833
\(918\) 0 0
\(919\) 11.8435 0.390679 0.195340 0.980736i \(-0.437419\pi\)
0.195340 + 0.980736i \(0.437419\pi\)
\(920\) 10.1847 0.335781
\(921\) 0 0
\(922\) 7.69836 0.253532
\(923\) −43.1092 −1.41896
\(924\) 0 0
\(925\) 26.8544 0.882969
\(926\) −71.2105 −2.34012
\(927\) 0 0
\(928\) 73.4387 2.41074
\(929\) −11.2585 −0.369380 −0.184690 0.982797i \(-0.559128\pi\)
−0.184690 + 0.982797i \(0.559128\pi\)
\(930\) 0 0
\(931\) 18.2352 0.597634
\(932\) −36.1570 −1.18436
\(933\) 0 0
\(934\) −29.7284 −0.972742
\(935\) 0 0
\(936\) 0 0
\(937\) −31.7496 −1.03721 −0.518607 0.855013i \(-0.673549\pi\)
−0.518607 + 0.855013i \(0.673549\pi\)
\(938\) −28.7503 −0.938730
\(939\) 0 0
\(940\) −1.94765 −0.0635254
\(941\) −12.6099 −0.411070 −0.205535 0.978650i \(-0.565894\pi\)
−0.205535 + 0.978650i \(0.565894\pi\)
\(942\) 0 0
\(943\) 59.1980 1.92775
\(944\) −40.5086 −1.31844
\(945\) 0 0
\(946\) 0 0
\(947\) 0.369770 0.0120159 0.00600796 0.999982i \(-0.498088\pi\)
0.00600796 + 0.999982i \(0.498088\pi\)
\(948\) 0 0
\(949\) 3.37408 0.109527
\(950\) 42.3642 1.37448
\(951\) 0 0
\(952\) 16.6617 0.540009
\(953\) −16.9401 −0.548743 −0.274372 0.961624i \(-0.588470\pi\)
−0.274372 + 0.961624i \(0.588470\pi\)
\(954\) 0 0
\(955\) −2.87086 −0.0928988
\(956\) 47.2937 1.52959
\(957\) 0 0
\(958\) −79.8933 −2.58124
\(959\) −0.158612 −0.00512184
\(960\) 0 0
\(961\) −15.3382 −0.494782
\(962\) 86.2422 2.78056
\(963\) 0 0
\(964\) −130.510 −4.20345
\(965\) 5.39808 0.173770
\(966\) 0 0
\(967\) 24.8161 0.798031 0.399016 0.916944i \(-0.369352\pi\)
0.399016 + 0.916944i \(0.369352\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −3.83788 −0.123227
\(971\) −12.1354 −0.389445 −0.194722 0.980858i \(-0.562381\pi\)
−0.194722 + 0.980858i \(0.562381\pi\)
\(972\) 0 0
\(973\) −13.2163 −0.423695
\(974\) −8.41280 −0.269564
\(975\) 0 0
\(976\) −110.619 −3.54081
\(977\) 35.3764 1.13179 0.565896 0.824476i \(-0.308530\pi\)
0.565896 + 0.824476i \(0.308530\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 6.58394 0.210316
\(981\) 0 0
\(982\) −15.7275 −0.501885
\(983\) 22.4859 0.717190 0.358595 0.933493i \(-0.383256\pi\)
0.358595 + 0.933493i \(0.383256\pi\)
\(984\) 0 0
\(985\) 2.38435 0.0759719
\(986\) −30.0242 −0.956164
\(987\) 0 0
\(988\) 96.6916 3.07617
\(989\) −67.4036 −2.14331
\(990\) 0 0
\(991\) 16.2761 0.517028 0.258514 0.966008i \(-0.416767\pi\)
0.258514 + 0.966008i \(0.416767\pi\)
\(992\) 46.6872 1.48232
\(993\) 0 0
\(994\) −22.2645 −0.706187
\(995\) 3.72796 0.118184
\(996\) 0 0
\(997\) 4.62418 0.146449 0.0732246 0.997315i \(-0.476671\pi\)
0.0732246 + 0.997315i \(0.476671\pi\)
\(998\) 77.2417 2.44504
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9801.2.a.cg.1.12 12
3.2 odd 2 9801.2.a.ck.1.1 12
11.5 even 5 891.2.f.c.487.1 24
11.9 even 5 891.2.f.c.730.1 yes 24
11.10 odd 2 9801.2.a.cl.1.1 12
33.5 odd 10 891.2.f.d.487.6 yes 24
33.20 odd 10 891.2.f.d.730.6 yes 24
33.32 even 2 9801.2.a.cf.1.12 12
99.5 odd 30 891.2.n.j.784.6 48
99.16 even 15 891.2.n.k.190.6 48
99.20 odd 30 891.2.n.j.433.6 48
99.31 even 15 891.2.n.k.136.6 48
99.38 odd 30 891.2.n.j.190.1 48
99.49 even 15 891.2.n.k.784.1 48
99.86 odd 30 891.2.n.j.136.1 48
99.97 even 15 891.2.n.k.433.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
891.2.f.c.487.1 24 11.5 even 5
891.2.f.c.730.1 yes 24 11.9 even 5
891.2.f.d.487.6 yes 24 33.5 odd 10
891.2.f.d.730.6 yes 24 33.20 odd 10
891.2.n.j.136.1 48 99.86 odd 30
891.2.n.j.190.1 48 99.38 odd 30
891.2.n.j.433.6 48 99.20 odd 30
891.2.n.j.784.6 48 99.5 odd 30
891.2.n.k.136.6 48 99.31 even 15
891.2.n.k.190.6 48 99.16 even 15
891.2.n.k.433.1 48 99.97 even 15
891.2.n.k.784.1 48 99.49 even 15
9801.2.a.cf.1.12 12 33.32 even 2
9801.2.a.cg.1.12 12 1.1 even 1 trivial
9801.2.a.ck.1.1 12 3.2 odd 2
9801.2.a.cl.1.1 12 11.10 odd 2