Properties

Label 891.2.n.j.190.1
Level $891$
Weight $2$
Character 891.190
Analytic conductor $7.115$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [891,2,Mod(136,891)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("891.136"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(891, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([20, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,-2,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(6\) over \(\Q(\zeta_{15})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 190.1
Character \(\chi\) \(=\) 891.190
Dual form 891.2.n.j.136.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.40198 - 1.06943i) q^{2} +(3.28758 + 3.65123i) q^{4} +(0.218849 - 0.0974376i) q^{5} +(1.15992 - 0.246548i) q^{7} +(-2.36698 - 7.28482i) q^{8} -0.629874 q^{10} +(0.139567 + 3.31369i) q^{11} +(0.631037 + 6.00392i) q^{13} +(-3.04977 - 0.648249i) q^{14} +(-1.07803 + 10.2567i) q^{16} +(-1.48403 - 1.07821i) q^{17} +(-1.00736 - 3.10034i) q^{19} +(1.07525 + 0.478732i) q^{20} +(3.20853 - 8.10868i) q^{22} +(-2.77520 + 4.80679i) q^{23} +(-3.30725 + 3.67308i) q^{25} +(4.90504 - 15.0962i) q^{26} +(4.71353 + 3.42458i) q^{28} +(6.08908 - 1.29427i) q^{29} +(-0.413671 - 3.93582i) q^{31} +(5.89858 - 10.2166i) q^{32} +(2.41154 + 4.17691i) q^{34} +(0.229824 - 0.166977i) q^{35} +(-1.67897 + 5.16733i) q^{37} +(-0.895937 + 8.52427i) q^{38} +(-1.22783 - 1.36364i) q^{40} +(-10.4325 - 2.21749i) q^{41} +(-6.07195 - 10.5169i) q^{43} +(-11.6402 + 11.4036i) q^{44} +(11.8065 - 8.57795i) q^{46} +(-1.10724 + 1.22972i) q^{47} +(-5.11019 + 2.27520i) q^{49} +(11.8721 - 5.28579i) q^{50} +(-19.8471 + 22.0424i) q^{52} +(-6.99142 + 5.07956i) q^{53} +(0.353422 + 0.711596i) q^{55} +(-4.54157 - 7.86622i) q^{56} +(-16.0100 - 3.40303i) q^{58} +(2.62823 + 2.91894i) q^{59} +(1.12116 - 10.6671i) q^{61} +(-3.21546 + 9.89616i) q^{62} +(-8.40715 + 6.10815i) q^{64} +(0.723109 + 1.25246i) q^{65} +(-4.61051 + 7.98564i) q^{67} +(-0.942072 - 8.96322i) q^{68} +(-0.730603 + 0.155294i) q^{70} +(5.77707 + 4.19728i) q^{71} +(-0.172710 + 0.531546i) q^{73} +(9.55896 - 10.6163i) q^{74} +(8.00827 - 13.8707i) q^{76} +(0.978871 + 3.80920i) q^{77} +(4.04058 + 1.79898i) q^{79} +(0.763468 + 2.34971i) q^{80} +(22.6872 + 16.4832i) q^{82} +(-1.61172 + 15.3345i) q^{83} +(-0.429835 - 0.0913643i) q^{85} +(3.33759 + 31.7550i) q^{86} +(23.8092 - 8.86015i) q^{88} +0.0625956 q^{89} +(2.21221 + 6.80848i) q^{91} +(-26.6744 + 5.66982i) q^{92} +(3.97468 - 1.76964i) q^{94} +(-0.522549 - 0.580350i) q^{95} +(5.56631 + 2.47828i) q^{97} +14.7078 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{2} + 8 q^{4} + 4 q^{5} - 7 q^{7} - 20 q^{8} - 32 q^{10} + 5 q^{11} - 7 q^{13} + 13 q^{14} - 2 q^{16} + 10 q^{17} + 8 q^{19} + 27 q^{20} + 2 q^{22} + 6 q^{23} + 2 q^{25} + 68 q^{26} - 18 q^{28}+ \cdots - 136 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.40198 1.06943i −1.69846 0.756203i −0.999143 0.0413904i \(-0.986821\pi\)
−0.699316 0.714812i \(-0.746512\pi\)
\(3\) 0 0
\(4\) 3.28758 + 3.65123i 1.64379 + 1.82561i
\(5\) 0.218849 0.0974376i 0.0978720 0.0435754i −0.357217 0.934022i \(-0.616274\pi\)
0.455089 + 0.890446i \(0.349608\pi\)
\(6\) 0 0
\(7\) 1.15992 0.246548i 0.438408 0.0931865i 0.0165805 0.999863i \(-0.494722\pi\)
0.421828 + 0.906676i \(0.361389\pi\)
\(8\) −2.36698 7.28482i −0.836854 2.57557i
\(9\) 0 0
\(10\) −0.629874 −0.199184
\(11\) 0.139567 + 3.31369i 0.0420811 + 0.999114i
\(12\) 0 0
\(13\) 0.631037 + 6.00392i 0.175018 + 1.66519i 0.631441 + 0.775424i \(0.282464\pi\)
−0.456423 + 0.889763i \(0.650869\pi\)
\(14\) −3.04977 0.648249i −0.815086 0.173252i
\(15\) 0 0
\(16\) −1.07803 + 10.2567i −0.269507 + 2.56419i
\(17\) −1.48403 1.07821i −0.359929 0.261504i 0.393093 0.919499i \(-0.371405\pi\)
−0.753023 + 0.657995i \(0.771405\pi\)
\(18\) 0 0
\(19\) −1.00736 3.10034i −0.231105 0.711267i −0.997614 0.0690339i \(-0.978008\pi\)
0.766510 0.642233i \(-0.221992\pi\)
\(20\) 1.07525 + 0.478732i 0.240433 + 0.107048i
\(21\) 0 0
\(22\) 3.20853 8.10868i 0.684060 1.72878i
\(23\) −2.77520 + 4.80679i −0.578670 + 1.00229i 0.416963 + 0.908924i \(0.363095\pi\)
−0.995632 + 0.0933616i \(0.970239\pi\)
\(24\) 0 0
\(25\) −3.30725 + 3.67308i −0.661450 + 0.734615i
\(26\) 4.90504 15.0962i 0.961958 2.96060i
\(27\) 0 0
\(28\) 4.71353 + 3.42458i 0.890774 + 0.647185i
\(29\) 6.08908 1.29427i 1.13071 0.240341i 0.395691 0.918384i \(-0.370505\pi\)
0.735022 + 0.678043i \(0.237172\pi\)
\(30\) 0 0
\(31\) −0.413671 3.93582i −0.0742975 0.706893i −0.966745 0.255742i \(-0.917680\pi\)
0.892448 0.451151i \(-0.148986\pi\)
\(32\) 5.89858 10.2166i 1.04273 1.80607i
\(33\) 0 0
\(34\) 2.41154 + 4.17691i 0.413575 + 0.716333i
\(35\) 0.229824 0.166977i 0.0388473 0.0282242i
\(36\) 0 0
\(37\) −1.67897 + 5.16733i −0.276020 + 0.849504i 0.712927 + 0.701238i \(0.247369\pi\)
−0.988948 + 0.148265i \(0.952631\pi\)
\(38\) −0.895937 + 8.52427i −0.145340 + 1.38282i
\(39\) 0 0
\(40\) −1.22783 1.36364i −0.194136 0.215610i
\(41\) −10.4325 2.21749i −1.62928 0.346313i −0.699556 0.714578i \(-0.746619\pi\)
−0.929721 + 0.368265i \(0.879952\pi\)
\(42\) 0 0
\(43\) −6.07195 10.5169i −0.925964 1.60382i −0.790003 0.613103i \(-0.789921\pi\)
−0.135961 0.990714i \(-0.543412\pi\)
\(44\) −11.6402 + 11.4036i −1.75482 + 1.71916i
\(45\) 0 0
\(46\) 11.8065 8.57795i 1.74078 1.26475i
\(47\) −1.10724 + 1.22972i −0.161508 + 0.179373i −0.818467 0.574553i \(-0.805176\pi\)
0.656959 + 0.753926i \(0.271842\pi\)
\(48\) 0 0
\(49\) −5.11019 + 2.27520i −0.730027 + 0.325029i
\(50\) 11.8721 5.28579i 1.67896 0.747523i
\(51\) 0 0
\(52\) −19.8471 + 22.0424i −2.75230 + 3.05673i
\(53\) −6.99142 + 5.07956i −0.960345 + 0.697732i −0.953231 0.302243i \(-0.902265\pi\)
−0.00711436 + 0.999975i \(0.502265\pi\)
\(54\) 0 0
\(55\) 0.353422 + 0.711596i 0.0476554 + 0.0959516i
\(56\) −4.54157 7.86622i −0.606892 1.05117i
\(57\) 0 0
\(58\) −16.0100 3.40303i −2.10222 0.446840i
\(59\) 2.62823 + 2.91894i 0.342166 + 0.380014i 0.889527 0.456883i \(-0.151034\pi\)
−0.547361 + 0.836897i \(0.684367\pi\)
\(60\) 0 0
\(61\) 1.12116 10.6671i 0.143550 1.36579i −0.651227 0.758883i \(-0.725745\pi\)
0.794777 0.606902i \(-0.207588\pi\)
\(62\) −3.21546 + 9.89616i −0.408364 + 1.25681i
\(63\) 0 0
\(64\) −8.40715 + 6.10815i −1.05089 + 0.763519i
\(65\) 0.723109 + 1.25246i 0.0896907 + 0.155349i
\(66\) 0 0
\(67\) −4.61051 + 7.98564i −0.563263 + 0.975601i 0.433946 + 0.900939i \(0.357121\pi\)
−0.997209 + 0.0746617i \(0.976212\pi\)
\(68\) −0.942072 8.96322i −0.114243 1.08695i
\(69\) 0 0
\(70\) −0.730603 + 0.155294i −0.0873237 + 0.0185612i
\(71\) 5.77707 + 4.19728i 0.685612 + 0.498126i 0.875215 0.483735i \(-0.160720\pi\)
−0.189603 + 0.981861i \(0.560720\pi\)
\(72\) 0 0
\(73\) −0.172710 + 0.531546i −0.0202141 + 0.0622127i −0.960655 0.277745i \(-0.910413\pi\)
0.940441 + 0.339958i \(0.110413\pi\)
\(74\) 9.55896 10.6163i 1.11121 1.23412i
\(75\) 0 0
\(76\) 8.00827 13.8707i 0.918611 1.59108i
\(77\) 0.978871 + 3.80920i 0.111553 + 0.434098i
\(78\) 0 0
\(79\) 4.04058 + 1.79898i 0.454601 + 0.202401i 0.621246 0.783616i \(-0.286627\pi\)
−0.166645 + 0.986017i \(0.553293\pi\)
\(80\) 0.763468 + 2.34971i 0.0853583 + 0.262706i
\(81\) 0 0
\(82\) 22.6872 + 16.4832i 2.50538 + 1.82026i
\(83\) −1.61172 + 15.3345i −0.176909 + 1.68318i 0.441455 + 0.897284i \(0.354463\pi\)
−0.618364 + 0.785892i \(0.712204\pi\)
\(84\) 0 0
\(85\) −0.429835 0.0913643i −0.0466222 0.00990985i
\(86\) 3.33759 + 31.7550i 0.359902 + 3.42423i
\(87\) 0 0
\(88\) 23.8092 8.86015i 2.53807 0.944495i
\(89\) 0.0625956 0.00663512 0.00331756 0.999994i \(-0.498944\pi\)
0.00331756 + 0.999994i \(0.498944\pi\)
\(90\) 0 0
\(91\) 2.21221 + 6.80848i 0.231902 + 0.713722i
\(92\) −26.6744 + 5.66982i −2.78100 + 0.591119i
\(93\) 0 0
\(94\) 3.97468 1.76964i 0.409957 0.182525i
\(95\) −0.522549 0.580350i −0.0536124 0.0595426i
\(96\) 0 0
\(97\) 5.56631 + 2.47828i 0.565173 + 0.251631i 0.669375 0.742925i \(-0.266562\pi\)
−0.104202 + 0.994556i \(0.533229\pi\)
\(98\) 14.7078 1.48571
\(99\) 0 0
\(100\) −24.2841 −2.42841
\(101\) 13.9385 + 6.20580i 1.38693 + 0.617500i 0.958243 0.285954i \(-0.0923106\pi\)
0.428684 + 0.903454i \(0.358977\pi\)
\(102\) 0 0
\(103\) 8.36177 + 9.28669i 0.823910 + 0.915045i 0.997564 0.0697622i \(-0.0222240\pi\)
−0.173654 + 0.984807i \(0.555557\pi\)
\(104\) 42.2438 18.8081i 4.14234 1.84429i
\(105\) 0 0
\(106\) 22.2255 4.72418i 2.15873 0.458853i
\(107\) −3.33446 10.2624i −0.322354 0.992105i −0.972621 0.232399i \(-0.925343\pi\)
0.650266 0.759706i \(-0.274657\pi\)
\(108\) 0 0
\(109\) −5.16947 −0.495146 −0.247573 0.968869i \(-0.579633\pi\)
−0.247573 + 0.968869i \(0.579633\pi\)
\(110\) −0.0879096 2.08720i −0.00838186 0.199007i
\(111\) 0 0
\(112\) 1.27836 + 12.1628i 0.120794 + 1.14927i
\(113\) 1.99341 + 0.423712i 0.187524 + 0.0398594i 0.300716 0.953714i \(-0.402774\pi\)
−0.113192 + 0.993573i \(0.536108\pi\)
\(114\) 0 0
\(115\) −0.138987 + 1.32237i −0.0129606 + 0.123311i
\(116\) 24.7440 + 17.9776i 2.29743 + 1.66918i
\(117\) 0 0
\(118\) −3.19135 9.82197i −0.293788 0.904185i
\(119\) −1.98718 0.884750i −0.182165 0.0811049i
\(120\) 0 0
\(121\) −10.9610 + 0.924963i −0.996458 + 0.0840876i
\(122\) −14.1008 + 24.4233i −1.27662 + 2.21118i
\(123\) 0 0
\(124\) 13.0106 14.4497i 1.16839 1.29762i
\(125\) −0.736031 + 2.26527i −0.0658326 + 0.202612i
\(126\) 0 0
\(127\) 0.969141 + 0.704122i 0.0859974 + 0.0624808i 0.629953 0.776633i \(-0.283074\pi\)
−0.543956 + 0.839114i \(0.683074\pi\)
\(128\) 3.64735 0.775267i 0.322383 0.0685246i
\(129\) 0 0
\(130\) −0.397474 3.78171i −0.0348608 0.331678i
\(131\) −2.88350 + 4.99436i −0.251932 + 0.436359i −0.964058 0.265693i \(-0.914399\pi\)
0.712126 + 0.702052i \(0.247733\pi\)
\(132\) 0 0
\(133\) −1.93284 3.34778i −0.167599 0.290289i
\(134\) 19.6145 14.2507i 1.69443 1.23108i
\(135\) 0 0
\(136\) −4.34189 + 13.3630i −0.372314 + 1.14586i
\(137\) 0.0139813 0.133023i 0.00119450 0.0113649i −0.993908 0.110209i \(-0.964848\pi\)
0.995103 + 0.0988443i \(0.0315146\pi\)
\(138\) 0 0
\(139\) 7.45757 + 8.28247i 0.632543 + 0.702510i 0.971164 0.238413i \(-0.0766272\pi\)
−0.338621 + 0.940923i \(0.609961\pi\)
\(140\) 1.36523 + 0.290189i 0.115383 + 0.0245255i
\(141\) 0 0
\(142\) −9.38771 16.2600i −0.787799 1.36451i
\(143\) −19.8070 + 2.92901i −1.65635 + 0.244936i
\(144\) 0 0
\(145\) 1.20647 0.876555i 0.100192 0.0727939i
\(146\) 0.983298 1.09206i 0.0813784 0.0903798i
\(147\) 0 0
\(148\) −24.3868 + 10.8577i −2.00459 + 0.892499i
\(149\) −3.60383 + 1.60453i −0.295237 + 0.131448i −0.549010 0.835816i \(-0.684995\pi\)
0.253773 + 0.967264i \(0.418328\pi\)
\(150\) 0 0
\(151\) −1.79136 + 1.98951i −0.145779 + 0.161904i −0.811612 0.584197i \(-0.801410\pi\)
0.665833 + 0.746101i \(0.268076\pi\)
\(152\) −20.2010 + 14.6769i −1.63852 + 1.19045i
\(153\) 0 0
\(154\) 1.72245 10.1965i 0.138799 0.821655i
\(155\) −0.474028 0.821040i −0.0380748 0.0659476i
\(156\) 0 0
\(157\) 10.4417 + 2.21945i 0.833337 + 0.177131i 0.604773 0.796398i \(-0.293264\pi\)
0.228564 + 0.973529i \(0.426597\pi\)
\(158\) −7.78152 8.64226i −0.619065 0.687541i
\(159\) 0 0
\(160\) 0.295410 2.81064i 0.0233542 0.222201i
\(161\) −2.03390 + 6.25971i −0.160294 + 0.493334i
\(162\) 0 0
\(163\) −5.97347 + 4.33998i −0.467878 + 0.339933i −0.796614 0.604489i \(-0.793378\pi\)
0.328736 + 0.944422i \(0.393378\pi\)
\(164\) −26.2010 45.3815i −2.04596 3.54370i
\(165\) 0 0
\(166\) 20.2705 35.1095i 1.57329 2.72503i
\(167\) −1.07893 10.2653i −0.0834900 0.794354i −0.953515 0.301346i \(-0.902564\pi\)
0.870025 0.493008i \(-0.164103\pi\)
\(168\) 0 0
\(169\) −22.9329 + 4.87454i −1.76407 + 0.374964i
\(170\) 0.934749 + 0.679135i 0.0716920 + 0.0520873i
\(171\) 0 0
\(172\) 18.4377 56.7454i 1.40586 4.32679i
\(173\) −10.7537 + 11.9432i −0.817587 + 0.908022i −0.997129 0.0757281i \(-0.975872\pi\)
0.179542 + 0.983750i \(0.442539\pi\)
\(174\) 0 0
\(175\) −2.93055 + 5.07587i −0.221529 + 0.383700i
\(176\) −34.1381 2.14074i −2.57325 0.161364i
\(177\) 0 0
\(178\) −0.150354 0.0669418i −0.0112695 0.00501750i
\(179\) 1.14818 + 3.53374i 0.0858191 + 0.264124i 0.984752 0.173961i \(-0.0556568\pi\)
−0.898933 + 0.438085i \(0.855657\pi\)
\(180\) 0 0
\(181\) 12.2247 + 8.88174i 0.908652 + 0.660174i 0.940674 0.339313i \(-0.110195\pi\)
−0.0320216 + 0.999487i \(0.510195\pi\)
\(182\) 1.96752 18.7197i 0.145842 1.38759i
\(183\) 0 0
\(184\) 41.5854 + 8.83926i 3.06572 + 0.651639i
\(185\) 0.136053 + 1.29446i 0.0100028 + 0.0951704i
\(186\) 0 0
\(187\) 3.36572 5.06808i 0.246126 0.370615i
\(188\) −8.13014 −0.592951
\(189\) 0 0
\(190\) 0.634510 + 1.95282i 0.0460322 + 0.141673i
\(191\) 11.7220 2.49159i 0.848176 0.180285i 0.236734 0.971575i \(-0.423923\pi\)
0.611442 + 0.791289i \(0.290590\pi\)
\(192\) 0 0
\(193\) −20.5852 + 9.16514i −1.48176 + 0.659721i −0.978843 0.204615i \(-0.934406\pi\)
−0.502915 + 0.864336i \(0.667739\pi\)
\(194\) −10.7198 11.9056i −0.769640 0.854771i
\(195\) 0 0
\(196\) −25.1075 11.1786i −1.79339 0.798469i
\(197\) 9.95308 0.709127 0.354564 0.935032i \(-0.384629\pi\)
0.354564 + 0.935032i \(0.384629\pi\)
\(198\) 0 0
\(199\) −15.5617 −1.10314 −0.551570 0.834128i \(-0.685971\pi\)
−0.551570 + 0.834128i \(0.685971\pi\)
\(200\) 34.5859 + 15.3986i 2.44559 + 1.08885i
\(201\) 0 0
\(202\) −26.8433 29.8125i −1.88869 2.09760i
\(203\) 6.74374 3.00250i 0.473317 0.210735i
\(204\) 0 0
\(205\) −2.49920 + 0.531220i −0.174551 + 0.0371020i
\(206\) −10.1534 31.2488i −0.707418 2.17721i
\(207\) 0 0
\(208\) −62.2609 −4.31702
\(209\) 10.1330 3.77078i 0.700911 0.260831i
\(210\) 0 0
\(211\) 0.250333 + 2.38176i 0.0172337 + 0.163967i 0.999754 0.0221891i \(-0.00706358\pi\)
−0.982520 + 0.186156i \(0.940397\pi\)
\(212\) −41.5315 8.82779i −2.85240 0.606295i
\(213\) 0 0
\(214\) −2.96564 + 28.2161i −0.202727 + 1.92882i
\(215\) −2.35358 1.70998i −0.160513 0.116620i
\(216\) 0 0
\(217\) −1.45019 4.46324i −0.0984456 0.302984i
\(218\) 12.4170 + 5.52840i 0.840985 + 0.374430i
\(219\) 0 0
\(220\) −1.43630 + 3.62986i −0.0968352 + 0.244725i
\(221\) 5.53700 9.59036i 0.372459 0.645118i
\(222\) 0 0
\(223\) 8.68791 9.64890i 0.581785 0.646138i −0.378354 0.925661i \(-0.623510\pi\)
0.960139 + 0.279523i \(0.0901763\pi\)
\(224\) 4.32298 13.3048i 0.288841 0.888962i
\(225\) 0 0
\(226\) −4.33500 3.14956i −0.288360 0.209506i
\(227\) 18.0474 3.83610i 1.19785 0.254611i 0.434546 0.900650i \(-0.356909\pi\)
0.763305 + 0.646039i \(0.223576\pi\)
\(228\) 0 0
\(229\) −2.10518 20.0294i −0.139114 1.32358i −0.811922 0.583765i \(-0.801579\pi\)
0.672808 0.739817i \(-0.265088\pi\)
\(230\) 1.74803 3.02767i 0.115261 0.199639i
\(231\) 0 0
\(232\) −23.8413 41.2943i −1.56526 2.71110i
\(233\) −5.95367 + 4.32560i −0.390038 + 0.283379i −0.765471 0.643470i \(-0.777494\pi\)
0.375433 + 0.926850i \(0.377494\pi\)
\(234\) 0 0
\(235\) −0.122498 + 0.377009i −0.00799087 + 0.0245934i
\(236\) −2.01722 + 19.1925i −0.131310 + 1.24933i
\(237\) 0 0
\(238\) 3.82700 + 4.25031i 0.248067 + 0.275507i
\(239\) 9.41547 + 2.00132i 0.609036 + 0.129455i 0.502098 0.864811i \(-0.332562\pi\)
0.106939 + 0.994266i \(0.465895\pi\)
\(240\) 0 0
\(241\) 13.2816 + 23.0043i 0.855540 + 1.48184i 0.876143 + 0.482052i \(0.160108\pi\)
−0.0206023 + 0.999788i \(0.506558\pi\)
\(242\) 27.3174 + 9.50034i 1.75603 + 0.610705i
\(243\) 0 0
\(244\) 42.6340 30.9754i 2.72936 1.98300i
\(245\) −0.896668 + 0.995850i −0.0572860 + 0.0636225i
\(246\) 0 0
\(247\) 17.9785 8.00454i 1.14394 0.509317i
\(248\) −27.6925 + 12.3295i −1.75848 + 0.782925i
\(249\) 0 0
\(250\) 4.19049 4.65401i 0.265030 0.294345i
\(251\) 20.1137 14.6135i 1.26957 0.922394i 0.270382 0.962753i \(-0.412850\pi\)
0.999185 + 0.0403590i \(0.0128502\pi\)
\(252\) 0 0
\(253\) −16.3155 8.52528i −1.02575 0.535980i
\(254\) −1.57485 2.72772i −0.0988149 0.171152i
\(255\) 0 0
\(256\) 10.7395 + 2.28275i 0.671217 + 0.142672i
\(257\) −8.97309 9.96563i −0.559726 0.621639i 0.395160 0.918612i \(-0.370689\pi\)
−0.954886 + 0.296974i \(0.904023\pi\)
\(258\) 0 0
\(259\) −0.673469 + 6.40763i −0.0418473 + 0.398151i
\(260\) −2.19574 + 6.75781i −0.136174 + 0.419101i
\(261\) 0 0
\(262\) 12.2672 8.91267i 0.757873 0.550627i
\(263\) −0.390951 0.677147i −0.0241071 0.0417546i 0.853720 0.520732i \(-0.174341\pi\)
−0.877827 + 0.478977i \(0.841008\pi\)
\(264\) 0 0
\(265\) −1.03512 + 1.79288i −0.0635870 + 0.110136i
\(266\) 1.06243 + 10.1084i 0.0651418 + 0.619783i
\(267\) 0 0
\(268\) −44.3148 + 9.41940i −2.70696 + 0.575382i
\(269\) −8.62814 6.26871i −0.526067 0.382210i 0.292818 0.956168i \(-0.405407\pi\)
−0.818884 + 0.573958i \(0.805407\pi\)
\(270\) 0 0
\(271\) −7.60141 + 23.3947i −0.461753 + 1.42113i 0.401268 + 0.915961i \(0.368570\pi\)
−0.863021 + 0.505168i \(0.831430\pi\)
\(272\) 12.6587 14.0589i 0.767548 0.852448i
\(273\) 0 0
\(274\) −0.175842 + 0.304567i −0.0106230 + 0.0183996i
\(275\) −12.6330 10.4466i −0.761799 0.629951i
\(276\) 0 0
\(277\) −8.19654 3.64933i −0.492482 0.219267i 0.145441 0.989367i \(-0.453540\pi\)
−0.637924 + 0.770100i \(0.720206\pi\)
\(278\) −9.05542 27.8697i −0.543108 1.67151i
\(279\) 0 0
\(280\) −1.76038 1.27899i −0.105203 0.0764344i
\(281\) 1.74835 16.6345i 0.104298 0.992330i −0.809764 0.586756i \(-0.800405\pi\)
0.914062 0.405574i \(-0.132928\pi\)
\(282\) 0 0
\(283\) 5.72409 + 1.21669i 0.340262 + 0.0723249i 0.374874 0.927076i \(-0.377686\pi\)
−0.0346116 + 0.999401i \(0.511019\pi\)
\(284\) 3.66733 + 34.8923i 0.217616 + 2.07048i
\(285\) 0 0
\(286\) 50.7086 + 14.1468i 2.99846 + 0.836520i
\(287\) −12.6475 −0.746560
\(288\) 0 0
\(289\) −4.21349 12.9678i −0.247852 0.762811i
\(290\) −3.83535 + 0.815229i −0.225219 + 0.0478719i
\(291\) 0 0
\(292\) −2.50859 + 1.11690i −0.146804 + 0.0653615i
\(293\) −10.0255 11.1344i −0.585695 0.650480i 0.375346 0.926885i \(-0.377524\pi\)
−0.961041 + 0.276404i \(0.910857\pi\)
\(294\) 0 0
\(295\) 0.859599 + 0.382718i 0.0500478 + 0.0222827i
\(296\) 41.6171 2.41895
\(297\) 0 0
\(298\) 10.3723 0.600850
\(299\) −30.6108 13.6288i −1.77027 0.788175i
\(300\) 0 0
\(301\) −9.63591 10.7018i −0.555404 0.616839i
\(302\) 6.43047 2.86303i 0.370032 0.164749i
\(303\) 0 0
\(304\) 32.8853 6.98999i 1.88610 0.400904i
\(305\) −0.794015 2.44373i −0.0454652 0.139927i
\(306\) 0 0
\(307\) 6.52424 0.372358 0.186179 0.982516i \(-0.440390\pi\)
0.186179 + 0.982516i \(0.440390\pi\)
\(308\) −10.6901 + 16.0971i −0.609127 + 0.917219i
\(309\) 0 0
\(310\) 0.260560 + 2.47907i 0.0147988 + 0.140802i
\(311\) 14.0999 + 2.99703i 0.799534 + 0.169946i 0.589522 0.807753i \(-0.299316\pi\)
0.210012 + 0.977699i \(0.432650\pi\)
\(312\) 0 0
\(313\) −1.64511 + 15.6522i −0.0929873 + 0.884715i 0.844233 + 0.535977i \(0.180057\pi\)
−0.937220 + 0.348738i \(0.886610\pi\)
\(314\) −22.7072 16.4978i −1.28144 0.931022i
\(315\) 0 0
\(316\) 6.71524 + 20.6674i 0.377762 + 1.16263i
\(317\) −26.7830 11.9245i −1.50428 0.669749i −0.521286 0.853382i \(-0.674547\pi\)
−0.982995 + 0.183633i \(0.941214\pi\)
\(318\) 0 0
\(319\) 5.13865 + 19.9967i 0.287709 + 1.11960i
\(320\) −1.24473 + 2.15593i −0.0695824 + 0.120520i
\(321\) 0 0
\(322\) 11.5797 12.8606i 0.645314 0.716693i
\(323\) −1.84786 + 5.68713i −0.102818 + 0.316440i
\(324\) 0 0
\(325\) −24.1398 17.5386i −1.33904 0.972868i
\(326\) 18.9895 4.03634i 1.05173 0.223552i
\(327\) 0 0
\(328\) 8.53944 + 81.2473i 0.471512 + 4.48613i
\(329\) −0.981128 + 1.69936i −0.0540913 + 0.0936889i
\(330\) 0 0
\(331\) −6.70580 11.6148i −0.368584 0.638407i 0.620760 0.784001i \(-0.286824\pi\)
−0.989344 + 0.145594i \(0.953491\pi\)
\(332\) −61.2883 + 44.5285i −3.36363 + 2.44382i
\(333\) 0 0
\(334\) −8.38649 + 25.8110i −0.458888 + 1.41231i
\(335\) −0.230902 + 2.19688i −0.0126155 + 0.120028i
\(336\) 0 0
\(337\) 8.64664 + 9.60307i 0.471012 + 0.523112i 0.931101 0.364761i \(-0.118849\pi\)
−0.460089 + 0.887873i \(0.652182\pi\)
\(338\) 60.2974 + 12.8166i 3.27975 + 0.697132i
\(339\) 0 0
\(340\) −1.07953 1.86979i −0.0585455 0.101404i
\(341\) 12.9843 1.92009i 0.703141 0.103979i
\(342\) 0 0
\(343\) −12.0820 + 8.77807i −0.652365 + 0.473971i
\(344\) −62.2417 + 69.1264i −3.35585 + 3.72705i
\(345\) 0 0
\(346\) 38.6026 17.1870i 2.07529 0.923977i
\(347\) 31.8790 14.1935i 1.71136 0.761945i 0.713219 0.700941i \(-0.247237\pi\)
0.998138 0.0610035i \(-0.0194301\pi\)
\(348\) 0 0
\(349\) −2.48935 + 2.76470i −0.133252 + 0.147991i −0.806078 0.591810i \(-0.798414\pi\)
0.672826 + 0.739801i \(0.265080\pi\)
\(350\) 12.4674 9.05813i 0.666413 0.484177i
\(351\) 0 0
\(352\) 34.6780 + 18.1202i 1.84834 + 0.965807i
\(353\) −1.97626 3.42298i −0.105186 0.182187i 0.808628 0.588320i \(-0.200210\pi\)
−0.913814 + 0.406133i \(0.866877\pi\)
\(354\) 0 0
\(355\) 1.67328 + 0.355666i 0.0888083 + 0.0188768i
\(356\) 0.205788 + 0.228551i 0.0109068 + 0.0121132i
\(357\) 0 0
\(358\) 1.02118 9.71588i 0.0539711 0.513500i
\(359\) 2.28796 7.04162i 0.120754 0.371643i −0.872350 0.488883i \(-0.837405\pi\)
0.993104 + 0.117240i \(0.0374046\pi\)
\(360\) 0 0
\(361\) 6.77400 4.92160i 0.356526 0.259031i
\(362\) −19.8650 34.4072i −1.04408 1.80840i
\(363\) 0 0
\(364\) −17.5865 + 30.4607i −0.921783 + 1.59657i
\(365\) 0.0139953 + 0.133156i 0.000732548 + 0.00696973i
\(366\) 0 0
\(367\) 24.8605 5.28426i 1.29771 0.275836i 0.493272 0.869875i \(-0.335801\pi\)
0.804436 + 0.594039i \(0.202468\pi\)
\(368\) −46.3103 33.6464i −2.41409 1.75394i
\(369\) 0 0
\(370\) 1.05754 3.25476i 0.0549787 0.169207i
\(371\) −6.85712 + 7.61561i −0.356004 + 0.395383i
\(372\) 0 0
\(373\) 2.38737 4.13505i 0.123614 0.214105i −0.797577 0.603218i \(-0.793885\pi\)
0.921190 + 0.389113i \(0.127218\pi\)
\(374\) −13.5044 + 8.57404i −0.698295 + 0.443353i
\(375\) 0 0
\(376\) 11.5791 + 5.15535i 0.597146 + 0.265867i
\(377\) 11.6131 + 35.7416i 0.598107 + 1.84079i
\(378\) 0 0
\(379\) 14.1162 + 10.2560i 0.725100 + 0.526816i 0.888009 0.459825i \(-0.152088\pi\)
−0.162910 + 0.986641i \(0.552088\pi\)
\(380\) 0.401067 3.81589i 0.0205743 0.195751i
\(381\) 0 0
\(382\) −30.8207 6.55115i −1.57693 0.335186i
\(383\) 0.354156 + 3.36957i 0.0180965 + 0.172177i 0.999837 0.0180477i \(-0.00574507\pi\)
−0.981741 + 0.190225i \(0.939078\pi\)
\(384\) 0 0
\(385\) 0.585384 + 0.738259i 0.0298339 + 0.0376251i
\(386\) 59.2469 3.01559
\(387\) 0 0
\(388\) 9.25093 + 28.4714i 0.469645 + 1.44542i
\(389\) 18.3444 3.89923i 0.930099 0.197699i 0.282139 0.959373i \(-0.408956\pi\)
0.647960 + 0.761675i \(0.275623\pi\)
\(390\) 0 0
\(391\) 9.30120 4.14116i 0.470382 0.209427i
\(392\) 28.6702 + 31.8414i 1.44806 + 1.60824i
\(393\) 0 0
\(394\) −23.9071 10.6441i −1.20442 0.536244i
\(395\) 1.05956 0.0533125
\(396\) 0 0
\(397\) 10.7157 0.537806 0.268903 0.963167i \(-0.413339\pi\)
0.268903 + 0.963167i \(0.413339\pi\)
\(398\) 37.3790 + 16.6422i 1.87364 + 0.834198i
\(399\) 0 0
\(400\) −34.1085 37.8813i −1.70542 1.89407i
\(401\) −2.58776 + 1.15214i −0.129226 + 0.0575353i −0.470331 0.882490i \(-0.655866\pi\)
0.341105 + 0.940025i \(0.389199\pi\)
\(402\) 0 0
\(403\) 23.3693 4.96729i 1.16411 0.247438i
\(404\) 23.1650 + 71.2945i 1.15250 + 3.54704i
\(405\) 0 0
\(406\) −19.4093 −0.963268
\(407\) −17.3572 4.84238i −0.860366 0.240028i
\(408\) 0 0
\(409\) −2.46099 23.4148i −0.121688 1.15779i −0.869520 0.493897i \(-0.835572\pi\)
0.747832 0.663888i \(-0.231095\pi\)
\(410\) 6.57113 + 1.39674i 0.324525 + 0.0689799i
\(411\) 0 0
\(412\) −6.41782 + 61.0615i −0.316183 + 3.00828i
\(413\) 3.76819 + 2.73775i 0.185421 + 0.134716i
\(414\) 0 0
\(415\) 1.14143 + 3.51297i 0.0560307 + 0.172445i
\(416\) 65.0621 + 28.9675i 3.18993 + 1.42025i
\(417\) 0 0
\(418\) −28.3718 1.77915i −1.38771 0.0870209i
\(419\) 10.5587 18.2882i 0.515826 0.893437i −0.484005 0.875065i \(-0.660818\pi\)
0.999831 0.0183715i \(-0.00584817\pi\)
\(420\) 0 0
\(421\) −15.7361 + 17.4767i −0.766930 + 0.851763i −0.992472 0.122471i \(-0.960918\pi\)
0.225542 + 0.974234i \(0.427585\pi\)
\(422\) 1.94584 5.98867i 0.0947218 0.291524i
\(423\) 0 0
\(424\) 53.5522 + 38.9080i 2.60073 + 1.88954i
\(425\) 8.86839 1.88503i 0.430180 0.0914376i
\(426\) 0 0
\(427\) −1.32951 12.6494i −0.0643394 0.612148i
\(428\) 26.5081 45.9134i 1.28132 2.21931i
\(429\) 0 0
\(430\) 3.82456 + 6.62434i 0.184437 + 0.319454i
\(431\) −4.02881 + 2.92710i −0.194061 + 0.140994i −0.680573 0.732680i \(-0.738269\pi\)
0.486512 + 0.873674i \(0.338269\pi\)
\(432\) 0 0
\(433\) −7.90629 + 24.3331i −0.379952 + 1.16937i 0.560124 + 0.828409i \(0.310753\pi\)
−0.940076 + 0.340964i \(0.889247\pi\)
\(434\) −1.28979 + 12.2715i −0.0619118 + 0.589051i
\(435\) 0 0
\(436\) −16.9951 18.8749i −0.813916 0.903945i
\(437\) 17.6983 + 3.76189i 0.846625 + 0.179956i
\(438\) 0 0
\(439\) 2.33003 + 4.03572i 0.111206 + 0.192615i 0.916257 0.400591i \(-0.131195\pi\)
−0.805051 + 0.593206i \(0.797862\pi\)
\(440\) 4.34731 4.25895i 0.207250 0.203037i
\(441\) 0 0
\(442\) −23.5560 + 17.1145i −1.12045 + 0.814052i
\(443\) 15.4728 17.1843i 0.735135 0.816450i −0.253413 0.967358i \(-0.581553\pi\)
0.988548 + 0.150908i \(0.0482198\pi\)
\(444\) 0 0
\(445\) 0.0136990 0.00609917i 0.000649393 0.000289128i
\(446\) −31.1871 + 13.8854i −1.47675 + 0.657492i
\(447\) 0 0
\(448\) −8.24566 + 9.15773i −0.389571 + 0.432662i
\(449\) 11.1354 8.09035i 0.525512 0.381807i −0.293164 0.956062i \(-0.594708\pi\)
0.818676 + 0.574255i \(0.194708\pi\)
\(450\) 0 0
\(451\) 5.89203 34.8794i 0.277445 1.64241i
\(452\) 5.00642 + 8.67137i 0.235482 + 0.407867i
\(453\) 0 0
\(454\) −47.4521 10.0863i −2.22704 0.473372i
\(455\) 1.14754 + 1.27447i 0.0537975 + 0.0597482i
\(456\) 0 0
\(457\) −1.13304 + 10.7801i −0.0530013 + 0.504274i 0.935529 + 0.353250i \(0.114924\pi\)
−0.988530 + 0.151023i \(0.951743\pi\)
\(458\) −16.3635 + 50.3617i −0.764617 + 2.35325i
\(459\) 0 0
\(460\) −5.28520 + 3.83992i −0.246424 + 0.179037i
\(461\) 1.46396 + 2.53565i 0.0681833 + 0.118097i 0.898102 0.439788i \(-0.144946\pi\)
−0.829918 + 0.557885i \(0.811613\pi\)
\(462\) 0 0
\(463\) 13.5417 23.4550i 0.629337 1.09004i −0.358347 0.933588i \(-0.616660\pi\)
0.987685 0.156456i \(-0.0500070\pi\)
\(464\) 6.71084 + 63.8493i 0.311543 + 2.96413i
\(465\) 0 0
\(466\) 18.9266 4.02296i 0.876756 0.186360i
\(467\) −9.14721 6.64584i −0.423282 0.307533i 0.355675 0.934610i \(-0.384251\pi\)
−0.778957 + 0.627077i \(0.784251\pi\)
\(468\) 0 0
\(469\) −3.37897 + 10.3994i −0.156026 + 0.480200i
\(470\) 0.697424 0.774567i 0.0321697 0.0357281i
\(471\) 0 0
\(472\) 15.0430 26.0552i 0.692410 1.19929i
\(473\) 34.0024 21.5884i 1.56343 0.992634i
\(474\) 0 0
\(475\) 14.7194 + 6.55349i 0.675371 + 0.300695i
\(476\) −3.30259 10.1643i −0.151374 0.465882i
\(477\) 0 0
\(478\) −20.4755 14.8764i −0.936530 0.680429i
\(479\) −3.17618 + 30.2193i −0.145123 + 1.38076i 0.643296 + 0.765618i \(0.277567\pi\)
−0.788419 + 0.615138i \(0.789100\pi\)
\(480\) 0 0
\(481\) −32.0837 6.81960i −1.46289 0.310947i
\(482\) −7.30052 69.4598i −0.332529 3.16381i
\(483\) 0 0
\(484\) −39.4126 36.9804i −1.79148 1.68093i
\(485\) 1.45966 0.0662796
\(486\) 0 0
\(487\) −0.988742 3.04303i −0.0448042 0.137893i 0.926152 0.377150i \(-0.123096\pi\)
−0.970956 + 0.239257i \(0.923096\pi\)
\(488\) −80.3618 + 17.0814i −3.63781 + 0.773240i
\(489\) 0 0
\(490\) 3.21878 1.43309i 0.145409 0.0647405i
\(491\) 4.00249 + 4.44522i 0.180630 + 0.200610i 0.826659 0.562703i \(-0.190238\pi\)
−0.646029 + 0.763312i \(0.723572\pi\)
\(492\) 0 0
\(493\) −10.4318 4.64456i −0.469827 0.209180i
\(494\) −51.7444 −2.32809
\(495\) 0 0
\(496\) 40.8146 1.83263
\(497\) 7.73576 + 3.44418i 0.346996 + 0.154493i
\(498\) 0 0
\(499\) 19.6572 + 21.8316i 0.879979 + 0.977316i 0.999880 0.0154701i \(-0.00492449\pi\)
−0.119901 + 0.992786i \(0.538258\pi\)
\(500\) −10.6908 + 4.75985i −0.478107 + 0.212867i
\(501\) 0 0
\(502\) −63.9410 + 13.5911i −2.85382 + 0.606599i
\(503\) 4.45188 + 13.7015i 0.198500 + 0.610919i 0.999918 + 0.0128145i \(0.00407911\pi\)
−0.801418 + 0.598104i \(0.795921\pi\)
\(504\) 0 0
\(505\) 3.65509 0.162649
\(506\) 30.0724 + 37.9259i 1.33688 + 1.68601i
\(507\) 0 0
\(508\) 0.615219 + 5.85342i 0.0272959 + 0.259703i
\(509\) −42.8833 9.11513i −1.90077 0.404021i −0.901200 0.433403i \(-0.857313\pi\)
−0.999568 + 0.0293818i \(0.990646\pi\)
\(510\) 0 0
\(511\) −0.0692775 + 0.659132i −0.00306466 + 0.0291583i
\(512\) −29.3882 21.3518i −1.29879 0.943624i
\(513\) 0 0
\(514\) 10.8957 + 33.5334i 0.480587 + 1.47909i
\(515\) 2.73483 + 1.21763i 0.120511 + 0.0536550i
\(516\) 0 0
\(517\) −4.22944 3.49743i −0.186010 0.153817i
\(518\) 8.47019 14.6708i 0.372159 0.644598i
\(519\) 0 0
\(520\) 7.41237 8.23227i 0.325054 0.361009i
\(521\) −6.23122 + 19.1777i −0.272995 + 0.840191i 0.716748 + 0.697332i \(0.245630\pi\)
−0.989743 + 0.142859i \(0.954370\pi\)
\(522\) 0 0
\(523\) −31.6906 23.0245i −1.38573 1.00679i −0.996318 0.0857293i \(-0.972678\pi\)
−0.389413 0.921063i \(-0.627322\pi\)
\(524\) −27.7153 + 5.89107i −1.21075 + 0.257352i
\(525\) 0 0
\(526\) 0.214895 + 2.04459i 0.00936987 + 0.0891484i
\(527\) −3.62973 + 6.28688i −0.158114 + 0.273861i
\(528\) 0 0
\(529\) −3.90349 6.76105i −0.169717 0.293959i
\(530\) 4.40371 3.19948i 0.191285 0.138977i
\(531\) 0 0
\(532\) 5.86914 18.0633i 0.254459 0.783145i
\(533\) 6.73035 64.0350i 0.291524 2.77366i
\(534\) 0 0
\(535\) −1.72969 1.92101i −0.0747809 0.0830526i
\(536\) 69.0869 + 14.6849i 2.98410 + 0.634290i
\(537\) 0 0
\(538\) 14.0207 + 24.2845i 0.604475 + 1.04698i
\(539\) −8.25253 16.6160i −0.355462 0.715703i
\(540\) 0 0
\(541\) −14.5837 + 10.5957i −0.627002 + 0.455544i −0.855360 0.518034i \(-0.826664\pi\)
0.228358 + 0.973577i \(0.426664\pi\)
\(542\) 43.2776 48.0646i 1.85893 2.06455i
\(543\) 0 0
\(544\) −19.7693 + 8.80187i −0.847603 + 0.377377i
\(545\) −1.13133 + 0.503701i −0.0484609 + 0.0215762i
\(546\) 0 0
\(547\) −0.0599338 + 0.0665633i −0.00256259 + 0.00284604i −0.744425 0.667706i \(-0.767276\pi\)
0.741862 + 0.670552i \(0.233943\pi\)
\(548\) 0.531662 0.386275i 0.0227115 0.0165008i
\(549\) 0 0
\(550\) 19.1724 + 38.6026i 0.817514 + 1.64602i
\(551\) −10.1466 17.5744i −0.432259 0.748695i
\(552\) 0 0
\(553\) 5.13028 + 1.09048i 0.218162 + 0.0463717i
\(554\) 15.7852 + 17.5313i 0.670651 + 0.744833i
\(555\) 0 0
\(556\) −5.72383 + 54.4586i −0.242744 + 2.30956i
\(557\) 0.950270 2.92463i 0.0402642 0.123921i −0.928904 0.370321i \(-0.879248\pi\)
0.969168 + 0.246400i \(0.0792478\pi\)
\(558\) 0 0
\(559\) 59.3112 43.0921i 2.50859 1.82260i
\(560\) 1.46488 + 2.53725i 0.0619024 + 0.107218i
\(561\) 0 0
\(562\) −21.9890 + 38.0860i −0.927548 + 1.60656i
\(563\) 1.86208 + 17.7165i 0.0784773 + 0.746662i 0.961029 + 0.276447i \(0.0891570\pi\)
−0.882552 + 0.470215i \(0.844176\pi\)
\(564\) 0 0
\(565\) 0.477540 0.101504i 0.0200902 0.00427031i
\(566\) −12.4480 9.04401i −0.523229 0.380148i
\(567\) 0 0
\(568\) 16.9022 52.0197i 0.709202 2.18270i
\(569\) 2.84313 3.15761i 0.119190 0.132374i −0.680596 0.732658i \(-0.738279\pi\)
0.799787 + 0.600284i \(0.204946\pi\)
\(570\) 0 0
\(571\) 22.5287 39.0208i 0.942795 1.63297i 0.182688 0.983171i \(-0.441520\pi\)
0.760107 0.649798i \(-0.225146\pi\)
\(572\) −75.8117 62.6907i −3.16985 2.62123i
\(573\) 0 0
\(574\) 30.3792 + 13.5257i 1.26800 + 0.564551i
\(575\) −8.47741 26.0908i −0.353533 1.08806i
\(576\) 0 0
\(577\) 12.3578 + 8.97845i 0.514461 + 0.373778i 0.814513 0.580145i \(-0.197004\pi\)
−0.300052 + 0.953923i \(0.597004\pi\)
\(578\) −3.74743 + 35.6544i −0.155873 + 1.48303i
\(579\) 0 0
\(580\) 7.16689 + 1.52337i 0.297589 + 0.0632545i
\(581\) 1.91123 + 18.1841i 0.0792910 + 0.754404i
\(582\) 0 0
\(583\) −17.8079 22.4584i −0.737526 0.930133i
\(584\) 4.28101 0.177150
\(585\) 0 0
\(586\) 12.1735 + 37.4663i 0.502884 + 1.54772i
\(587\) −41.6554 + 8.85413i −1.71930 + 0.365449i −0.958843 0.283936i \(-0.908360\pi\)
−0.760460 + 0.649385i \(0.775026\pi\)
\(588\) 0 0
\(589\) −11.7856 + 5.24731i −0.485619 + 0.216212i
\(590\) −1.65545 1.83857i −0.0681539 0.0756925i
\(591\) 0 0
\(592\) −51.1900 22.7912i −2.10389 0.936714i
\(593\) 10.6230 0.436236 0.218118 0.975922i \(-0.430008\pi\)
0.218118 + 0.975922i \(0.430008\pi\)
\(594\) 0 0
\(595\) −0.521100 −0.0213630
\(596\) −17.7064 7.88339i −0.725282 0.322916i
\(597\) 0 0
\(598\) 58.9516 + 65.4724i 2.41071 + 2.67737i
\(599\) −31.7620 + 14.1414i −1.29776 + 0.577801i −0.935187 0.354154i \(-0.884769\pi\)
−0.362575 + 0.931955i \(0.618102\pi\)
\(600\) 0 0
\(601\) −8.88904 + 1.88942i −0.362592 + 0.0770712i −0.385605 0.922664i \(-0.626007\pi\)
0.0230134 + 0.999735i \(0.492674\pi\)
\(602\) 11.7005 + 36.0104i 0.476876 + 1.46767i
\(603\) 0 0
\(604\) −13.1534 −0.535204
\(605\) −2.30868 + 1.27045i −0.0938613 + 0.0516509i
\(606\) 0 0
\(607\) 1.63024 + 15.5107i 0.0661696 + 0.629561i 0.976476 + 0.215626i \(0.0691793\pi\)
−0.910306 + 0.413935i \(0.864154\pi\)
\(608\) −37.6171 7.99576i −1.52557 0.324271i
\(609\) 0 0
\(610\) −0.706189 + 6.71894i −0.0285928 + 0.272042i
\(611\) −8.08184 5.87180i −0.326956 0.237548i
\(612\) 0 0
\(613\) −8.59141 26.4417i −0.347004 1.06797i −0.960502 0.278272i \(-0.910238\pi\)
0.613498 0.789696i \(-0.289762\pi\)
\(614\) −15.6711 6.97723i −0.632435 0.281578i
\(615\) 0 0
\(616\) 25.4323 16.1472i 1.02470 0.650589i
\(617\) −4.01690 + 6.95747i −0.161714 + 0.280097i −0.935484 0.353370i \(-0.885036\pi\)
0.773769 + 0.633467i \(0.218369\pi\)
\(618\) 0 0
\(619\) 2.40894 2.67540i 0.0968236 0.107533i −0.692785 0.721144i \(-0.743617\pi\)
0.789609 + 0.613610i \(0.210283\pi\)
\(620\) 1.43940 4.43002i 0.0578078 0.177914i
\(621\) 0 0
\(622\) −30.6627 22.2777i −1.22946 0.893256i
\(623\) 0.0726059 0.0154329i 0.00290889 0.000618304i
\(624\) 0 0
\(625\) −2.52357 24.0102i −0.100943 0.960408i
\(626\) 20.6905 35.8370i 0.826959 1.43234i
\(627\) 0 0
\(628\) 26.2242 + 45.4216i 1.04646 + 1.81252i
\(629\) 8.06309 5.85818i 0.321496 0.233581i
\(630\) 0 0
\(631\) −6.25432 + 19.2488i −0.248981 + 0.766283i 0.745976 + 0.665973i \(0.231984\pi\)
−0.994956 + 0.100310i \(0.968016\pi\)
\(632\) 3.54128 33.6931i 0.140865 1.34024i
\(633\) 0 0
\(634\) 51.5797 + 57.2851i 2.04849 + 2.27508i
\(635\) 0.280703 + 0.0596653i 0.0111394 + 0.00236775i
\(636\) 0 0
\(637\) −16.8849 29.2454i −0.669002 1.15875i
\(638\) 9.04211 53.5271i 0.357981 2.11916i
\(639\) 0 0
\(640\) 0.722676 0.525055i 0.0285663 0.0207546i
\(641\) −18.6545 + 20.7179i −0.736809 + 0.818310i −0.988773 0.149427i \(-0.952257\pi\)
0.251963 + 0.967737i \(0.418924\pi\)
\(642\) 0 0
\(643\) 0.0817314 0.0363892i 0.00322317 0.00143505i −0.405124 0.914262i \(-0.632772\pi\)
0.408348 + 0.912827i \(0.366105\pi\)
\(644\) −29.5423 + 13.1531i −1.16413 + 0.518303i
\(645\) 0 0
\(646\) 10.5205 11.6842i 0.413925 0.459710i
\(647\) 38.1698 27.7320i 1.50061 1.09026i 0.530473 0.847702i \(-0.322014\pi\)
0.970137 0.242556i \(-0.0779857\pi\)
\(648\) 0 0
\(649\) −9.30565 + 9.11651i −0.365279 + 0.357854i
\(650\) 39.2272 + 67.9434i 1.53862 + 2.66496i
\(651\) 0 0
\(652\) −35.4845 7.54247i −1.38968 0.295386i
\(653\) 11.5631 + 12.8421i 0.452499 + 0.502551i 0.925624 0.378444i \(-0.123541\pi\)
−0.473125 + 0.880995i \(0.656874\pi\)
\(654\) 0 0
\(655\) −0.144410 + 1.37397i −0.00564257 + 0.0536854i
\(656\) 33.9907 104.613i 1.32711 4.08443i
\(657\) 0 0
\(658\) 4.17401 3.03259i 0.162720 0.118223i
\(659\) 6.04319 + 10.4671i 0.235409 + 0.407741i 0.959391 0.282078i \(-0.0910237\pi\)
−0.723982 + 0.689818i \(0.757690\pi\)
\(660\) 0 0
\(661\) −19.2915 + 33.4139i −0.750353 + 1.29965i 0.197299 + 0.980343i \(0.436783\pi\)
−0.947652 + 0.319306i \(0.896550\pi\)
\(662\) 3.68600 + 35.0700i 0.143260 + 1.36303i
\(663\) 0 0
\(664\) 115.524 24.5553i 4.48319 0.952931i
\(665\) −0.749199 0.544325i −0.0290527 0.0211080i
\(666\) 0 0
\(667\) −10.6771 + 32.8608i −0.413420 + 1.27237i
\(668\) 33.9340 37.6875i 1.31294 1.45817i
\(669\) 0 0
\(670\) 2.90404 5.02994i 0.112193 0.194324i
\(671\) 35.5040 + 2.22639i 1.37062 + 0.0859490i
\(672\) 0 0
\(673\) 26.3490 + 11.7313i 1.01568 + 0.452210i 0.845940 0.533279i \(-0.179040\pi\)
0.169741 + 0.985489i \(0.445707\pi\)
\(674\) −10.4993 32.3134i −0.404416 1.24467i
\(675\) 0 0
\(676\) −93.1918 67.7078i −3.58430 2.60415i
\(677\) 0.736623 7.00850i 0.0283107 0.269359i −0.971205 0.238245i \(-0.923428\pi\)
0.999516 0.0311137i \(-0.00990540\pi\)
\(678\) 0 0
\(679\) 7.06749 + 1.50224i 0.271225 + 0.0576507i
\(680\) 0.351839 + 3.34753i 0.0134924 + 0.128372i
\(681\) 0 0
\(682\) −33.2416 9.27384i −1.27288 0.355114i
\(683\) 32.5733 1.24638 0.623191 0.782070i \(-0.285836\pi\)
0.623191 + 0.782070i \(0.285836\pi\)
\(684\) 0 0
\(685\) −0.00990166 0.0304742i −0.000378323 0.00116436i
\(686\) 38.4082 8.16393i 1.46643 0.311700i
\(687\) 0 0
\(688\) 114.415 50.9409i 4.36204 1.94210i
\(689\) −34.9091 38.7705i −1.32993 1.47704i
\(690\) 0 0
\(691\) 39.4477 + 17.5632i 1.50066 + 0.668137i 0.982349 0.187055i \(-0.0598942\pi\)
0.518311 + 0.855192i \(0.326561\pi\)
\(692\) −78.9608 −3.00164
\(693\) 0 0
\(694\) −91.7519 −3.48285
\(695\) 2.43910 + 1.08596i 0.0925204 + 0.0411927i
\(696\) 0 0
\(697\) 13.0911 + 14.5392i 0.495862 + 0.550711i
\(698\) 8.93604 3.97858i 0.338234 0.150592i
\(699\) 0 0
\(700\) −28.1676 + 5.98721i −1.06463 + 0.226295i
\(701\) 8.39620 + 25.8408i 0.317120 + 0.975995i 0.974873 + 0.222761i \(0.0715070\pi\)
−0.657753 + 0.753234i \(0.728493\pi\)
\(702\) 0 0
\(703\) 17.7118 0.668013
\(704\) −21.4139 27.0062i −0.807065 1.01783i
\(705\) 0 0
\(706\) 1.08630 + 10.3354i 0.0408833 + 0.388979i
\(707\) 17.6975 + 3.76172i 0.665583 + 0.141474i
\(708\) 0 0
\(709\) 2.24331 21.3437i 0.0842493 0.801578i −0.868063 0.496454i \(-0.834635\pi\)
0.952312 0.305125i \(-0.0986981\pi\)
\(710\) −3.63882 2.64376i −0.136563 0.0992185i
\(711\) 0 0
\(712\) −0.148163 0.455998i −0.00555263 0.0170892i
\(713\) 20.0667 + 8.93426i 0.751503 + 0.334590i
\(714\) 0 0
\(715\) −4.04934 + 2.57096i −0.151437 + 0.0961484i
\(716\) −9.12775 + 15.8097i −0.341120 + 0.590837i
\(717\) 0 0
\(718\) −13.0262 + 14.4670i −0.486133 + 0.539905i
\(719\) 5.61293 17.2748i 0.209327 0.644242i −0.790181 0.612874i \(-0.790013\pi\)
0.999508 0.0313684i \(-0.00998651\pi\)
\(720\) 0 0
\(721\) 11.9886 + 8.71023i 0.446479 + 0.324386i
\(722\) −21.5343 + 4.57727i −0.801426 + 0.170348i
\(723\) 0 0
\(724\) 7.76032 + 73.8345i 0.288410 + 2.74404i
\(725\) −15.3842 + 26.6461i −0.571353 + 0.989612i
\(726\) 0 0
\(727\) 12.7753 + 22.1275i 0.473810 + 0.820662i 0.999550 0.0299825i \(-0.00954516\pi\)
−0.525741 + 0.850645i \(0.676212\pi\)
\(728\) 44.3622 32.2311i 1.64417 1.19456i
\(729\) 0 0
\(730\) 0.108785 0.334807i 0.00402633 0.0123918i
\(731\) −2.32850 + 22.1542i −0.0861228 + 0.819404i
\(732\) 0 0
\(733\) −27.2582 30.2734i −1.00681 1.11817i −0.992982 0.118267i \(-0.962266\pi\)
−0.0138245 0.999904i \(-0.504401\pi\)
\(734\) −65.3657 13.8939i −2.41269 0.512834i
\(735\) 0 0
\(736\) 32.7395 + 56.7065i 1.20679 + 2.09023i
\(737\) −27.1054 14.1633i −0.998439 0.521710i
\(738\) 0 0
\(739\) 25.9774 18.8737i 0.955596 0.694281i 0.00347186 0.999994i \(-0.498895\pi\)
0.952124 + 0.305713i \(0.0988949\pi\)
\(740\) −4.27907 + 4.75239i −0.157302 + 0.174701i
\(741\) 0 0
\(742\) 24.6151 10.9593i 0.903648 0.402330i
\(743\) −16.4094 + 7.30594i −0.602003 + 0.268029i −0.685026 0.728519i \(-0.740209\pi\)
0.0830233 + 0.996548i \(0.473542\pi\)
\(744\) 0 0
\(745\) −0.632352 + 0.702298i −0.0231676 + 0.0257302i
\(746\) −10.1566 + 7.37920i −0.371859 + 0.270172i
\(747\) 0 0
\(748\) 29.5698 4.37270i 1.08118 0.159882i
\(749\) −6.39789 11.0815i −0.233774 0.404908i
\(750\) 0 0
\(751\) 24.3399 + 5.17361i 0.888176 + 0.188788i 0.629337 0.777133i \(-0.283327\pi\)
0.258839 + 0.965920i \(0.416660\pi\)
\(752\) −11.4193 12.6824i −0.416418 0.462479i
\(753\) 0 0
\(754\) 10.3286 98.2702i 0.376146 3.57879i
\(755\) −0.198184 + 0.609947i −0.00721265 + 0.0221983i
\(756\) 0 0
\(757\) 26.3079 19.1138i 0.956178 0.694704i 0.00391833 0.999992i \(-0.498753\pi\)
0.952260 + 0.305288i \(0.0987528\pi\)
\(758\) −22.9387 39.7311i −0.833173 1.44310i
\(759\) 0 0
\(760\) −2.99088 + 5.18035i −0.108491 + 0.187911i
\(761\) −0.922270 8.77482i −0.0334323 0.318087i −0.998439 0.0558602i \(-0.982210\pi\)
0.965006 0.262227i \(-0.0844568\pi\)
\(762\) 0 0
\(763\) −5.99617 + 1.27452i −0.217076 + 0.0461409i
\(764\) 47.6345 + 34.6085i 1.72336 + 1.25209i
\(765\) 0 0
\(766\) 2.75285 8.47239i 0.0994644 0.306120i
\(767\) −15.8666 + 17.6216i −0.572909 + 0.636280i
\(768\) 0 0
\(769\) 13.4824 23.3523i 0.486189 0.842104i −0.513685 0.857979i \(-0.671720\pi\)
0.999874 + 0.0158750i \(0.00505339\pi\)
\(770\) −0.616565 2.39931i −0.0222195 0.0864653i
\(771\) 0 0
\(772\) −101.140 45.0303i −3.64010 1.62068i
\(773\) 8.24081 + 25.3626i 0.296401 + 0.912230i 0.982747 + 0.184954i \(0.0592138\pi\)
−0.686346 + 0.727276i \(0.740786\pi\)
\(774\) 0 0
\(775\) 15.8247 + 11.4973i 0.568439 + 0.412995i
\(776\) 4.87848 46.4156i 0.175127 1.66622i
\(777\) 0 0
\(778\) −48.2330 10.2522i −1.72924 0.367560i
\(779\) 3.63429 + 34.5780i 0.130212 + 1.23888i
\(780\) 0 0
\(781\) −13.1022 + 19.7292i −0.468833 + 0.705966i
\(782\) −26.7700 −0.957294
\(783\) 0 0
\(784\) −17.8273 54.8666i −0.636688 1.95952i
\(785\) 2.50140 0.531690i 0.0892790 0.0189768i
\(786\) 0 0
\(787\) −15.1150 + 6.72964i −0.538792 + 0.239886i −0.658046 0.752978i \(-0.728617\pi\)
0.119253 + 0.992864i \(0.461950\pi\)
\(788\) 32.7216 + 36.3410i 1.16566 + 1.29459i
\(789\) 0 0
\(790\) −2.54506 1.13313i −0.0905490 0.0403150i
\(791\) 2.41666 0.0859264
\(792\) 0 0
\(793\) 64.7520 2.29941
\(794\) −25.7389 11.4597i −0.913441 0.406690i
\(795\) 0 0
\(796\) −51.1604 56.8194i −1.81333 2.01391i
\(797\) −40.6697 + 18.1073i −1.44059 + 0.641394i −0.970473 0.241209i \(-0.922456\pi\)
−0.470121 + 0.882602i \(0.655790\pi\)
\(798\) 0 0
\(799\) 2.96907 0.631096i 0.105038 0.0223266i
\(800\) 18.0184 + 55.4550i 0.637047 + 1.96063i
\(801\) 0 0
\(802\) 7.44789 0.262994
\(803\) −1.78548 0.498120i −0.0630083 0.0175783i
\(804\) 0 0
\(805\) 0.164815 + 1.56811i 0.00580896 + 0.0552685i
\(806\) −61.4448 13.0605i −2.16430 0.460036i
\(807\) 0 0
\(808\) 12.2161 116.228i 0.429759 4.08889i
\(809\) −39.7013 28.8447i −1.39582 1.01413i −0.995198 0.0978851i \(-0.968792\pi\)
−0.400627 0.916241i \(-0.631208\pi\)
\(810\) 0 0
\(811\) −13.2047 40.6400i −0.463681 1.42706i −0.860634 0.509224i \(-0.829933\pi\)
0.396953 0.917839i \(-0.370067\pi\)
\(812\) 33.1334 + 14.7519i 1.16275 + 0.517692i
\(813\) 0 0
\(814\) 36.5132 + 30.1937i 1.27979 + 1.05829i
\(815\) −0.884408 + 1.53184i −0.0309795 + 0.0536580i
\(816\) 0 0
\(817\) −26.4894 + 29.4195i −0.926747 + 1.02926i
\(818\) −19.1292 + 58.8737i −0.668838 + 2.05847i
\(819\) 0 0
\(820\) −10.1559 7.37871i −0.354660 0.257676i
\(821\) 28.3438 6.02466i 0.989205 0.210262i 0.315229 0.949015i \(-0.397919\pi\)
0.673976 + 0.738753i \(0.264585\pi\)
\(822\) 0 0
\(823\) −2.01003 19.1241i −0.0700652 0.666626i −0.972036 0.234830i \(-0.924547\pi\)
0.901971 0.431796i \(-0.142120\pi\)
\(824\) 47.8597 82.8954i 1.66727 2.88780i
\(825\) 0 0
\(826\) −6.12330 10.6059i −0.213057 0.369025i
\(827\) −35.2773 + 25.6305i −1.22671 + 0.891259i −0.996639 0.0819138i \(-0.973897\pi\)
−0.230074 + 0.973173i \(0.573897\pi\)
\(828\) 0 0
\(829\) 6.68209 20.5654i 0.232078 0.714264i −0.765417 0.643535i \(-0.777467\pi\)
0.997496 0.0707296i \(-0.0225327\pi\)
\(830\) 1.01518 9.65877i 0.0352373 0.335261i
\(831\) 0 0
\(832\) −41.9781 46.6214i −1.45533 1.61630i
\(833\) 10.0368 + 2.13339i 0.347755 + 0.0739175i
\(834\) 0 0
\(835\) −1.23635 2.14142i −0.0427857 0.0741069i
\(836\) 47.0809 + 24.6010i 1.62833 + 0.850843i
\(837\) 0 0
\(838\) −44.9198 + 32.6361i −1.55173 + 1.12740i
\(839\) −14.8571 + 16.5005i −0.512925 + 0.569660i −0.942856 0.333201i \(-0.891871\pi\)
0.429931 + 0.902862i \(0.358538\pi\)
\(840\) 0 0
\(841\) 8.90890 3.96650i 0.307203 0.136776i
\(842\) 56.4880 25.1501i 1.94671 0.866729i
\(843\) 0 0
\(844\) −7.87337 + 8.74426i −0.271012 + 0.300990i
\(845\) −4.54387 + 3.30131i −0.156314 + 0.113569i
\(846\) 0 0
\(847\) −12.4859 + 3.77531i −0.429020 + 0.129721i
\(848\) −44.5628 77.1851i −1.53029 2.65055i
\(849\) 0 0
\(850\) −23.3177 4.95632i −0.799789 0.170000i
\(851\) −20.1788 22.4108i −0.691720 0.768233i
\(852\) 0 0
\(853\) −2.75078 + 26.1720i −0.0941850 + 0.896111i 0.840781 + 0.541375i \(0.182096\pi\)
−0.934966 + 0.354736i \(0.884571\pi\)
\(854\) −10.3342 + 31.8055i −0.353630 + 1.08836i
\(855\) 0 0
\(856\) −66.8672 + 48.5819i −2.28547 + 1.66049i
\(857\) 13.9851 + 24.2229i 0.477721 + 0.827437i 0.999674 0.0255371i \(-0.00812959\pi\)
−0.521953 + 0.852974i \(0.674796\pi\)
\(858\) 0 0
\(859\) −7.69037 + 13.3201i −0.262392 + 0.454476i −0.966877 0.255243i \(-0.917845\pi\)
0.704485 + 0.709719i \(0.251178\pi\)
\(860\) −1.49407 14.2152i −0.0509475 0.484733i
\(861\) 0 0
\(862\) 12.8075 2.72231i 0.436225 0.0927224i
\(863\) 26.5699 + 19.3041i 0.904449 + 0.657121i 0.939605 0.342261i \(-0.111193\pi\)
−0.0351559 + 0.999382i \(0.511193\pi\)
\(864\) 0 0
\(865\) −1.18971 + 3.66156i −0.0404514 + 0.124497i
\(866\) 45.0134 49.9924i 1.52962 1.69881i
\(867\) 0 0
\(868\) 11.5287 19.9682i 0.391309 0.677767i
\(869\) −5.39733 + 13.6403i −0.183092 + 0.462716i
\(870\) 0 0
\(871\) −50.8545 22.6419i −1.72314 0.767191i
\(872\) 12.2360 + 37.6586i 0.414364 + 1.27528i
\(873\) 0 0
\(874\) −38.4880 27.9632i −1.30188 0.945868i
\(875\) −0.295238 + 2.80900i −0.00998086 + 0.0949615i
\(876\) 0 0
\(877\) −48.9243 10.3992i −1.65206 0.351155i −0.714674 0.699457i \(-0.753425\pi\)
−0.937382 + 0.348302i \(0.886758\pi\)
\(878\) −1.28075 12.1855i −0.0432233 0.411242i
\(879\) 0 0
\(880\) −7.67966 + 2.85784i −0.258881 + 0.0963377i
\(881\) −32.0798 −1.08080 −0.540399 0.841409i \(-0.681727\pi\)
−0.540399 + 0.841409i \(0.681727\pi\)
\(882\) 0 0
\(883\) 14.4035 + 44.3294i 0.484716 + 1.49180i 0.832392 + 0.554188i \(0.186971\pi\)
−0.347676 + 0.937615i \(0.613029\pi\)
\(884\) 53.2199 11.3122i 1.78998 0.380472i
\(885\) 0 0
\(886\) −55.5428 + 24.7293i −1.86600 + 0.830796i
\(887\) 19.6390 + 21.8113i 0.659414 + 0.732353i 0.976374 0.216086i \(-0.0693290\pi\)
−0.316961 + 0.948439i \(0.602662\pi\)
\(888\) 0 0
\(889\) 1.29773 + 0.577785i 0.0435243 + 0.0193783i
\(890\) −0.0394273 −0.00132161
\(891\) 0 0
\(892\) 63.7925 2.13593
\(893\) 4.92794 + 2.19406i 0.164907 + 0.0734214i
\(894\) 0 0
\(895\) 0.595597 + 0.661477i 0.0199086 + 0.0221107i
\(896\) 4.03949 1.79849i 0.134950 0.0600835i
\(897\) 0 0
\(898\) −35.3991 + 7.52432i −1.18128 + 0.251090i
\(899\) −7.61290 23.4301i −0.253904 0.781437i
\(900\) 0 0
\(901\) 15.8523 0.528116
\(902\) −51.4537 + 77.4786i −1.71322 + 2.57976i
\(903\) 0 0
\(904\) −1.63169 15.5245i −0.0542693 0.516338i
\(905\) 3.54077 + 0.752613i 0.117699 + 0.0250177i
\(906\) 0 0
\(907\) 2.62571 24.9819i 0.0871852 0.829512i −0.860316 0.509761i \(-0.829734\pi\)
0.947502 0.319751i \(-0.103599\pi\)
\(908\) 73.3389 + 53.2838i 2.43384 + 1.76829i
\(909\) 0 0
\(910\) −1.39341 4.28848i −0.0461912 0.142162i
\(911\) 2.52956 + 1.12623i 0.0838079 + 0.0373137i 0.448212 0.893927i \(-0.352061\pi\)
−0.364405 + 0.931241i \(0.618727\pi\)
\(912\) 0 0
\(913\) −51.0385 3.20054i −1.68913 0.105922i
\(914\) 14.2502 24.6820i 0.471354 0.816408i
\(915\) 0 0
\(916\) 66.2111 73.5349i 2.18768 2.42966i
\(917\) −2.11327 + 6.50398i −0.0697863 + 0.214780i
\(918\) 0 0
\(919\) −9.58156 6.96141i −0.316066 0.229636i 0.418429 0.908250i \(-0.362581\pi\)
−0.734495 + 0.678614i \(0.762581\pi\)
\(920\) 9.96219 2.11753i 0.328444 0.0698128i
\(921\) 0 0
\(922\) −0.804698 7.65619i −0.0265013 0.252143i
\(923\) −21.5546 + 37.3337i −0.709478 + 1.22885i
\(924\) 0 0
\(925\) −13.4272 23.2566i −0.441484 0.764673i
\(926\) −57.6105 + 41.8565i −1.89320 + 1.37549i
\(927\) 0 0
\(928\) 22.6938 69.8443i 0.744960 2.29275i
\(929\) −1.17684 + 11.1968i −0.0386107 + 0.367356i 0.958108 + 0.286408i \(0.0924614\pi\)
−0.996718 + 0.0809480i \(0.974205\pi\)
\(930\) 0 0
\(931\) 12.2017 + 13.5514i 0.399895 + 0.444128i
\(932\) −35.3669 7.51747i −1.15848 0.246243i
\(933\) 0 0
\(934\) 14.8642 + 25.7455i 0.486371 + 0.842419i
\(935\) 0.242762 1.43709i 0.00793916 0.0469979i
\(936\) 0 0
\(937\) 25.6860 18.6619i 0.839123 0.609659i −0.0830022 0.996549i \(-0.526451\pi\)
0.922126 + 0.386891i \(0.126451\pi\)
\(938\) 19.2377 21.3656i 0.628133 0.697612i
\(939\) 0 0
\(940\) −1.77927 + 0.792181i −0.0580333 + 0.0258381i
\(941\) 11.5197 5.12890i 0.375532 0.167197i −0.210287 0.977640i \(-0.567440\pi\)
0.585818 + 0.810442i \(0.300773\pi\)
\(942\) 0 0
\(943\) 39.6112 43.9927i 1.28992 1.43260i
\(944\) −32.7721 + 23.8104i −1.06664 + 0.774961i
\(945\) 0 0
\(946\) −104.760 + 15.4917i −3.40606 + 0.503678i
\(947\) 0.184885 + 0.320230i 0.00600796 + 0.0104061i 0.869014 0.494788i \(-0.164754\pi\)
−0.863006 + 0.505194i \(0.831421\pi\)
\(948\) 0 0
\(949\) −3.30034 0.701510i −0.107134 0.0227720i
\(950\) −28.3472 31.4828i −0.919705 1.02144i
\(951\) 0 0
\(952\) −1.74162 + 16.5704i −0.0564463 + 0.537051i
\(953\) 5.23478 16.1110i 0.169571 0.521886i −0.829773 0.558101i \(-0.811530\pi\)
0.999344 + 0.0362151i \(0.0115301\pi\)
\(954\) 0 0
\(955\) 2.32257 1.68745i 0.0751567 0.0546046i
\(956\) 23.6469 + 40.9576i 0.764794 + 1.32466i
\(957\) 0 0
\(958\) 39.9467 69.1896i 1.29062 2.23542i
\(959\) −0.0165794 0.157743i −0.000535378 0.00509378i
\(960\) 0 0
\(961\) 15.0031 3.18900i 0.483969 0.102871i
\(962\) 69.7714 + 50.6919i 2.24952 + 1.63437i
\(963\) 0 0
\(964\) −40.3299 + 124.123i −1.29894 + 3.99772i
\(965\) −3.61202 + 4.01155i −0.116275 + 0.129137i
\(966\) 0 0
\(967\) −12.4080 + 21.4914i −0.399016 + 0.691115i −0.993605 0.112914i \(-0.963981\pi\)
0.594589 + 0.804030i \(0.297315\pi\)
\(968\) 32.6828 + 77.6598i 1.05046 + 2.49608i
\(969\) 0 0
\(970\) −3.50607 1.56100i −0.112573 0.0501208i
\(971\) 3.75006 + 11.5415i 0.120345 + 0.370384i 0.993024 0.117910i \(-0.0376194\pi\)
−0.872679 + 0.488294i \(0.837619\pi\)
\(972\) 0 0
\(973\) 10.6922 + 7.76834i 0.342776 + 0.249042i
\(974\) −0.879377 + 8.36671i −0.0281771 + 0.268087i
\(975\) 0 0
\(976\) 108.201 + 22.9989i 3.46344 + 0.736176i
\(977\) 3.69784 + 35.1826i 0.118305 + 1.12559i 0.879112 + 0.476615i \(0.158136\pi\)
−0.760808 + 0.648978i \(0.775197\pi\)
\(978\) 0 0
\(979\) 0.00873629 + 0.207422i 0.000279213 + 0.00662925i
\(980\) −6.58394 −0.210316
\(981\) 0 0
\(982\) −4.86006 14.9577i −0.155091 0.477321i
\(983\) 21.9946 4.67509i 0.701518 0.149112i 0.156675 0.987650i \(-0.449923\pi\)
0.544843 + 0.838538i \(0.316589\pi\)
\(984\) 0 0
\(985\) 2.17822 0.969805i 0.0694038 0.0309005i
\(986\) 20.0901 + 22.3123i 0.639799 + 0.710569i
\(987\) 0 0
\(988\) 88.3322 + 39.3280i 2.81022 + 1.25119i
\(989\) 67.4036 2.14331
\(990\) 0 0
\(991\) 16.2761 0.517028 0.258514 0.966008i \(-0.416767\pi\)
0.258514 + 0.966008i \(0.416767\pi\)
\(992\) −42.6509 18.9894i −1.35417 0.602914i
\(993\) 0 0
\(994\) −14.8979 16.5457i −0.472531 0.524799i
\(995\) −3.40566 + 1.51630i −0.107967 + 0.0480698i
\(996\) 0 0
\(997\) −4.52313 + 0.961421i −0.143249 + 0.0304485i −0.278978 0.960297i \(-0.589996\pi\)
0.135729 + 0.990746i \(0.456662\pi\)
\(998\) −23.8690 73.4612i −0.755560 2.32537i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.n.j.190.1 48
3.2 odd 2 891.2.n.k.190.6 48
9.2 odd 6 891.2.n.k.784.1 48
9.4 even 3 891.2.f.d.487.6 yes 24
9.5 odd 6 891.2.f.c.487.1 24
9.7 even 3 inner 891.2.n.j.784.6 48
11.4 even 5 inner 891.2.n.j.433.6 48
33.26 odd 10 891.2.n.k.433.1 48
99.4 even 15 891.2.f.d.730.6 yes 24
99.13 odd 30 9801.2.a.cf.1.12 12
99.31 even 15 9801.2.a.ck.1.1 12
99.59 odd 30 891.2.f.c.730.1 yes 24
99.68 even 30 9801.2.a.cl.1.1 12
99.70 even 15 inner 891.2.n.j.136.1 48
99.86 odd 30 9801.2.a.cg.1.12 12
99.92 odd 30 891.2.n.k.136.6 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
891.2.f.c.487.1 24 9.5 odd 6
891.2.f.c.730.1 yes 24 99.59 odd 30
891.2.f.d.487.6 yes 24 9.4 even 3
891.2.f.d.730.6 yes 24 99.4 even 15
891.2.n.j.136.1 48 99.70 even 15 inner
891.2.n.j.190.1 48 1.1 even 1 trivial
891.2.n.j.433.6 48 11.4 even 5 inner
891.2.n.j.784.6 48 9.7 even 3 inner
891.2.n.k.136.6 48 99.92 odd 30
891.2.n.k.190.6 48 3.2 odd 2
891.2.n.k.433.1 48 33.26 odd 10
891.2.n.k.784.1 48 9.2 odd 6
9801.2.a.cf.1.12 12 99.13 odd 30
9801.2.a.cg.1.12 12 99.86 odd 30
9801.2.a.ck.1.1 12 99.31 even 15
9801.2.a.cl.1.1 12 99.68 even 30