Properties

Label 891.2.n.k.784.1
Level $891$
Weight $2$
Character 891.784
Analytic conductor $7.115$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [891,2,Mod(136,891)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("891.136"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(891, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([20, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,2,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(6\) over \(\Q(\zeta_{15})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 784.1
Character \(\chi\) \(=\) 891.784
Dual form 891.2.n.k.433.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.274837 - 2.61490i) q^{2} +(-4.80585 + 1.02151i) q^{4} +(0.0250408 - 0.238247i) q^{5} +(-0.793477 - 0.881245i) q^{7} +(2.36698 + 7.28482i) q^{8} -0.629874 q^{10} +(-2.79995 + 1.77771i) q^{11} +(-5.51506 - 2.45546i) q^{13} +(-2.08629 + 2.31706i) q^{14} +(9.42161 - 4.19477i) q^{16} +(1.48403 + 1.07821i) q^{17} +(-1.00736 - 3.10034i) q^{19} +(0.123031 + 1.17056i) q^{20} +(5.41806 + 6.83301i) q^{22} +(2.77520 + 4.80679i) q^{23} +(4.83460 + 1.02763i) q^{25} +(-4.90504 + 15.0962i) q^{26} +(4.71353 + 3.42458i) q^{28} +(4.16541 + 4.62616i) q^{29} +(3.61535 + 1.60966i) q^{31} +(-5.89858 - 10.2166i) q^{32} +(2.41154 - 4.17691i) q^{34} +(-0.229824 + 0.166977i) q^{35} +(-1.67897 + 5.16733i) q^{37} +(-7.83020 + 3.48623i) q^{38} +(1.79486 - 0.381509i) q^{40} +(-7.13663 + 7.92603i) q^{41} +(-6.07195 + 10.5169i) q^{43} +(11.6402 - 11.4036i) q^{44} +(11.8065 - 8.57795i) q^{46} +(-1.61859 - 0.344042i) q^{47} +(0.584711 - 5.56316i) q^{49} +(1.35841 - 12.9244i) q^{50} +(29.0128 + 6.16687i) q^{52} +(6.99142 - 5.07956i) q^{53} +(0.353422 + 0.711596i) q^{55} +(4.54157 - 7.86622i) q^{56} +(10.9521 - 12.1636i) q^{58} +(3.84199 - 0.816641i) q^{59} +(-9.79858 + 4.36261i) q^{61} +(3.21546 - 9.89616i) q^{62} +(-8.40715 + 6.10815i) q^{64} +(-0.723109 + 1.25246i) q^{65} +(-4.61051 - 7.98564i) q^{67} +(-8.23341 - 3.66575i) q^{68} +(0.499790 + 0.555073i) q^{70} +(-5.77707 - 4.19728i) q^{71} +(-0.172710 + 0.531546i) q^{73} +(13.9735 + 2.97015i) q^{74} +(8.00827 + 13.8707i) q^{76} +(3.78830 + 1.05687i) q^{77} +(-0.462326 - 4.39874i) q^{79} +(-0.763468 - 2.34971i) q^{80} +(22.6872 + 16.4832i) q^{82} +(-14.0859 + 6.27144i) q^{83} +(0.294041 - 0.326566i) q^{85} +(29.1695 + 12.9871i) q^{86} +(-19.5777 - 16.1893i) q^{88} -0.0625956 q^{89} +(2.21221 + 6.80848i) q^{91} +(-18.2474 - 20.2658i) q^{92} +(-0.454786 + 4.32700i) q^{94} +(-0.763872 + 0.162366i) q^{95} +(-0.636901 - 6.05971i) q^{97} -14.7078 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2 q^{2} + 8 q^{4} - 4 q^{5} - 7 q^{7} + 20 q^{8} - 32 q^{10} - 5 q^{11} - 7 q^{13} - 13 q^{14} - 2 q^{16} - 10 q^{17} + 8 q^{19} - 27 q^{20} + 2 q^{22} - 6 q^{23} + 2 q^{25} - 68 q^{26} - 18 q^{28}+ \cdots + 136 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.274837 2.61490i −0.194339 1.84901i −0.463726 0.885978i \(-0.653488\pi\)
0.269388 0.963032i \(-0.413179\pi\)
\(3\) 0 0
\(4\) −4.80585 + 1.02151i −2.40292 + 0.510757i
\(5\) 0.0250408 0.238247i 0.0111986 0.106547i −0.987495 0.157652i \(-0.949608\pi\)
0.998693 + 0.0511047i \(0.0162742\pi\)
\(6\) 0 0
\(7\) −0.793477 0.881245i −0.299906 0.333079i 0.574291 0.818652i \(-0.305278\pi\)
−0.874197 + 0.485572i \(0.838611\pi\)
\(8\) 2.36698 + 7.28482i 0.836854 + 2.57557i
\(9\) 0 0
\(10\) −0.629874 −0.199184
\(11\) −2.79995 + 1.77771i −0.844218 + 0.536000i
\(12\) 0 0
\(13\) −5.51506 2.45546i −1.52960 0.681023i −0.542346 0.840155i \(-0.682464\pi\)
−0.987257 + 0.159132i \(0.949131\pi\)
\(14\) −2.08629 + 2.31706i −0.557584 + 0.619260i
\(15\) 0 0
\(16\) 9.42161 4.19477i 2.35540 1.04869i
\(17\) 1.48403 + 1.07821i 0.359929 + 0.261504i 0.753023 0.657995i \(-0.228595\pi\)
−0.393093 + 0.919499i \(0.628595\pi\)
\(18\) 0 0
\(19\) −1.00736 3.10034i −0.231105 0.711267i −0.997614 0.0690339i \(-0.978008\pi\)
0.766510 0.642233i \(-0.221992\pi\)
\(20\) 0.123031 + 1.17056i 0.0275105 + 0.261745i
\(21\) 0 0
\(22\) 5.41806 + 6.83301i 1.15513 + 1.45680i
\(23\) 2.77520 + 4.80679i 0.578670 + 1.00229i 0.995632 + 0.0933616i \(0.0297613\pi\)
−0.416963 + 0.908924i \(0.636905\pi\)
\(24\) 0 0
\(25\) 4.83460 + 1.02763i 0.966921 + 0.205525i
\(26\) −4.90504 + 15.0962i −0.961958 + 2.96060i
\(27\) 0 0
\(28\) 4.71353 + 3.42458i 0.890774 + 0.647185i
\(29\) 4.16541 + 4.62616i 0.773498 + 0.859056i 0.993189 0.116513i \(-0.0371717\pi\)
−0.219692 + 0.975569i \(0.570505\pi\)
\(30\) 0 0
\(31\) 3.61535 + 1.60966i 0.649336 + 0.289103i 0.704852 0.709355i \(-0.251014\pi\)
−0.0555153 + 0.998458i \(0.517680\pi\)
\(32\) −5.89858 10.2166i −1.04273 1.80607i
\(33\) 0 0
\(34\) 2.41154 4.17691i 0.413575 0.716333i
\(35\) −0.229824 + 0.166977i −0.0388473 + 0.0282242i
\(36\) 0 0
\(37\) −1.67897 + 5.16733i −0.276020 + 0.849504i 0.712927 + 0.701238i \(0.247369\pi\)
−0.988948 + 0.148265i \(0.952631\pi\)
\(38\) −7.83020 + 3.48623i −1.27023 + 0.565541i
\(39\) 0 0
\(40\) 1.79486 0.381509i 0.283792 0.0603218i
\(41\) −7.13663 + 7.92603i −1.11455 + 1.23784i −0.145934 + 0.989294i \(0.546619\pi\)
−0.968621 + 0.248544i \(0.920048\pi\)
\(42\) 0 0
\(43\) −6.07195 + 10.5169i −0.925964 + 1.60382i −0.135961 + 0.990714i \(0.543412\pi\)
−0.790003 + 0.613103i \(0.789921\pi\)
\(44\) 11.6402 11.4036i 1.75482 1.71916i
\(45\) 0 0
\(46\) 11.8065 8.57795i 1.74078 1.26475i
\(47\) −1.61859 0.344042i −0.236095 0.0501836i 0.0883443 0.996090i \(-0.471842\pi\)
−0.324440 + 0.945906i \(0.605176\pi\)
\(48\) 0 0
\(49\) 0.584711 5.56316i 0.0835302 0.794737i
\(50\) 1.35841 12.9244i 0.192108 1.82779i
\(51\) 0 0
\(52\) 29.0128 + 6.16687i 4.02336 + 0.855191i
\(53\) 6.99142 5.07956i 0.960345 0.697732i 0.00711436 0.999975i \(-0.497735\pi\)
0.953231 + 0.302243i \(0.0977354\pi\)
\(54\) 0 0
\(55\) 0.353422 + 0.711596i 0.0476554 + 0.0959516i
\(56\) 4.54157 7.86622i 0.606892 1.05117i
\(57\) 0 0
\(58\) 10.9521 12.1636i 1.43808 1.59715i
\(59\) 3.84199 0.816641i 0.500185 0.106318i 0.0490914 0.998794i \(-0.484367\pi\)
0.451093 + 0.892477i \(0.351034\pi\)
\(60\) 0 0
\(61\) −9.79858 + 4.36261i −1.25458 + 0.558575i −0.922981 0.384846i \(-0.874255\pi\)
−0.331599 + 0.943421i \(0.607588\pi\)
\(62\) 3.21546 9.89616i 0.408364 1.25681i
\(63\) 0 0
\(64\) −8.40715 + 6.10815i −1.05089 + 0.763519i
\(65\) −0.723109 + 1.25246i −0.0896907 + 0.155349i
\(66\) 0 0
\(67\) −4.61051 7.98564i −0.563263 0.975601i −0.997209 0.0746617i \(-0.976212\pi\)
0.433946 0.900939i \(-0.357121\pi\)
\(68\) −8.23341 3.66575i −0.998448 0.444538i
\(69\) 0 0
\(70\) 0.499790 + 0.555073i 0.0597363 + 0.0663439i
\(71\) −5.77707 4.19728i −0.685612 0.498126i 0.189603 0.981861i \(-0.439280\pi\)
−0.875215 + 0.483735i \(0.839280\pi\)
\(72\) 0 0
\(73\) −0.172710 + 0.531546i −0.0202141 + 0.0622127i −0.960655 0.277745i \(-0.910413\pi\)
0.940441 + 0.339958i \(0.110413\pi\)
\(74\) 13.9735 + 2.97015i 1.62438 + 0.345273i
\(75\) 0 0
\(76\) 8.00827 + 13.8707i 0.918611 + 1.59108i
\(77\) 3.78830 + 1.05687i 0.431717 + 0.120442i
\(78\) 0 0
\(79\) −0.462326 4.39874i −0.0520157 0.494897i −0.989254 0.146207i \(-0.953293\pi\)
0.937238 0.348690i \(-0.113373\pi\)
\(80\) −0.763468 2.34971i −0.0853583 0.262706i
\(81\) 0 0
\(82\) 22.6872 + 16.4832i 2.50538 + 1.82026i
\(83\) −14.0859 + 6.27144i −1.54613 + 0.688380i −0.989784 0.142572i \(-0.954463\pi\)
−0.556343 + 0.830953i \(0.687796\pi\)
\(84\) 0 0
\(85\) 0.294041 0.326566i 0.0318933 0.0354211i
\(86\) 29.1695 + 12.9871i 3.14542 + 1.40043i
\(87\) 0 0
\(88\) −19.5777 16.1893i −2.08699 1.72579i
\(89\) −0.0625956 −0.00663512 −0.00331756 0.999994i \(-0.501056\pi\)
−0.00331756 + 0.999994i \(0.501056\pi\)
\(90\) 0 0
\(91\) 2.21221 + 6.80848i 0.231902 + 0.713722i
\(92\) −18.2474 20.2658i −1.90242 2.11286i
\(93\) 0 0
\(94\) −0.454786 + 4.32700i −0.0469076 + 0.446296i
\(95\) −0.763872 + 0.162366i −0.0783716 + 0.0166584i
\(96\) 0 0
\(97\) −0.636901 6.05971i −0.0646675 0.615270i −0.978079 0.208233i \(-0.933229\pi\)
0.913412 0.407037i \(-0.133438\pi\)
\(98\) −14.7078 −1.48571
\(99\) 0 0
\(100\) −24.2841 −2.42841
\(101\) 1.59485 + 15.1740i 0.158693 + 1.50986i 0.726765 + 0.686886i \(0.241023\pi\)
−0.568072 + 0.822979i \(0.692311\pi\)
\(102\) 0 0
\(103\) −12.2234 + 2.59816i −1.20441 + 0.256005i −0.766041 0.642792i \(-0.777776\pi\)
−0.438366 + 0.898797i \(0.644443\pi\)
\(104\) 4.83356 45.9883i 0.473970 4.50952i
\(105\) 0 0
\(106\) −15.2040 16.8858i −1.47675 1.64009i
\(107\) 3.33446 + 10.2624i 0.322354 + 0.992105i 0.972621 + 0.232399i \(0.0746574\pi\)
−0.650266 + 0.759706i \(0.725343\pi\)
\(108\) 0 0
\(109\) −5.16947 −0.495146 −0.247573 0.968869i \(-0.579633\pi\)
−0.247573 + 0.968869i \(0.579633\pi\)
\(110\) 1.76362 1.11973i 0.168154 0.106762i
\(111\) 0 0
\(112\) −11.1725 4.97430i −1.05570 0.470027i
\(113\) 1.36365 1.51448i 0.128281 0.142471i −0.675582 0.737285i \(-0.736108\pi\)
0.803863 + 0.594814i \(0.202774\pi\)
\(114\) 0 0
\(115\) 1.21470 0.540818i 0.113271 0.0504316i
\(116\) −24.7440 17.9776i −2.29743 1.66918i
\(117\) 0 0
\(118\) −3.19135 9.82197i −0.293788 0.904185i
\(119\) −0.227375 2.16332i −0.0208434 0.198312i
\(120\) 0 0
\(121\) 4.67948 9.95502i 0.425407 0.905002i
\(122\) 14.1008 + 24.4233i 1.27662 + 2.21118i
\(123\) 0 0
\(124\) −19.0191 4.04264i −1.70797 0.363040i
\(125\) 0.736031 2.26527i 0.0658326 0.202612i
\(126\) 0 0
\(127\) 0.969141 + 0.704122i 0.0859974 + 0.0624808i 0.629953 0.776633i \(-0.283074\pi\)
−0.543956 + 0.839114i \(0.683074\pi\)
\(128\) 2.49507 + 2.77106i 0.220536 + 0.244929i
\(129\) 0 0
\(130\) 3.47379 + 1.54663i 0.304672 + 0.135649i
\(131\) 2.88350 + 4.99436i 0.251932 + 0.436359i 0.964058 0.265693i \(-0.0856007\pi\)
−0.712126 + 0.702052i \(0.752267\pi\)
\(132\) 0 0
\(133\) −1.93284 + 3.34778i −0.167599 + 0.290289i
\(134\) −19.6145 + 14.2507i −1.69443 + 1.23108i
\(135\) 0 0
\(136\) −4.34189 + 13.3630i −0.372314 + 1.14586i
\(137\) 0.122192 0.0544033i 0.0104396 0.00464799i −0.401510 0.915855i \(-0.631515\pi\)
0.411950 + 0.911207i \(0.364848\pi\)
\(138\) 0 0
\(139\) −10.9016 + 2.31721i −0.924663 + 0.196543i −0.645552 0.763716i \(-0.723373\pi\)
−0.279110 + 0.960259i \(0.590039\pi\)
\(140\) 0.933928 1.03723i 0.0789313 0.0876621i
\(141\) 0 0
\(142\) −9.38771 + 16.2600i −0.787799 + 1.36451i
\(143\) 19.8070 2.92901i 1.65635 0.244936i
\(144\) 0 0
\(145\) 1.20647 0.876555i 0.100192 0.0727939i
\(146\) 1.43740 + 0.305530i 0.118960 + 0.0252858i
\(147\) 0 0
\(148\) 2.79036 26.5485i 0.229366 2.18227i
\(149\) −0.412353 + 3.92327i −0.0337813 + 0.321407i 0.964561 + 0.263858i \(0.0849951\pi\)
−0.998343 + 0.0575488i \(0.981672\pi\)
\(150\) 0 0
\(151\) 2.61865 + 0.556611i 0.213102 + 0.0452963i 0.313226 0.949679i \(-0.398590\pi\)
−0.100123 + 0.994975i \(0.531924\pi\)
\(152\) 20.2010 14.6769i 1.63852 1.19045i
\(153\) 0 0
\(154\) 1.72245 10.1965i 0.138799 0.821655i
\(155\) 0.474028 0.821040i 0.0380748 0.0659476i
\(156\) 0 0
\(157\) −7.14294 + 7.93304i −0.570069 + 0.633125i −0.957383 0.288822i \(-0.906736\pi\)
0.387314 + 0.921948i \(0.373403\pi\)
\(158\) −11.3752 + 2.41787i −0.904960 + 0.192355i
\(159\) 0 0
\(160\) −2.58179 + 1.14949i −0.204109 + 0.0908750i
\(161\) 2.03390 6.25971i 0.160294 0.493334i
\(162\) 0 0
\(163\) −5.97347 + 4.33998i −0.467878 + 0.339933i −0.796614 0.604489i \(-0.793378\pi\)
0.328736 + 0.944422i \(0.393378\pi\)
\(164\) 26.2010 45.3815i 2.04596 3.54370i
\(165\) 0 0
\(166\) 20.2705 + 35.1095i 1.57329 + 2.72503i
\(167\) −9.42949 4.19828i −0.729676 0.324873i 0.00805508 0.999968i \(-0.497436\pi\)
−0.737731 + 0.675095i \(0.764103\pi\)
\(168\) 0 0
\(169\) 15.6879 + 17.4232i 1.20676 + 1.34025i
\(170\) −0.934749 0.679135i −0.0716920 0.0520873i
\(171\) 0 0
\(172\) 18.4377 56.7454i 1.40586 4.32679i
\(173\) −15.7199 3.34137i −1.19516 0.254040i −0.432982 0.901403i \(-0.642539\pi\)
−0.762182 + 0.647363i \(0.775872\pi\)
\(174\) 0 0
\(175\) −2.93055 5.07587i −0.221529 0.383700i
\(176\) −18.9230 + 28.4941i −1.42637 + 2.14782i
\(177\) 0 0
\(178\) 0.0172036 + 0.163681i 0.00128946 + 0.0122684i
\(179\) −1.14818 3.53374i −0.0858191 0.264124i 0.898933 0.438085i \(-0.144343\pi\)
−0.984752 + 0.173961i \(0.944343\pi\)
\(180\) 0 0
\(181\) 12.2247 + 8.88174i 0.908652 + 0.660174i 0.940674 0.339313i \(-0.110195\pi\)
−0.0320216 + 0.999487i \(0.510195\pi\)
\(182\) 17.1955 7.65591i 1.27461 0.567494i
\(183\) 0 0
\(184\) −28.4477 + 31.5944i −2.09720 + 2.32917i
\(185\) 1.18906 + 0.529403i 0.0874213 + 0.0389225i
\(186\) 0 0
\(187\) −6.07195 0.380761i −0.444025 0.0278440i
\(188\) 8.13014 0.592951
\(189\) 0 0
\(190\) 0.634510 + 1.95282i 0.0460322 + 0.141673i
\(191\) 8.01880 + 8.90578i 0.580220 + 0.644399i 0.959775 0.280770i \(-0.0905897\pi\)
−0.379555 + 0.925169i \(0.623923\pi\)
\(192\) 0 0
\(193\) 2.35538 22.4099i 0.169544 1.61310i −0.497079 0.867705i \(-0.665594\pi\)
0.666623 0.745395i \(-0.267739\pi\)
\(194\) −15.6705 + 3.33086i −1.12507 + 0.239142i
\(195\) 0 0
\(196\) 2.87281 + 27.3330i 0.205201 + 1.95236i
\(197\) −9.95308 −0.709127 −0.354564 0.935032i \(-0.615371\pi\)
−0.354564 + 0.935032i \(0.615371\pi\)
\(198\) 0 0
\(199\) −15.5617 −1.10314 −0.551570 0.834128i \(-0.685971\pi\)
−0.551570 + 0.834128i \(0.685971\pi\)
\(200\) 3.95734 + 37.6516i 0.279826 + 2.66237i
\(201\) 0 0
\(202\) 39.2400 8.34071i 2.76091 0.586851i
\(203\) 0.771623 7.34150i 0.0541573 0.515272i
\(204\) 0 0
\(205\) 1.70965 + 1.89876i 0.119407 + 0.132615i
\(206\) 10.1534 + 31.2488i 0.707418 + 2.17721i
\(207\) 0 0
\(208\) −62.2609 −4.31702
\(209\) 8.33207 + 6.89001i 0.576342 + 0.476592i
\(210\) 0 0
\(211\) −2.18783 0.974086i −0.150617 0.0670588i 0.330044 0.943966i \(-0.392936\pi\)
−0.480661 + 0.876907i \(0.659603\pi\)
\(212\) −28.4108 + 31.5534i −1.95127 + 2.16710i
\(213\) 0 0
\(214\) 25.9187 11.5398i 1.77177 0.788841i
\(215\) 2.35358 + 1.70998i 0.160513 + 0.116620i
\(216\) 0 0
\(217\) −1.45019 4.46324i −0.0984456 0.302984i
\(218\) 1.42076 + 13.5176i 0.0962260 + 0.915529i
\(219\) 0 0
\(220\) −2.42540 3.05880i −0.163520 0.206224i
\(221\) −5.53700 9.59036i −0.372459 0.645118i
\(222\) 0 0
\(223\) −12.7001 2.69950i −0.850465 0.180772i −0.237995 0.971266i \(-0.576490\pi\)
−0.612469 + 0.790494i \(0.709824\pi\)
\(224\) −4.32298 + 13.3048i −0.288841 + 0.888962i
\(225\) 0 0
\(226\) −4.33500 3.14956i −0.288360 0.209506i
\(227\) 12.3459 + 13.7115i 0.819425 + 0.910064i 0.997258 0.0739970i \(-0.0235755\pi\)
−0.177834 + 0.984061i \(0.556909\pi\)
\(228\) 0 0
\(229\) 18.3986 + 8.19158i 1.21581 + 0.541315i 0.911517 0.411263i \(-0.134912\pi\)
0.304296 + 0.952577i \(0.401579\pi\)
\(230\) −1.74803 3.02767i −0.115261 0.199639i
\(231\) 0 0
\(232\) −23.8413 + 41.2943i −1.56526 + 2.71110i
\(233\) 5.95367 4.32560i 0.390038 0.283379i −0.375433 0.926850i \(-0.622506\pi\)
0.765471 + 0.643470i \(0.222506\pi\)
\(234\) 0 0
\(235\) −0.122498 + 0.377009i −0.00799087 + 0.0245934i
\(236\) −17.6298 + 7.84930i −1.14760 + 0.510946i
\(237\) 0 0
\(238\) −5.59438 + 1.18912i −0.362630 + 0.0770793i
\(239\) 6.44093 7.15338i 0.416629 0.462714i −0.497899 0.867235i \(-0.665895\pi\)
0.914529 + 0.404521i \(0.132562\pi\)
\(240\) 0 0
\(241\) 13.2816 23.0043i 0.855540 1.48184i −0.0206023 0.999788i \(-0.506558\pi\)
0.876143 0.482052i \(-0.160108\pi\)
\(242\) −27.3174 9.50034i −1.75603 0.610705i
\(243\) 0 0
\(244\) 42.6340 30.9754i 2.72936 1.98300i
\(245\) −1.31077 0.278612i −0.0837417 0.0177999i
\(246\) 0 0
\(247\) −2.05711 + 19.5721i −0.130891 + 1.24534i
\(248\) −3.16860 + 30.1472i −0.201206 + 1.91435i
\(249\) 0 0
\(250\) −6.12574 1.30207i −0.387426 0.0823499i
\(251\) −20.1137 + 14.6135i −1.26957 + 0.922394i −0.999185 0.0403590i \(-0.987150\pi\)
−0.270382 + 0.962753i \(0.587150\pi\)
\(252\) 0 0
\(253\) −16.3155 8.52528i −1.02575 0.535980i
\(254\) 1.57485 2.72772i 0.0988149 0.171152i
\(255\) 0 0
\(256\) −7.34665 + 8.15929i −0.459166 + 0.509955i
\(257\) −13.1170 + 2.78811i −0.818218 + 0.173918i −0.597962 0.801525i \(-0.704023\pi\)
−0.220256 + 0.975442i \(0.570689\pi\)
\(258\) 0 0
\(259\) 5.88590 2.62057i 0.365732 0.162835i
\(260\) 2.19574 6.75781i 0.136174 0.419101i
\(261\) 0 0
\(262\) 12.2672 8.91267i 0.757873 0.550627i
\(263\) 0.390951 0.677147i 0.0241071 0.0417546i −0.853720 0.520732i \(-0.825659\pi\)
0.877827 + 0.478977i \(0.158992\pi\)
\(264\) 0 0
\(265\) −1.03512 1.79288i −0.0635870 0.110136i
\(266\) 9.28531 + 4.13409i 0.569319 + 0.253477i
\(267\) 0 0
\(268\) 30.3149 + 33.6681i 1.85177 + 2.05660i
\(269\) 8.62814 + 6.26871i 0.526067 + 0.382210i 0.818884 0.573958i \(-0.194593\pi\)
−0.292818 + 0.956168i \(0.594593\pi\)
\(270\) 0 0
\(271\) −7.60141 + 23.3947i −0.461753 + 1.42113i 0.401268 + 0.915961i \(0.368570\pi\)
−0.863021 + 0.505168i \(0.831430\pi\)
\(272\) 18.5048 + 3.93331i 1.12202 + 0.238492i
\(273\) 0 0
\(274\) −0.175842 0.304567i −0.0106230 0.0183996i
\(275\) −15.3635 + 5.71723i −0.926453 + 0.344762i
\(276\) 0 0
\(277\) 0.937853 + 8.92308i 0.0563501 + 0.536136i 0.985888 + 0.167408i \(0.0535398\pi\)
−0.929538 + 0.368728i \(0.879794\pi\)
\(278\) 9.05542 + 27.8697i 0.543108 + 1.67151i
\(279\) 0 0
\(280\) −1.76038 1.27899i −0.105203 0.0764344i
\(281\) 15.2801 6.80312i 0.911532 0.405840i 0.103263 0.994654i \(-0.467072\pi\)
0.808269 + 0.588814i \(0.200405\pi\)
\(282\) 0 0
\(283\) −3.91573 + 4.34886i −0.232766 + 0.258513i −0.848201 0.529675i \(-0.822314\pi\)
0.615434 + 0.788188i \(0.288981\pi\)
\(284\) 32.0513 + 14.2702i 1.90189 + 0.846778i
\(285\) 0 0
\(286\) −13.1027 50.9883i −0.774782 3.01500i
\(287\) 12.6475 0.746560
\(288\) 0 0
\(289\) −4.21349 12.9678i −0.247852 0.762811i
\(290\) −2.62368 2.91390i −0.154068 0.171110i
\(291\) 0 0
\(292\) 0.287035 2.73095i 0.0167974 0.159817i
\(293\) −14.6554 + 3.11511i −0.856180 + 0.181987i −0.615033 0.788502i \(-0.710857\pi\)
−0.241148 + 0.970488i \(0.577524\pi\)
\(294\) 0 0
\(295\) −0.0983559 0.935793i −0.00572650 0.0544840i
\(296\) −41.6171 −2.41895
\(297\) 0 0
\(298\) 10.3723 0.600850
\(299\) −3.50251 33.3242i −0.202555 1.92719i
\(300\) 0 0
\(301\) 14.0859 2.99406i 0.811901 0.172575i
\(302\) 0.735778 7.00046i 0.0423393 0.402831i
\(303\) 0 0
\(304\) −22.4962 24.9845i −1.29024 1.43296i
\(305\) 0.794015 + 2.44373i 0.0454652 + 0.139927i
\(306\) 0 0
\(307\) 6.52424 0.372358 0.186179 0.982516i \(-0.440390\pi\)
0.186179 + 0.982516i \(0.440390\pi\)
\(308\) −19.2856 1.20937i −1.09890 0.0689100i
\(309\) 0 0
\(310\) −2.27722 1.01388i −0.129337 0.0575846i
\(311\) 9.64547 10.7124i 0.546945 0.607443i −0.404774 0.914417i \(-0.632650\pi\)
0.951718 + 0.306974i \(0.0993163\pi\)
\(312\) 0 0
\(313\) 14.3778 6.40139i 0.812679 0.361828i 0.0420530 0.999115i \(-0.486610\pi\)
0.770626 + 0.637287i \(0.219943\pi\)
\(314\) 22.7072 + 16.4978i 1.28144 + 0.931022i
\(315\) 0 0
\(316\) 6.71524 + 20.6674i 0.377762 + 1.16263i
\(317\) −3.06452 29.1570i −0.172121 1.63762i −0.650528 0.759482i \(-0.725453\pi\)
0.478408 0.878138i \(-0.341214\pi\)
\(318\) 0 0
\(319\) −19.8869 5.54813i −1.11345 0.310635i
\(320\) 1.24473 + 2.15593i 0.0695824 + 0.120520i
\(321\) 0 0
\(322\) −16.9275 3.59805i −0.943332 0.200511i
\(323\) 1.84786 5.68713i 0.102818 0.316440i
\(324\) 0 0
\(325\) −24.1398 17.5386i −1.33904 0.972868i
\(326\) 12.9903 + 14.4272i 0.719467 + 0.799049i
\(327\) 0 0
\(328\) −74.6320 33.2283i −4.12086 1.83473i
\(329\) 0.981128 + 1.69936i 0.0540913 + 0.0936889i
\(330\) 0 0
\(331\) −6.70580 + 11.6148i −0.368584 + 0.638407i −0.989344 0.145594i \(-0.953491\pi\)
0.620760 + 0.784001i \(0.286824\pi\)
\(332\) 61.2883 44.5285i 3.36363 2.44382i
\(333\) 0 0
\(334\) −8.38649 + 25.8110i −0.458888 + 1.41231i
\(335\) −2.01801 + 0.898474i −0.110255 + 0.0490889i
\(336\) 0 0
\(337\) −12.6398 + 2.68668i −0.688535 + 0.146353i −0.538876 0.842385i \(-0.681151\pi\)
−0.149659 + 0.988738i \(0.547818\pi\)
\(338\) 41.2482 45.8108i 2.24361 2.49178i
\(339\) 0 0
\(340\) −1.07953 + 1.86979i −0.0585455 + 0.101404i
\(341\) −12.9843 + 1.92009i −0.703141 + 0.103979i
\(342\) 0 0
\(343\) −12.0820 + 8.77807i −0.652365 + 0.473971i
\(344\) −90.9861 19.3397i −4.90564 1.04273i
\(345\) 0 0
\(346\) −4.41693 + 42.0243i −0.237456 + 2.25924i
\(347\) 3.64762 34.7048i 0.195815 1.86305i −0.250424 0.968136i \(-0.580570\pi\)
0.446238 0.894914i \(-0.352763\pi\)
\(348\) 0 0
\(349\) 3.63898 + 0.773489i 0.194790 + 0.0414039i 0.304273 0.952585i \(-0.401586\pi\)
−0.109483 + 0.993989i \(0.534920\pi\)
\(350\) −12.4674 + 9.05813i −0.666413 + 0.484177i
\(351\) 0 0
\(352\) 34.6780 + 18.1202i 1.84834 + 0.965807i
\(353\) 1.97626 3.42298i 0.105186 0.182187i −0.808628 0.588320i \(-0.799790\pi\)
0.913814 + 0.406133i \(0.133123\pi\)
\(354\) 0 0
\(355\) −1.14465 + 1.27127i −0.0607519 + 0.0674718i
\(356\) 0.300825 0.0639423i 0.0159437 0.00338894i
\(357\) 0 0
\(358\) −8.92479 + 3.97357i −0.471690 + 0.210010i
\(359\) −2.28796 + 7.04162i −0.120754 + 0.371643i −0.993104 0.117240i \(-0.962595\pi\)
0.872350 + 0.488883i \(0.162595\pi\)
\(360\) 0 0
\(361\) 6.77400 4.92160i 0.356526 0.259031i
\(362\) 19.8650 34.4072i 1.04408 1.80840i
\(363\) 0 0
\(364\) −17.5865 30.4607i −0.921783 1.59657i
\(365\) 0.122315 + 0.0544579i 0.00640224 + 0.00285046i
\(366\) 0 0
\(367\) −17.0066 18.8877i −0.887735 0.985930i 0.112235 0.993682i \(-0.464199\pi\)
−0.999970 + 0.00775198i \(0.997532\pi\)
\(368\) 46.3103 + 33.6464i 2.41409 + 1.75394i
\(369\) 0 0
\(370\) 1.05754 3.25476i 0.0549787 0.169207i
\(371\) −10.0239 2.13064i −0.520413 0.110617i
\(372\) 0 0
\(373\) 2.38737 + 4.13505i 0.123614 + 0.214105i 0.921190 0.389113i \(-0.127218\pi\)
−0.797577 + 0.603218i \(0.793885\pi\)
\(374\) 0.673142 + 15.9822i 0.0348074 + 0.826418i
\(375\) 0 0
\(376\) −1.32489 12.6055i −0.0683259 0.650077i
\(377\) −11.6131 35.7416i −0.598107 1.84079i
\(378\) 0 0
\(379\) 14.1162 + 10.2560i 0.725100 + 0.526816i 0.888009 0.459825i \(-0.152088\pi\)
−0.162910 + 0.986641i \(0.552088\pi\)
\(380\) 3.50519 1.56061i 0.179813 0.0800578i
\(381\) 0 0
\(382\) 21.0838 23.4160i 1.07874 1.19806i
\(383\) 3.09521 + 1.37808i 0.158158 + 0.0704164i 0.484289 0.874908i \(-0.339078\pi\)
−0.326131 + 0.945325i \(0.605745\pi\)
\(384\) 0 0
\(385\) 0.346659 0.876087i 0.0176674 0.0446495i
\(386\) −59.2469 −3.01559
\(387\) 0 0
\(388\) 9.25093 + 28.4714i 0.469645 + 1.44542i
\(389\) 12.5490 + 13.9371i 0.636262 + 0.706640i 0.971911 0.235347i \(-0.0756226\pi\)
−0.335650 + 0.941987i \(0.608956\pi\)
\(390\) 0 0
\(391\) −1.06425 + 10.1257i −0.0538214 + 0.512076i
\(392\) 41.9106 8.90837i 2.11680 0.449941i
\(393\) 0 0
\(394\) 2.73547 + 26.0263i 0.137811 + 1.31118i
\(395\) −1.05956 −0.0533125
\(396\) 0 0
\(397\) 10.7157 0.537806 0.268903 0.963167i \(-0.413339\pi\)
0.268903 + 0.963167i \(0.413339\pi\)
\(398\) 4.27693 + 40.6922i 0.214383 + 2.03972i
\(399\) 0 0
\(400\) 49.8604 10.5982i 2.49302 0.529908i
\(401\) −0.296093 + 2.81713i −0.0147862 + 0.140681i −0.999424 0.0339262i \(-0.989199\pi\)
0.984638 + 0.174607i \(0.0558655\pi\)
\(402\) 0 0
\(403\) −15.9864 17.7547i −0.796341 0.884427i
\(404\) −23.1650 71.2945i −1.15250 3.54704i
\(405\) 0 0
\(406\) −19.4093 −0.963268
\(407\) −4.48499 17.4530i −0.222313 0.865113i
\(408\) 0 0
\(409\) 21.5083 + 9.57610i 1.06352 + 0.473508i 0.862488 0.506078i \(-0.168905\pi\)
0.201028 + 0.979586i \(0.435572\pi\)
\(410\) 4.49518 4.99240i 0.222001 0.246557i
\(411\) 0 0
\(412\) 56.0897 24.9727i 2.76334 1.23032i
\(413\) −3.76819 2.73775i −0.185421 0.134716i
\(414\) 0 0
\(415\) 1.14143 + 3.51297i 0.0560307 + 0.172445i
\(416\) 7.44445 + 70.8292i 0.364994 + 3.47269i
\(417\) 0 0
\(418\) 15.7267 23.6811i 0.769217 1.15828i
\(419\) −10.5587 18.2882i −0.515826 0.893437i −0.999831 0.0183715i \(-0.994152\pi\)
0.484005 0.875065i \(-0.339182\pi\)
\(420\) 0 0
\(421\) 23.0033 + 4.88951i 1.12111 + 0.238300i 0.730940 0.682442i \(-0.239082\pi\)
0.390173 + 0.920742i \(0.372415\pi\)
\(422\) −1.94584 + 5.98867i −0.0947218 + 0.291524i
\(423\) 0 0
\(424\) 53.5522 + 38.9080i 2.60073 + 1.88954i
\(425\) 6.06668 + 6.73773i 0.294277 + 0.326828i
\(426\) 0 0
\(427\) 11.6195 + 5.17332i 0.562306 + 0.250355i
\(428\) −26.5081 45.9134i −1.28132 2.21931i
\(429\) 0 0
\(430\) 3.82456 6.62434i 0.184437 0.319454i
\(431\) 4.02881 2.92710i 0.194061 0.140994i −0.486512 0.873674i \(-0.661731\pi\)
0.680573 + 0.732680i \(0.261731\pi\)
\(432\) 0 0
\(433\) −7.90629 + 24.3331i −0.379952 + 1.16937i 0.560124 + 0.828409i \(0.310753\pi\)
−0.940076 + 0.340964i \(0.889247\pi\)
\(434\) −11.2723 + 5.01877i −0.541089 + 0.240909i
\(435\) 0 0
\(436\) 24.8437 5.28069i 1.18980 0.252899i
\(437\) 12.1071 13.4462i 0.579159 0.643221i
\(438\) 0 0
\(439\) 2.33003 4.03572i 0.111206 0.192615i −0.805051 0.593206i \(-0.797862\pi\)
0.916257 + 0.400591i \(0.131195\pi\)
\(440\) −4.34731 + 4.25895i −0.207250 + 0.203037i
\(441\) 0 0
\(442\) −23.5560 + 17.1145i −1.12045 + 0.814052i
\(443\) 22.6184 + 4.80769i 1.07463 + 0.228420i 0.711050 0.703141i \(-0.248220\pi\)
0.363583 + 0.931562i \(0.381553\pi\)
\(444\) 0 0
\(445\) −0.00156744 + 0.0149132i −7.43040e−5 + 0.000706955i
\(446\) −3.56844 + 33.9515i −0.168971 + 1.60765i
\(447\) 0 0
\(448\) 12.0537 + 2.56208i 0.569482 + 0.121047i
\(449\) −11.1354 + 8.09035i −0.525512 + 0.381807i −0.818676 0.574255i \(-0.805292\pi\)
0.293164 + 0.956062i \(0.405292\pi\)
\(450\) 0 0
\(451\) 5.89203 34.8794i 0.277445 1.64241i
\(452\) −5.00642 + 8.67137i −0.235482 + 0.407867i
\(453\) 0 0
\(454\) 32.4610 36.0516i 1.52347 1.69199i
\(455\) 1.67750 0.356563i 0.0786422 0.0167159i
\(456\) 0 0
\(457\) 9.90239 4.40883i 0.463214 0.206236i −0.161841 0.986817i \(-0.551743\pi\)
0.625055 + 0.780581i \(0.285076\pi\)
\(458\) 16.3635 50.3617i 0.764617 2.35325i
\(459\) 0 0
\(460\) −5.28520 + 3.83992i −0.246424 + 0.179037i
\(461\) −1.46396 + 2.53565i −0.0681833 + 0.118097i −0.898102 0.439788i \(-0.855054\pi\)
0.829918 + 0.557885i \(0.188387\pi\)
\(462\) 0 0
\(463\) 13.5417 + 23.4550i 0.629337 + 1.09004i 0.987685 + 0.156456i \(0.0500070\pi\)
−0.358347 + 0.933588i \(0.616660\pi\)
\(464\) 58.6506 + 26.1129i 2.72278 + 1.21226i
\(465\) 0 0
\(466\) −12.9473 14.3794i −0.599771 0.666113i
\(467\) 9.14721 + 6.64584i 0.423282 + 0.307533i 0.778957 0.627077i \(-0.215749\pi\)
−0.355675 + 0.934610i \(0.615749\pi\)
\(468\) 0 0
\(469\) −3.37897 + 10.3994i −0.156026 + 0.480200i
\(470\) 1.01951 + 0.216703i 0.0470263 + 0.00999576i
\(471\) 0 0
\(472\) 15.0430 + 26.0552i 0.692410 + 1.19929i
\(473\) −1.69489 40.2411i −0.0779311 1.85029i
\(474\) 0 0
\(475\) −1.68420 16.0241i −0.0772764 0.735236i
\(476\) 3.30259 + 10.1643i 0.151374 + 0.465882i
\(477\) 0 0
\(478\) −20.4755 14.8764i −0.936530 0.680429i
\(479\) −27.7588 + 12.3590i −1.26833 + 0.564698i −0.926935 0.375222i \(-0.877567\pi\)
−0.341396 + 0.939919i \(0.610900\pi\)
\(480\) 0 0
\(481\) 21.9478 24.3755i 1.00073 1.11143i
\(482\) −63.8042 28.4075i −2.90620 1.29392i
\(483\) 0 0
\(484\) −12.3197 + 52.6225i −0.559985 + 2.39193i
\(485\) −1.45966 −0.0662796
\(486\) 0 0
\(487\) −0.988742 3.04303i −0.0448042 0.137893i 0.926152 0.377150i \(-0.123096\pi\)
−0.970956 + 0.239257i \(0.923096\pi\)
\(488\) −54.9738 61.0546i −2.48855 2.76381i
\(489\) 0 0
\(490\) −0.368294 + 3.50409i −0.0166378 + 0.158299i
\(491\) 5.85092 1.24365i 0.264048 0.0561252i −0.0739850 0.997259i \(-0.523572\pi\)
0.338033 + 0.941134i \(0.390238\pi\)
\(492\) 0 0
\(493\) 1.19362 + 11.3565i 0.0537579 + 0.511472i
\(494\) 51.7444 2.32809
\(495\) 0 0
\(496\) 40.8146 1.83263
\(497\) 0.885131 + 8.42146i 0.0397035 + 0.377754i
\(498\) 0 0
\(499\) −28.7353 + 6.10788i −1.28637 + 0.273426i −0.799827 0.600231i \(-0.795076\pi\)
−0.486543 + 0.873657i \(0.661742\pi\)
\(500\) −1.22325 + 11.6384i −0.0547053 + 0.520486i
\(501\) 0 0
\(502\) 43.7407 + 48.5790i 1.95224 + 2.16818i
\(503\) −4.45188 13.7015i −0.198500 0.610919i −0.999918 0.0128145i \(-0.995921\pi\)
0.801418 0.598104i \(-0.204079\pi\)
\(504\) 0 0
\(505\) 3.65509 0.162649
\(506\) −17.8086 + 45.0065i −0.791689 + 2.00078i
\(507\) 0 0
\(508\) −5.37682 2.39391i −0.238558 0.106213i
\(509\) −29.3356 + 32.5805i −1.30028 + 1.44410i −0.474339 + 0.880342i \(0.657313\pi\)
−0.825938 + 0.563761i \(0.809354\pi\)
\(510\) 0 0
\(511\) 0.605463 0.269570i 0.0267841 0.0119251i
\(512\) 29.3882 + 21.3518i 1.29879 + 0.943624i
\(513\) 0 0
\(514\) 10.8957 + 33.5334i 0.480587 + 1.47909i
\(515\) 0.312922 + 2.97725i 0.0137890 + 0.131193i
\(516\) 0 0
\(517\) 5.14358 1.91408i 0.226214 0.0841813i
\(518\) −8.47019 14.6708i −0.372159 0.644598i
\(519\) 0 0
\(520\) −10.8355 2.30316i −0.475170 0.101000i
\(521\) 6.23122 19.1777i 0.272995 0.840191i −0.716748 0.697332i \(-0.754370\pi\)
0.989743 0.142859i \(-0.0456296\pi\)
\(522\) 0 0
\(523\) −31.6906 23.0245i −1.38573 1.00679i −0.996318 0.0857293i \(-0.972678\pi\)
−0.389413 0.921063i \(-0.627322\pi\)
\(524\) −18.9595 21.0566i −0.828248 0.919862i
\(525\) 0 0
\(526\) −1.87811 0.836191i −0.0818897 0.0364596i
\(527\) 3.62973 + 6.28688i 0.158114 + 0.273861i
\(528\) 0 0
\(529\) −3.90349 + 6.76105i −0.169717 + 0.293959i
\(530\) −4.40371 + 3.19948i −0.191285 + 0.138977i
\(531\) 0 0
\(532\) 5.86914 18.0633i 0.254459 0.783145i
\(533\) 58.8211 26.1888i 2.54782 1.13436i
\(534\) 0 0
\(535\) 2.52849 0.537447i 0.109316 0.0232359i
\(536\) 47.2609 52.4886i 2.04136 2.26716i
\(537\) 0 0
\(538\) 14.0207 24.2845i 0.604475 1.04698i
\(539\) 8.25253 + 16.6160i 0.355462 + 0.715703i
\(540\) 0 0
\(541\) −14.5837 + 10.5957i −0.627002 + 0.455544i −0.855360 0.518034i \(-0.826664\pi\)
0.228358 + 0.973577i \(0.426664\pi\)
\(542\) 63.2639 + 13.4472i 2.71742 + 0.577605i
\(543\) 0 0
\(544\) 2.26202 21.5217i 0.0969833 0.922734i
\(545\) −0.129448 + 1.23161i −0.00554493 + 0.0527565i
\(546\) 0 0
\(547\) 0.0876124 + 0.0186226i 0.00374604 + 0.000796244i 0.209784 0.977748i \(-0.432724\pi\)
−0.206038 + 0.978544i \(0.566057\pi\)
\(548\) −0.531662 + 0.386275i −0.0227115 + 0.0165008i
\(549\) 0 0
\(550\) 19.1724 + 38.6026i 0.817514 + 1.64602i
\(551\) 10.1466 17.5744i 0.432259 0.748695i
\(552\) 0 0
\(553\) −3.50952 + 3.89772i −0.149240 + 0.165748i
\(554\) 23.0752 4.90478i 0.980370 0.208384i
\(555\) 0 0
\(556\) 50.0244 22.2723i 2.12151 0.944556i
\(557\) −0.950270 + 2.92463i −0.0402642 + 0.123921i −0.969168 0.246400i \(-0.920752\pi\)
0.928904 + 0.370321i \(0.120752\pi\)
\(558\) 0 0
\(559\) 59.3112 43.0921i 2.50859 1.82260i
\(560\) −1.46488 + 2.53725i −0.0619024 + 0.107218i
\(561\) 0 0
\(562\) −21.9890 38.0860i −0.927548 1.60656i
\(563\) 16.2740 + 7.24565i 0.685867 + 0.305368i 0.719925 0.694052i \(-0.244176\pi\)
−0.0340577 + 0.999420i \(0.510843\pi\)
\(564\) 0 0
\(565\) −0.326675 0.362809i −0.0137433 0.0152635i
\(566\) 12.4480 + 9.04401i 0.523229 + 0.380148i
\(567\) 0 0
\(568\) 16.9022 52.0197i 0.709202 2.18270i
\(569\) 4.15614 + 0.883415i 0.174234 + 0.0370347i 0.294203 0.955743i \(-0.404946\pi\)
−0.119968 + 0.992778i \(0.538279\pi\)
\(570\) 0 0
\(571\) 22.5287 + 39.0208i 0.942795 + 1.63297i 0.760107 + 0.649798i \(0.225146\pi\)
0.182688 + 0.983171i \(0.441520\pi\)
\(572\) −92.1975 + 34.3095i −3.85497 + 1.43455i
\(573\) 0 0
\(574\) −3.47600 33.0720i −0.145086 1.38040i
\(575\) 8.47741 + 26.0908i 0.353533 + 1.08806i
\(576\) 0 0
\(577\) 12.3578 + 8.97845i 0.514461 + 0.373778i 0.814513 0.580145i \(-0.197004\pi\)
−0.300052 + 0.953923i \(0.597004\pi\)
\(578\) −32.7514 + 14.5819i −1.36228 + 0.606525i
\(579\) 0 0
\(580\) −4.90272 + 5.44502i −0.203574 + 0.226092i
\(581\) 16.7035 + 7.43688i 0.692978 + 0.308534i
\(582\) 0 0
\(583\) −10.5456 + 26.6513i −0.436756 + 1.10378i
\(584\) −4.28101 −0.177150
\(585\) 0 0
\(586\) 12.1735 + 37.4663i 0.502884 + 1.54772i
\(587\) −28.4956 31.6476i −1.17614 1.30624i −0.942614 0.333885i \(-0.891640\pi\)
−0.233526 0.972351i \(-0.575026\pi\)
\(588\) 0 0
\(589\) 1.34852 12.8303i 0.0555649 0.528664i
\(590\) −2.41997 + 0.514381i −0.0996286 + 0.0211767i
\(591\) 0 0
\(592\) 5.85719 + 55.7274i 0.240729 + 2.29038i
\(593\) −10.6230 −0.436236 −0.218118 0.975922i \(-0.569992\pi\)
−0.218118 + 0.975922i \(0.569992\pi\)
\(594\) 0 0
\(595\) −0.521100 −0.0213630
\(596\) −2.02598 19.2759i −0.0829872 0.789571i
\(597\) 0 0
\(598\) −86.1766 + 18.3174i −3.52402 + 0.749054i
\(599\) −3.63423 + 34.5774i −0.148491 + 1.41280i 0.625809 + 0.779976i \(0.284769\pi\)
−0.774300 + 0.632819i \(0.781898\pi\)
\(600\) 0 0
\(601\) 6.08081 + 6.75343i 0.248041 + 0.275478i 0.854289 0.519798i \(-0.173993\pi\)
−0.606248 + 0.795276i \(0.707326\pi\)
\(602\) −11.7005 36.0104i −0.476876 1.46767i
\(603\) 0 0
\(604\) −13.1534 −0.535204
\(605\) −2.25458 1.36415i −0.0916617 0.0554608i
\(606\) 0 0
\(607\) −14.2478 6.34353i −0.578301 0.257476i 0.0966749 0.995316i \(-0.469179\pi\)
−0.674976 + 0.737840i \(0.735846\pi\)
\(608\) −25.7331 + 28.5795i −1.04361 + 1.15905i
\(609\) 0 0
\(610\) 6.17187 2.74789i 0.249892 0.111259i
\(611\) 8.08184 + 5.87180i 0.326956 + 0.237548i
\(612\) 0 0
\(613\) −8.59141 26.4417i −0.347004 1.06797i −0.960502 0.278272i \(-0.910238\pi\)
0.613498 0.789696i \(-0.289762\pi\)
\(614\) −1.79310 17.0602i −0.0723636 0.688494i
\(615\) 0 0
\(616\) 1.26771 + 30.0986i 0.0510773 + 1.21271i
\(617\) 4.01690 + 6.95747i 0.161714 + 0.280097i 0.935484 0.353370i \(-0.114964\pi\)
−0.773769 + 0.633467i \(0.781631\pi\)
\(618\) 0 0
\(619\) −3.52144 0.748505i −0.141538 0.0300849i 0.136598 0.990627i \(-0.456383\pi\)
−0.278136 + 0.960542i \(0.589717\pi\)
\(620\) −1.43940 + 4.43002i −0.0578078 + 0.177914i
\(621\) 0 0
\(622\) −30.6627 22.2777i −1.22946 0.893256i
\(623\) 0.0496682 + 0.0551621i 0.00198991 + 0.00221002i
\(624\) 0 0
\(625\) 22.0552 + 9.81962i 0.882209 + 0.392785i
\(626\) −20.6905 35.8370i −0.826959 1.43234i
\(627\) 0 0
\(628\) 26.2242 45.4216i 1.04646 1.81252i
\(629\) −8.06309 + 5.85818i −0.321496 + 0.233581i
\(630\) 0 0
\(631\) −6.25432 + 19.2488i −0.248981 + 0.766283i 0.745976 + 0.665973i \(0.231984\pi\)
−0.994956 + 0.100310i \(0.968016\pi\)
\(632\) 30.9497 13.7797i 1.23111 0.548126i
\(633\) 0 0
\(634\) −75.4002 + 16.0268i −2.99453 + 0.636506i
\(635\) 0.192023 0.213263i 0.00762021 0.00846310i
\(636\) 0 0
\(637\) −16.8849 + 29.2454i −0.669002 + 1.15875i
\(638\) −9.04211 + 53.5271i −0.357981 + 2.11916i
\(639\) 0 0
\(640\) 0.722676 0.525055i 0.0285663 0.0207546i
\(641\) −27.2695 5.79632i −1.07708 0.228941i −0.364979 0.931016i \(-0.618924\pi\)
−0.712103 + 0.702075i \(0.752257\pi\)
\(642\) 0 0
\(643\) −0.00935176 + 0.0889761i −0.000368797 + 0.00350887i −0.994705 0.102774i \(-0.967228\pi\)
0.994336 + 0.106283i \(0.0338949\pi\)
\(644\) −3.38024 + 32.1609i −0.133200 + 1.26732i
\(645\) 0 0
\(646\) −15.3791 3.26893i −0.605083 0.128614i
\(647\) −38.1698 + 27.7320i −1.50061 + 1.09026i −0.530473 + 0.847702i \(0.677986\pi\)
−0.970137 + 0.242556i \(0.922014\pi\)
\(648\) 0 0
\(649\) −9.30565 + 9.11651i −0.365279 + 0.357854i
\(650\) −39.2272 + 67.9434i −1.53862 + 2.66496i
\(651\) 0 0
\(652\) 24.2742 26.9593i 0.950652 1.05581i
\(653\) 16.9031 3.59287i 0.661471 0.140600i 0.135070 0.990836i \(-0.456874\pi\)
0.526402 + 0.850236i \(0.323541\pi\)
\(654\) 0 0
\(655\) 1.26210 0.561922i 0.0493142 0.0219561i
\(656\) −33.9907 + 104.613i −1.32711 + 4.08443i
\(657\) 0 0
\(658\) 4.17401 3.03259i 0.162720 0.118223i
\(659\) −6.04319 + 10.4671i −0.235409 + 0.407741i −0.959391 0.282078i \(-0.908976\pi\)
0.723982 + 0.689818i \(0.242310\pi\)
\(660\) 0 0
\(661\) −19.2915 33.4139i −0.750353 1.29965i −0.947652 0.319306i \(-0.896550\pi\)
0.197299 0.980343i \(-0.436783\pi\)
\(662\) 32.2145 + 14.3428i 1.25205 + 0.557449i
\(663\) 0 0
\(664\) −79.0273 87.7687i −3.06686 3.40609i
\(665\) 0.749199 + 0.544325i 0.0290527 + 0.0211080i
\(666\) 0 0
\(667\) −10.6771 + 32.8608i −0.413420 + 1.27237i
\(668\) 49.6053 + 10.5439i 1.91929 + 0.407957i
\(669\) 0 0
\(670\) 2.90404 + 5.02994i 0.112193 + 0.194324i
\(671\) 19.6801 29.6342i 0.759742 1.14401i
\(672\) 0 0
\(673\) −3.01487 28.6846i −0.116215 1.10571i −0.884803 0.465966i \(-0.845707\pi\)
0.768588 0.639744i \(-0.220960\pi\)
\(674\) 10.4993 + 32.3134i 0.404416 + 1.24467i
\(675\) 0 0
\(676\) −93.1918 67.7078i −3.58430 2.60415i
\(677\) 6.43785 2.86632i 0.247427 0.110161i −0.279276 0.960211i \(-0.590095\pi\)
0.526703 + 0.850049i \(0.323428\pi\)
\(678\) 0 0
\(679\) −4.83472 + 5.36950i −0.185540 + 0.206063i
\(680\) 3.07496 + 1.36906i 0.117919 + 0.0525011i
\(681\) 0 0
\(682\) 8.58939 + 33.4249i 0.328905 + 1.27991i
\(683\) −32.5733 −1.24638 −0.623191 0.782070i \(-0.714164\pi\)
−0.623191 + 0.782070i \(0.714164\pi\)
\(684\) 0 0
\(685\) −0.00990166 0.0304742i −0.000378323 0.00116436i
\(686\) 26.2743 + 29.1806i 1.00316 + 1.11412i
\(687\) 0 0
\(688\) −13.0915 + 124.557i −0.499107 + 4.74869i
\(689\) −51.0308 + 10.8469i −1.94412 + 0.413235i
\(690\) 0 0
\(691\) −4.51363 42.9443i −0.171707 1.63368i −0.653169 0.757212i \(-0.726561\pi\)
0.481462 0.876467i \(-0.340106\pi\)
\(692\) 78.9608 3.00164
\(693\) 0 0
\(694\) −91.7519 −3.48285
\(695\) 0.279084 + 2.65530i 0.0105862 + 0.100721i
\(696\) 0 0
\(697\) −19.1369 + 4.06767i −0.724860 + 0.154074i
\(698\) 1.02247 9.72813i 0.0387010 0.368215i
\(699\) 0 0
\(700\) 19.2689 + 21.4002i 0.728295 + 0.808853i
\(701\) −8.39620 25.8408i −0.317120 0.975995i −0.974873 0.222761i \(-0.928493\pi\)
0.657753 0.753234i \(-0.271507\pi\)
\(702\) 0 0
\(703\) 17.7118 0.668013
\(704\) 12.6811 32.0480i 0.477937 1.20786i
\(705\) 0 0
\(706\) −9.49389 4.22695i −0.357307 0.159083i
\(707\) 12.1065 13.4456i 0.455312 0.505675i
\(708\) 0 0
\(709\) −19.6058 + 8.72907i −0.736312 + 0.327827i −0.740402 0.672164i \(-0.765365\pi\)
0.00408993 + 0.999992i \(0.498698\pi\)
\(710\) 3.63882 + 2.64376i 0.136563 + 0.0992185i
\(711\) 0 0
\(712\) −0.148163 0.455998i −0.00555263 0.0170892i
\(713\) 2.29604 + 21.8454i 0.0859874 + 0.818116i
\(714\) 0 0
\(715\) −0.201844 4.79231i −0.00754856 0.179222i
\(716\) 9.12775 + 15.8097i 0.341120 + 0.590837i
\(717\) 0 0
\(718\) 19.0419 + 4.04749i 0.710638 + 0.151051i
\(719\) −5.61293 + 17.2748i −0.209327 + 0.644242i 0.790181 + 0.612874i \(0.209987\pi\)
−0.999508 + 0.0313684i \(0.990013\pi\)
\(720\) 0 0
\(721\) 11.9886 + 8.71023i 0.446479 + 0.324386i
\(722\) −14.7312 16.3607i −0.548239 0.608881i
\(723\) 0 0
\(724\) −67.8227 30.1966i −2.52061 1.12225i
\(725\) 15.3842 + 26.6461i 0.571353 + 0.989612i
\(726\) 0 0
\(727\) 12.7753 22.1275i 0.473810 0.820662i −0.525741 0.850645i \(-0.676212\pi\)
0.999550 + 0.0299825i \(0.00954516\pi\)
\(728\) −44.3622 + 32.2311i −1.64417 + 1.19456i
\(729\) 0 0
\(730\) 0.108785 0.334807i 0.00402633 0.0123918i
\(731\) −20.3504 + 9.06057i −0.752686 + 0.335117i
\(732\) 0 0
\(733\) 39.8466 8.46966i 1.47177 0.312834i 0.598913 0.800814i \(-0.295599\pi\)
0.872855 + 0.487980i \(0.162266\pi\)
\(734\) −44.7153 + 49.6614i −1.65047 + 1.83304i
\(735\) 0 0
\(736\) 32.7395 56.7065i 1.20679 2.09023i
\(737\) 27.1054 + 14.1633i 0.998439 + 0.521710i
\(738\) 0 0
\(739\) 25.9774 18.8737i 0.955596 0.694281i 0.00347186 0.999994i \(-0.498895\pi\)
0.952124 + 0.305713i \(0.0988949\pi\)
\(740\) −6.25523 1.32959i −0.229947 0.0488767i
\(741\) 0 0
\(742\) −2.81647 + 26.7969i −0.103396 + 0.983747i
\(743\) −1.87757 + 17.8639i −0.0688815 + 0.655364i 0.904547 + 0.426374i \(0.140209\pi\)
−0.973429 + 0.228990i \(0.926458\pi\)
\(744\) 0 0
\(745\) 0.924384 + 0.196484i 0.0338668 + 0.00719861i
\(746\) 10.1566 7.37920i 0.371859 0.270172i
\(747\) 0 0
\(748\) 29.5698 4.37270i 1.08118 0.159882i
\(749\) 6.39789 11.0815i 0.233774 0.404908i
\(750\) 0 0
\(751\) −16.6504 + 18.4922i −0.607583 + 0.674789i −0.965931 0.258799i \(-0.916673\pi\)
0.358348 + 0.933588i \(0.383340\pi\)
\(752\) −16.6929 + 3.54818i −0.608727 + 0.129389i
\(753\) 0 0
\(754\) −90.2688 + 40.1903i −3.28740 + 1.46364i
\(755\) 0.198184 0.609947i 0.00721265 0.0221983i
\(756\) 0 0
\(757\) 26.3079 19.1138i 0.956178 0.694704i 0.00391833 0.999992i \(-0.498753\pi\)
0.952260 + 0.305288i \(0.0987528\pi\)
\(758\) 22.9387 39.7311i 0.833173 1.44310i
\(759\) 0 0
\(760\) −2.99088 5.18035i −0.108491 0.187911i
\(761\) −8.06035 3.58870i −0.292187 0.130090i 0.255408 0.966833i \(-0.417790\pi\)
−0.547596 + 0.836743i \(0.684457\pi\)
\(762\) 0 0
\(763\) 4.10186 + 4.55557i 0.148497 + 0.164923i
\(764\) −47.6345 34.6085i −1.72336 1.25209i
\(765\) 0 0
\(766\) 2.75285 8.47239i 0.0994644 0.306120i
\(767\) −23.1941 4.93005i −0.837489 0.178014i
\(768\) 0 0
\(769\) 13.4824 + 23.3523i 0.486189 + 0.842104i 0.999874 0.0158750i \(-0.00505339\pi\)
−0.513685 + 0.857979i \(0.671720\pi\)
\(770\) −2.38615 0.665696i −0.0859909 0.0239900i
\(771\) 0 0
\(772\) 11.5725 + 110.105i 0.416502 + 3.96275i
\(773\) −8.24081 25.3626i −0.296401 0.912230i −0.982747 0.184954i \(-0.940786\pi\)
0.686346 0.727276i \(-0.259214\pi\)
\(774\) 0 0
\(775\) 15.8247 + 11.4973i 0.568439 + 0.412995i
\(776\) 42.6363 18.9829i 1.53055 0.681447i
\(777\) 0 0
\(778\) 32.9952 36.6449i 1.18293 1.31378i
\(779\) 31.7626 + 14.1416i 1.13801 + 0.506675i
\(780\) 0 0
\(781\) 23.6371 + 1.48224i 0.845801 + 0.0530387i
\(782\) 26.7700 0.957294
\(783\) 0 0
\(784\) −17.8273 54.8666i −0.636688 1.95952i
\(785\) 1.71116 + 1.90044i 0.0610739 + 0.0678294i
\(786\) 0 0
\(787\) 1.72947 16.4548i 0.0616489 0.586551i −0.919472 0.393155i \(-0.871383\pi\)
0.981121 0.193395i \(-0.0619499\pi\)
\(788\) 47.8330 10.1672i 1.70398 0.362192i
\(789\) 0 0
\(790\) 0.291207 + 2.77065i 0.0103607 + 0.0985753i
\(791\) −2.41666 −0.0859264
\(792\) 0 0
\(793\) 64.7520 2.29941
\(794\) −2.94507 28.0204i −0.104516 0.994408i
\(795\) 0 0
\(796\) 74.7872 15.8965i 2.65076 0.563437i
\(797\) −4.65345 + 44.2746i −0.164834 + 1.56829i 0.529296 + 0.848437i \(0.322456\pi\)
−0.694129 + 0.719850i \(0.744210\pi\)
\(798\) 0 0
\(799\) −2.03108 2.25574i −0.0718545 0.0798025i
\(800\) −18.0184 55.4550i −0.637047 1.96063i
\(801\) 0 0
\(802\) 7.44789 0.262994
\(803\) −0.461356 1.79533i −0.0162809 0.0633559i
\(804\) 0 0
\(805\) −1.44043 0.641320i −0.0507684 0.0226036i
\(806\) −42.0331 + 46.6825i −1.48055 + 1.64432i
\(807\) 0 0
\(808\) −106.764 + 47.5346i −3.75596 + 1.67226i
\(809\) 39.7013 + 28.8447i 1.39582 + 1.01413i 0.995198 + 0.0978851i \(0.0312078\pi\)
0.400627 + 0.916241i \(0.368792\pi\)
\(810\) 0 0
\(811\) −13.2047 40.6400i −0.463681 1.42706i −0.860634 0.509224i \(-0.829933\pi\)
0.396953 0.917839i \(-0.370067\pi\)
\(812\) 3.79115 + 36.0703i 0.133043 + 1.26582i
\(813\) 0 0
\(814\) −44.4051 + 16.5245i −1.55640 + 0.579184i
\(815\) 0.884408 + 1.53184i 0.0309795 + 0.0536580i
\(816\) 0 0
\(817\) 38.7227 + 8.23076i 1.35474 + 0.287958i
\(818\) 19.1292 58.8737i 0.668838 2.05847i
\(819\) 0 0
\(820\) −10.1559 7.37871i −0.354660 0.257676i
\(821\) 19.3894 + 21.5341i 0.676695 + 0.751546i 0.979486 0.201511i \(-0.0645852\pi\)
−0.302791 + 0.953057i \(0.597919\pi\)
\(822\) 0 0
\(823\) 17.5670 + 7.82134i 0.612348 + 0.272635i 0.689387 0.724393i \(-0.257880\pi\)
−0.0770393 + 0.997028i \(0.524547\pi\)
\(824\) −47.8597 82.8954i −1.66727 2.88780i
\(825\) 0 0
\(826\) −6.12330 + 10.6059i −0.213057 + 0.369025i
\(827\) 35.2773 25.6305i 1.22671 0.891259i 0.230074 0.973173i \(-0.426103\pi\)
0.996639 + 0.0819138i \(0.0261032\pi\)
\(828\) 0 0
\(829\) 6.68209 20.5654i 0.232078 0.714264i −0.765417 0.643535i \(-0.777467\pi\)
0.997496 0.0707296i \(-0.0225327\pi\)
\(830\) 8.87233 3.95022i 0.307963 0.137114i
\(831\) 0 0
\(832\) 61.3643 13.0434i 2.12742 0.452198i
\(833\) 6.86597 7.62543i 0.237892 0.264206i
\(834\) 0 0
\(835\) −1.23635 + 2.14142i −0.0427857 + 0.0741069i
\(836\) −47.0809 24.6010i −1.62833 0.850843i
\(837\) 0 0
\(838\) −44.9198 + 32.6361i −1.55173 + 1.12740i
\(839\) −21.7184 4.61639i −0.749803 0.159375i −0.182867 0.983138i \(-0.558538\pi\)
−0.566936 + 0.823762i \(0.691871\pi\)
\(840\) 0 0
\(841\) −1.01936 + 9.69858i −0.0351504 + 0.334434i
\(842\) 6.46339 61.4951i 0.222743 2.11926i
\(843\) 0 0
\(844\) 11.5094 + 2.44641i 0.396171 + 0.0842088i
\(845\) 4.54387 3.30131i 0.156314 0.113569i
\(846\) 0 0
\(847\) −12.4859 + 3.77531i −0.429020 + 0.129721i
\(848\) 44.5628 77.1851i 1.53029 2.65055i
\(849\) 0 0
\(850\) 15.9511 17.7155i 0.547119 0.607637i
\(851\) −29.4977 + 6.26994i −1.01117 + 0.214931i
\(852\) 0 0
\(853\) 24.0410 10.7037i 0.823147 0.366489i 0.0484535 0.998825i \(-0.484571\pi\)
0.774694 + 0.632337i \(0.217904\pi\)
\(854\) 10.3342 31.8055i 0.353630 1.08836i
\(855\) 0 0
\(856\) −66.8672 + 48.5819i −2.28547 + 1.66049i
\(857\) −13.9851 + 24.2229i −0.477721 + 0.827437i −0.999674 0.0255371i \(-0.991870\pi\)
0.521953 + 0.852974i \(0.325204\pi\)
\(858\) 0 0
\(859\) −7.69037 13.3201i −0.262392 0.454476i 0.704485 0.709719i \(-0.251178\pi\)
−0.966877 + 0.255243i \(0.917845\pi\)
\(860\) −13.0577 5.81368i −0.445265 0.198245i
\(861\) 0 0
\(862\) −8.76133 9.73045i −0.298412 0.331420i
\(863\) −26.5699 19.3041i −0.904449 0.657121i 0.0351559 0.999382i \(-0.488807\pi\)
−0.939605 + 0.342261i \(0.888807\pi\)
\(864\) 0 0
\(865\) −1.18971 + 3.66156i −0.0404514 + 0.124497i
\(866\) 65.8014 + 13.9865i 2.23602 + 0.475281i
\(867\) 0 0
\(868\) 11.5287 + 19.9682i 0.391309 + 0.677767i
\(869\) 9.11418 + 11.4944i 0.309177 + 0.389920i
\(870\) 0 0
\(871\) 5.81881 + 55.3622i 0.197163 + 1.87588i
\(872\) −12.2360 37.6586i −0.414364 1.27528i
\(873\) 0 0
\(874\) −38.4880 27.9632i −1.30188 0.945868i
\(875\) −2.58028 + 1.14882i −0.0872295 + 0.0388371i
\(876\) 0 0
\(877\) 33.4681 37.1701i 1.13014 1.25515i 0.167053 0.985948i \(-0.446575\pi\)
0.963085 0.269197i \(-0.0867584\pi\)
\(878\) −11.1934 4.98361i −0.377758 0.168189i
\(879\) 0 0
\(880\) 6.31479 + 5.22186i 0.212871 + 0.176029i
\(881\) 32.0798 1.08080 0.540399 0.841409i \(-0.318273\pi\)
0.540399 + 0.841409i \(0.318273\pi\)
\(882\) 0 0
\(883\) 14.4035 + 44.3294i 0.484716 + 1.49180i 0.832392 + 0.554188i \(0.186971\pi\)
−0.347676 + 0.937615i \(0.613029\pi\)
\(884\) 36.4067 + 40.4337i 1.22449 + 1.35993i
\(885\) 0 0
\(886\) 6.35525 60.4661i 0.213509 2.03140i
\(887\) 28.7087 6.10222i 0.963943 0.204892i 0.301052 0.953608i \(-0.402662\pi\)
0.662892 + 0.748715i \(0.269329\pi\)
\(888\) 0 0
\(889\) −0.148487 1.41276i −0.00498008 0.0473823i
\(890\) 0.0394273 0.00132161
\(891\) 0 0
\(892\) 63.7925 2.13593
\(893\) 0.563858 + 5.36475i 0.0188688 + 0.179524i
\(894\) 0 0
\(895\) −0.870655 + 0.185063i −0.0291028 + 0.00618598i
\(896\) 0.462201 4.39754i 0.0154410 0.146912i
\(897\) 0 0
\(898\) 24.2158 + 26.8944i 0.808093 + 0.897478i
\(899\) 7.61290 + 23.4301i 0.253904 + 0.781437i
\(900\) 0 0
\(901\) 15.8523 0.528116
\(902\) −92.8253 5.82092i −3.09075 0.193815i
\(903\) 0 0
\(904\) 14.2605 + 6.34917i 0.474296 + 0.211170i
\(905\) 2.42216 2.69009i 0.0805155 0.0894215i
\(906\) 0 0
\(907\) −22.9479 + 10.2170i −0.761971 + 0.339251i −0.750663 0.660685i \(-0.770266\pi\)
−0.0113074 + 0.999936i \(0.503599\pi\)
\(908\) −73.3389 53.2838i −2.43384 1.76829i
\(909\) 0 0
\(910\) −1.39341 4.28848i −0.0461912 0.142162i
\(911\) 0.289433 + 2.75378i 0.00958936 + 0.0912366i 0.998270 0.0588001i \(-0.0187275\pi\)
−0.988680 + 0.150037i \(0.952061\pi\)
\(912\) 0 0
\(913\) 28.2910 42.6004i 0.936296 1.40987i
\(914\) −14.2502 24.6820i −0.471354 0.816408i
\(915\) 0 0
\(916\) −96.7886 20.5731i −3.19799 0.679753i
\(917\) 2.11327 6.50398i 0.0697863 0.214780i
\(918\) 0 0
\(919\) −9.58156 6.96141i −0.316066 0.229636i 0.418429 0.908250i \(-0.362581\pi\)
−0.734495 + 0.678614i \(0.762581\pi\)
\(920\) 6.81493 + 7.56874i 0.224682 + 0.249534i
\(921\) 0 0
\(922\) 7.03281 + 3.13121i 0.231613 + 0.103121i
\(923\) 21.5546 + 37.3337i 0.709478 + 1.22885i
\(924\) 0 0
\(925\) −13.4272 + 23.2566i −0.441484 + 0.764673i
\(926\) 57.6105 41.8565i 1.89320 1.37549i
\(927\) 0 0
\(928\) 22.6938 69.8443i 0.744960 2.29275i
\(929\) −10.2852 + 4.57925i −0.337445 + 0.150240i −0.568462 0.822709i \(-0.692461\pi\)
0.231017 + 0.972950i \(0.425795\pi\)
\(930\) 0 0
\(931\) −17.8367 + 3.79131i −0.584574 + 0.124255i
\(932\) −24.1938 + 26.8699i −0.792494 + 0.880153i
\(933\) 0 0
\(934\) 14.8642 25.7455i 0.486371 0.842419i
\(935\) −0.242762 + 1.43709i −0.00793916 + 0.0469979i
\(936\) 0 0
\(937\) 25.6860 18.6619i 0.839123 0.609659i −0.0830022 0.996549i \(-0.526451\pi\)
0.922126 + 0.386891i \(0.126451\pi\)
\(938\) 28.1220 + 5.97752i 0.918217 + 0.195173i
\(939\) 0 0
\(940\) 0.203585 1.93698i 0.00664021 0.0631774i
\(941\) 1.31809 12.5408i 0.0429686 0.408819i −0.951804 0.306706i \(-0.900773\pi\)
0.994773 0.102113i \(-0.0325602\pi\)
\(942\) 0 0
\(943\) −57.9044 12.3080i −1.88563 0.400802i
\(944\) 32.7721 23.8104i 1.06664 0.774961i
\(945\) 0 0
\(946\) −104.760 + 15.4917i −3.40606 + 0.503678i
\(947\) −0.184885 + 0.320230i −0.00600796 + 0.0104061i −0.869014 0.494788i \(-0.835246\pi\)
0.863006 + 0.505194i \(0.168579\pi\)
\(948\) 0 0
\(949\) 2.25770 2.50743i 0.0732880 0.0813945i
\(950\) −41.4385 + 8.80802i −1.34444 + 0.285770i
\(951\) 0 0
\(952\) 15.2212 6.77693i 0.493323 0.219641i
\(953\) −5.23478 + 16.1110i −0.169571 + 0.521886i −0.999344 0.0362151i \(-0.988470\pi\)
0.829773 + 0.558101i \(0.188470\pi\)
\(954\) 0 0
\(955\) 2.32257 1.68745i 0.0751567 0.0546046i
\(956\) −23.6469 + 40.9576i −0.764794 + 1.32466i
\(957\) 0 0
\(958\) 39.9467 + 69.1896i 1.29062 + 2.23542i
\(959\) −0.144899 0.0645132i −0.00467903 0.00208324i
\(960\) 0 0
\(961\) −10.2633 11.3985i −0.331073 0.367694i
\(962\) −69.7714 50.6919i −2.24952 1.63437i
\(963\) 0 0
\(964\) −40.3299 + 124.123i −1.29894 + 3.99772i
\(965\) −5.28012 1.12232i −0.169973 0.0361289i
\(966\) 0 0
\(967\) −12.4080 21.4914i −0.399016 0.691115i 0.594589 0.804030i \(-0.297315\pi\)
−0.993605 + 0.112914i \(0.963981\pi\)
\(968\) 83.5967 + 10.5258i 2.68690 + 0.338312i
\(969\) 0 0
\(970\) 0.401167 + 3.81685i 0.0128807 + 0.122552i
\(971\) −3.75006 11.5415i −0.120345 0.370384i 0.872679 0.488294i \(-0.162381\pi\)
−0.993024 + 0.117910i \(0.962381\pi\)
\(972\) 0 0
\(973\) 10.6922 + 7.76834i 0.342776 + 0.249042i
\(974\) −7.68548 + 3.42179i −0.246259 + 0.109641i
\(975\) 0 0
\(976\) −74.0183 + 82.2056i −2.36927 + 2.63134i
\(977\) 32.3180 + 14.3889i 1.03394 + 0.460342i 0.852317 0.523026i \(-0.175197\pi\)
0.181627 + 0.983367i \(0.441864\pi\)
\(978\) 0 0
\(979\) 0.175265 0.111277i 0.00560149 0.00355643i
\(980\) 6.58394 0.210316
\(981\) 0 0
\(982\) −4.86006 14.9577i −0.155091 0.477321i
\(983\) 15.0460 + 16.7103i 0.479894 + 0.532976i 0.933668 0.358141i \(-0.116589\pi\)
−0.453774 + 0.891117i \(0.649923\pi\)
\(984\) 0 0
\(985\) −0.249233 + 2.37129i −0.00794122 + 0.0755557i
\(986\) 29.3681 6.24238i 0.935270 0.198798i
\(987\) 0 0
\(988\) −10.1070 96.1619i −0.321547 3.05932i
\(989\) −67.4036 −2.14331
\(990\) 0 0
\(991\) 16.2761 0.517028 0.258514 0.966008i \(-0.416767\pi\)
0.258514 + 0.966008i \(0.416767\pi\)
\(992\) −4.88015 46.4315i −0.154945 1.47420i
\(993\) 0 0
\(994\) 21.7780 4.62905i 0.690755 0.146825i
\(995\) −0.389678 + 3.70753i −0.0123536 + 0.117537i
\(996\) 0 0
\(997\) 3.09418 + 3.43644i 0.0979937 + 0.108833i 0.790147 0.612918i \(-0.210004\pi\)
−0.692153 + 0.721751i \(0.743338\pi\)
\(998\) 23.8690 + 73.4612i 0.755560 + 2.32537i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.n.k.784.1 48
3.2 odd 2 891.2.n.j.784.6 48
9.2 odd 6 891.2.f.d.487.6 yes 24
9.4 even 3 inner 891.2.n.k.190.6 48
9.5 odd 6 891.2.n.j.190.1 48
9.7 even 3 891.2.f.c.487.1 24
11.4 even 5 inner 891.2.n.k.136.6 48
33.26 odd 10 891.2.n.j.136.1 48
99.2 even 30 9801.2.a.cf.1.12 12
99.4 even 15 inner 891.2.n.k.433.1 48
99.20 odd 30 9801.2.a.ck.1.1 12
99.59 odd 30 891.2.n.j.433.6 48
99.70 even 15 891.2.f.c.730.1 yes 24
99.79 odd 30 9801.2.a.cl.1.1 12
99.92 odd 30 891.2.f.d.730.6 yes 24
99.97 even 15 9801.2.a.cg.1.12 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
891.2.f.c.487.1 24 9.7 even 3
891.2.f.c.730.1 yes 24 99.70 even 15
891.2.f.d.487.6 yes 24 9.2 odd 6
891.2.f.d.730.6 yes 24 99.92 odd 30
891.2.n.j.136.1 48 33.26 odd 10
891.2.n.j.190.1 48 9.5 odd 6
891.2.n.j.433.6 48 99.59 odd 30
891.2.n.j.784.6 48 3.2 odd 2
891.2.n.k.136.6 48 11.4 even 5 inner
891.2.n.k.190.6 48 9.4 even 3 inner
891.2.n.k.433.1 48 99.4 even 15 inner
891.2.n.k.784.1 48 1.1 even 1 trivial
9801.2.a.cf.1.12 12 99.2 even 30
9801.2.a.cg.1.12 12 99.97 even 15
9801.2.a.ck.1.1 12 99.20 odd 30
9801.2.a.cl.1.1 12 99.79 odd 30