Properties

Label 891.2.n.k.190.6
Level $891$
Weight $2$
Character 891.190
Analytic conductor $7.115$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [891,2,Mod(136,891)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("891.136"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(891, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([20, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,2,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(6\) over \(\Q(\zeta_{15})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 190.6
Character \(\chi\) \(=\) 891.190
Dual form 891.2.n.k.136.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.40198 + 1.06943i) q^{2} +(3.28758 + 3.65123i) q^{4} +(-0.218849 + 0.0974376i) q^{5} +(1.15992 - 0.246548i) q^{7} +(2.36698 + 7.28482i) q^{8} -0.629874 q^{10} +(-0.139567 - 3.31369i) q^{11} +(0.631037 + 6.00392i) q^{13} +(3.04977 + 0.648249i) q^{14} +(-1.07803 + 10.2567i) q^{16} +(1.48403 + 1.07821i) q^{17} +(-1.00736 - 3.10034i) q^{19} +(-1.07525 - 0.478732i) q^{20} +(3.20853 - 8.10868i) q^{22} +(2.77520 - 4.80679i) q^{23} +(-3.30725 + 3.67308i) q^{25} +(-4.90504 + 15.0962i) q^{26} +(4.71353 + 3.42458i) q^{28} +(-6.08908 + 1.29427i) q^{29} +(-0.413671 - 3.93582i) q^{31} +(-5.89858 + 10.2166i) q^{32} +(2.41154 + 4.17691i) q^{34} +(-0.229824 + 0.166977i) q^{35} +(-1.67897 + 5.16733i) q^{37} +(0.895937 - 8.52427i) q^{38} +(-1.22783 - 1.36364i) q^{40} +(10.4325 + 2.21749i) q^{41} +(-6.07195 - 10.5169i) q^{43} +(11.6402 - 11.4036i) q^{44} +(11.8065 - 8.57795i) q^{46} +(1.10724 - 1.22972i) q^{47} +(-5.11019 + 2.27520i) q^{49} +(-11.8721 + 5.28579i) q^{50} +(-19.8471 + 22.0424i) q^{52} +(6.99142 - 5.07956i) q^{53} +(0.353422 + 0.711596i) q^{55} +(4.54157 + 7.86622i) q^{56} +(-16.0100 - 3.40303i) q^{58} +(-2.62823 - 2.91894i) q^{59} +(1.12116 - 10.6671i) q^{61} +(3.21546 - 9.89616i) q^{62} +(-8.40715 + 6.10815i) q^{64} +(-0.723109 - 1.25246i) q^{65} +(-4.61051 + 7.98564i) q^{67} +(0.942072 + 8.96322i) q^{68} +(-0.730603 + 0.155294i) q^{70} +(-5.77707 - 4.19728i) q^{71} +(-0.172710 + 0.531546i) q^{73} +(-9.55896 + 10.6163i) q^{74} +(8.00827 - 13.8707i) q^{76} +(-0.978871 - 3.80920i) q^{77} +(4.04058 + 1.79898i) q^{79} +(-0.763468 - 2.34971i) q^{80} +(22.6872 + 16.4832i) q^{82} +(1.61172 - 15.3345i) q^{83} +(-0.429835 - 0.0913643i) q^{85} +(-3.33759 - 31.7550i) q^{86} +(23.8092 - 8.86015i) q^{88} -0.0625956 q^{89} +(2.21221 + 6.80848i) q^{91} +(26.6744 - 5.66982i) q^{92} +(3.97468 - 1.76964i) q^{94} +(0.522549 + 0.580350i) q^{95} +(5.56631 + 2.47828i) q^{97} -14.7078 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2 q^{2} + 8 q^{4} - 4 q^{5} - 7 q^{7} + 20 q^{8} - 32 q^{10} - 5 q^{11} - 7 q^{13} - 13 q^{14} - 2 q^{16} - 10 q^{17} + 8 q^{19} - 27 q^{20} + 2 q^{22} - 6 q^{23} + 2 q^{25} - 68 q^{26} - 18 q^{28}+ \cdots + 136 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.40198 + 1.06943i 1.69846 + 0.756203i 0.999143 + 0.0413904i \(0.0131787\pi\)
0.699316 + 0.714812i \(0.253488\pi\)
\(3\) 0 0
\(4\) 3.28758 + 3.65123i 1.64379 + 1.82561i
\(5\) −0.218849 + 0.0974376i −0.0978720 + 0.0435754i −0.455089 0.890446i \(-0.650392\pi\)
0.357217 + 0.934022i \(0.383726\pi\)
\(6\) 0 0
\(7\) 1.15992 0.246548i 0.438408 0.0931865i 0.0165805 0.999863i \(-0.494722\pi\)
0.421828 + 0.906676i \(0.361389\pi\)
\(8\) 2.36698 + 7.28482i 0.836854 + 2.57557i
\(9\) 0 0
\(10\) −0.629874 −0.199184
\(11\) −0.139567 3.31369i −0.0420811 0.999114i
\(12\) 0 0
\(13\) 0.631037 + 6.00392i 0.175018 + 1.66519i 0.631441 + 0.775424i \(0.282464\pi\)
−0.456423 + 0.889763i \(0.650869\pi\)
\(14\) 3.04977 + 0.648249i 0.815086 + 0.173252i
\(15\) 0 0
\(16\) −1.07803 + 10.2567i −0.269507 + 2.56419i
\(17\) 1.48403 + 1.07821i 0.359929 + 0.261504i 0.753023 0.657995i \(-0.228595\pi\)
−0.393093 + 0.919499i \(0.628595\pi\)
\(18\) 0 0
\(19\) −1.00736 3.10034i −0.231105 0.711267i −0.997614 0.0690339i \(-0.978008\pi\)
0.766510 0.642233i \(-0.221992\pi\)
\(20\) −1.07525 0.478732i −0.240433 0.107048i
\(21\) 0 0
\(22\) 3.20853 8.10868i 0.684060 1.72878i
\(23\) 2.77520 4.80679i 0.578670 1.00229i −0.416963 0.908924i \(-0.636905\pi\)
0.995632 0.0933616i \(-0.0297613\pi\)
\(24\) 0 0
\(25\) −3.30725 + 3.67308i −0.661450 + 0.734615i
\(26\) −4.90504 + 15.0962i −0.961958 + 2.96060i
\(27\) 0 0
\(28\) 4.71353 + 3.42458i 0.890774 + 0.647185i
\(29\) −6.08908 + 1.29427i −1.13071 + 0.240341i −0.735022 0.678043i \(-0.762828\pi\)
−0.395691 + 0.918384i \(0.629495\pi\)
\(30\) 0 0
\(31\) −0.413671 3.93582i −0.0742975 0.706893i −0.966745 0.255742i \(-0.917680\pi\)
0.892448 0.451151i \(-0.148986\pi\)
\(32\) −5.89858 + 10.2166i −1.04273 + 1.80607i
\(33\) 0 0
\(34\) 2.41154 + 4.17691i 0.413575 + 0.716333i
\(35\) −0.229824 + 0.166977i −0.0388473 + 0.0282242i
\(36\) 0 0
\(37\) −1.67897 + 5.16733i −0.276020 + 0.849504i 0.712927 + 0.701238i \(0.247369\pi\)
−0.988948 + 0.148265i \(0.952631\pi\)
\(38\) 0.895937 8.52427i 0.145340 1.38282i
\(39\) 0 0
\(40\) −1.22783 1.36364i −0.194136 0.215610i
\(41\) 10.4325 + 2.21749i 1.62928 + 0.346313i 0.929721 0.368265i \(-0.120048\pi\)
0.699556 + 0.714578i \(0.253381\pi\)
\(42\) 0 0
\(43\) −6.07195 10.5169i −0.925964 1.60382i −0.790003 0.613103i \(-0.789921\pi\)
−0.135961 0.990714i \(-0.543412\pi\)
\(44\) 11.6402 11.4036i 1.75482 1.71916i
\(45\) 0 0
\(46\) 11.8065 8.57795i 1.74078 1.26475i
\(47\) 1.10724 1.22972i 0.161508 0.179373i −0.656959 0.753926i \(-0.728158\pi\)
0.818467 + 0.574553i \(0.194824\pi\)
\(48\) 0 0
\(49\) −5.11019 + 2.27520i −0.730027 + 0.325029i
\(50\) −11.8721 + 5.28579i −1.67896 + 0.747523i
\(51\) 0 0
\(52\) −19.8471 + 22.0424i −2.75230 + 3.05673i
\(53\) 6.99142 5.07956i 0.960345 0.697732i 0.00711436 0.999975i \(-0.497735\pi\)
0.953231 + 0.302243i \(0.0977354\pi\)
\(54\) 0 0
\(55\) 0.353422 + 0.711596i 0.0476554 + 0.0959516i
\(56\) 4.54157 + 7.86622i 0.606892 + 1.05117i
\(57\) 0 0
\(58\) −16.0100 3.40303i −2.10222 0.446840i
\(59\) −2.62823 2.91894i −0.342166 0.380014i 0.547361 0.836897i \(-0.315633\pi\)
−0.889527 + 0.456883i \(0.848966\pi\)
\(60\) 0 0
\(61\) 1.12116 10.6671i 0.143550 1.36579i −0.651227 0.758883i \(-0.725745\pi\)
0.794777 0.606902i \(-0.207588\pi\)
\(62\) 3.21546 9.89616i 0.408364 1.25681i
\(63\) 0 0
\(64\) −8.40715 + 6.10815i −1.05089 + 0.763519i
\(65\) −0.723109 1.25246i −0.0896907 0.155349i
\(66\) 0 0
\(67\) −4.61051 + 7.98564i −0.563263 + 0.975601i 0.433946 + 0.900939i \(0.357121\pi\)
−0.997209 + 0.0746617i \(0.976212\pi\)
\(68\) 0.942072 + 8.96322i 0.114243 + 1.08695i
\(69\) 0 0
\(70\) −0.730603 + 0.155294i −0.0873237 + 0.0185612i
\(71\) −5.77707 4.19728i −0.685612 0.498126i 0.189603 0.981861i \(-0.439280\pi\)
−0.875215 + 0.483735i \(0.839280\pi\)
\(72\) 0 0
\(73\) −0.172710 + 0.531546i −0.0202141 + 0.0622127i −0.960655 0.277745i \(-0.910413\pi\)
0.940441 + 0.339958i \(0.110413\pi\)
\(74\) −9.55896 + 10.6163i −1.11121 + 1.23412i
\(75\) 0 0
\(76\) 8.00827 13.8707i 0.918611 1.59108i
\(77\) −0.978871 3.80920i −0.111553 0.434098i
\(78\) 0 0
\(79\) 4.04058 + 1.79898i 0.454601 + 0.202401i 0.621246 0.783616i \(-0.286627\pi\)
−0.166645 + 0.986017i \(0.553293\pi\)
\(80\) −0.763468 2.34971i −0.0853583 0.262706i
\(81\) 0 0
\(82\) 22.6872 + 16.4832i 2.50538 + 1.82026i
\(83\) 1.61172 15.3345i 0.176909 1.68318i −0.441455 0.897284i \(-0.645537\pi\)
0.618364 0.785892i \(-0.287796\pi\)
\(84\) 0 0
\(85\) −0.429835 0.0913643i −0.0466222 0.00990985i
\(86\) −3.33759 31.7550i −0.359902 3.42423i
\(87\) 0 0
\(88\) 23.8092 8.86015i 2.53807 0.944495i
\(89\) −0.0625956 −0.00663512 −0.00331756 0.999994i \(-0.501056\pi\)
−0.00331756 + 0.999994i \(0.501056\pi\)
\(90\) 0 0
\(91\) 2.21221 + 6.80848i 0.231902 + 0.713722i
\(92\) 26.6744 5.66982i 2.78100 0.591119i
\(93\) 0 0
\(94\) 3.97468 1.76964i 0.409957 0.182525i
\(95\) 0.522549 + 0.580350i 0.0536124 + 0.0595426i
\(96\) 0 0
\(97\) 5.56631 + 2.47828i 0.565173 + 0.251631i 0.669375 0.742925i \(-0.266562\pi\)
−0.104202 + 0.994556i \(0.533229\pi\)
\(98\) −14.7078 −1.48571
\(99\) 0 0
\(100\) −24.2841 −2.42841
\(101\) −13.9385 6.20580i −1.38693 0.617500i −0.428684 0.903454i \(-0.641023\pi\)
−0.958243 + 0.285954i \(0.907689\pi\)
\(102\) 0 0
\(103\) 8.36177 + 9.28669i 0.823910 + 0.915045i 0.997564 0.0697622i \(-0.0222240\pi\)
−0.173654 + 0.984807i \(0.555557\pi\)
\(104\) −42.2438 + 18.8081i −4.14234 + 1.84429i
\(105\) 0 0
\(106\) 22.2255 4.72418i 2.15873 0.458853i
\(107\) 3.33446 + 10.2624i 0.322354 + 0.992105i 0.972621 + 0.232399i \(0.0746574\pi\)
−0.650266 + 0.759706i \(0.725343\pi\)
\(108\) 0 0
\(109\) −5.16947 −0.495146 −0.247573 0.968869i \(-0.579633\pi\)
−0.247573 + 0.968869i \(0.579633\pi\)
\(110\) 0.0879096 + 2.08720i 0.00838186 + 0.199007i
\(111\) 0 0
\(112\) 1.27836 + 12.1628i 0.120794 + 1.14927i
\(113\) −1.99341 0.423712i −0.187524 0.0398594i 0.113192 0.993573i \(-0.463892\pi\)
−0.300716 + 0.953714i \(0.597226\pi\)
\(114\) 0 0
\(115\) −0.138987 + 1.32237i −0.0129606 + 0.123311i
\(116\) −24.7440 17.9776i −2.29743 1.66918i
\(117\) 0 0
\(118\) −3.19135 9.82197i −0.293788 0.904185i
\(119\) 1.98718 + 0.884750i 0.182165 + 0.0811049i
\(120\) 0 0
\(121\) −10.9610 + 0.924963i −0.996458 + 0.0840876i
\(122\) 14.1008 24.4233i 1.27662 2.21118i
\(123\) 0 0
\(124\) 13.0106 14.4497i 1.16839 1.29762i
\(125\) 0.736031 2.26527i 0.0658326 0.202612i
\(126\) 0 0
\(127\) 0.969141 + 0.704122i 0.0859974 + 0.0624808i 0.629953 0.776633i \(-0.283074\pi\)
−0.543956 + 0.839114i \(0.683074\pi\)
\(128\) −3.64735 + 0.775267i −0.322383 + 0.0685246i
\(129\) 0 0
\(130\) −0.397474 3.78171i −0.0348608 0.331678i
\(131\) 2.88350 4.99436i 0.251932 0.436359i −0.712126 0.702052i \(-0.752267\pi\)
0.964058 + 0.265693i \(0.0856007\pi\)
\(132\) 0 0
\(133\) −1.93284 3.34778i −0.167599 0.290289i
\(134\) −19.6145 + 14.2507i −1.69443 + 1.23108i
\(135\) 0 0
\(136\) −4.34189 + 13.3630i −0.372314 + 1.14586i
\(137\) −0.0139813 + 0.133023i −0.00119450 + 0.0113649i −0.995103 0.0988443i \(-0.968485\pi\)
0.993908 + 0.110209i \(0.0351521\pi\)
\(138\) 0 0
\(139\) 7.45757 + 8.28247i 0.632543 + 0.702510i 0.971164 0.238413i \(-0.0766272\pi\)
−0.338621 + 0.940923i \(0.609961\pi\)
\(140\) −1.36523 0.290189i −0.115383 0.0245255i
\(141\) 0 0
\(142\) −9.38771 16.2600i −0.787799 1.36451i
\(143\) 19.8070 2.92901i 1.65635 0.244936i
\(144\) 0 0
\(145\) 1.20647 0.876555i 0.100192 0.0727939i
\(146\) −0.983298 + 1.09206i −0.0813784 + 0.0903798i
\(147\) 0 0
\(148\) −24.3868 + 10.8577i −2.00459 + 0.892499i
\(149\) 3.60383 1.60453i 0.295237 0.131448i −0.253773 0.967264i \(-0.581672\pi\)
0.549010 + 0.835816i \(0.315005\pi\)
\(150\) 0 0
\(151\) −1.79136 + 1.98951i −0.145779 + 0.161904i −0.811612 0.584197i \(-0.801410\pi\)
0.665833 + 0.746101i \(0.268076\pi\)
\(152\) 20.2010 14.6769i 1.63852 1.19045i
\(153\) 0 0
\(154\) 1.72245 10.1965i 0.138799 0.821655i
\(155\) 0.474028 + 0.821040i 0.0380748 + 0.0659476i
\(156\) 0 0
\(157\) 10.4417 + 2.21945i 0.833337 + 0.177131i 0.604773 0.796398i \(-0.293264\pi\)
0.228564 + 0.973529i \(0.426597\pi\)
\(158\) 7.78152 + 8.64226i 0.619065 + 0.687541i
\(159\) 0 0
\(160\) 0.295410 2.81064i 0.0233542 0.222201i
\(161\) 2.03390 6.25971i 0.160294 0.493334i
\(162\) 0 0
\(163\) −5.97347 + 4.33998i −0.467878 + 0.339933i −0.796614 0.604489i \(-0.793378\pi\)
0.328736 + 0.944422i \(0.393378\pi\)
\(164\) 26.2010 + 45.3815i 2.04596 + 3.54370i
\(165\) 0 0
\(166\) 20.2705 35.1095i 1.57329 2.72503i
\(167\) 1.07893 + 10.2653i 0.0834900 + 0.794354i 0.953515 + 0.301346i \(0.0974360\pi\)
−0.870025 + 0.493008i \(0.835897\pi\)
\(168\) 0 0
\(169\) −22.9329 + 4.87454i −1.76407 + 0.374964i
\(170\) −0.934749 0.679135i −0.0716920 0.0520873i
\(171\) 0 0
\(172\) 18.4377 56.7454i 1.40586 4.32679i
\(173\) 10.7537 11.9432i 0.817587 0.908022i −0.179542 0.983750i \(-0.557461\pi\)
0.997129 + 0.0757281i \(0.0241281\pi\)
\(174\) 0 0
\(175\) −2.93055 + 5.07587i −0.221529 + 0.383700i
\(176\) 34.1381 + 2.14074i 2.57325 + 0.161364i
\(177\) 0 0
\(178\) −0.150354 0.0669418i −0.0112695 0.00501750i
\(179\) −1.14818 3.53374i −0.0858191 0.264124i 0.898933 0.438085i \(-0.144343\pi\)
−0.984752 + 0.173961i \(0.944343\pi\)
\(180\) 0 0
\(181\) 12.2247 + 8.88174i 0.908652 + 0.660174i 0.940674 0.339313i \(-0.110195\pi\)
−0.0320216 + 0.999487i \(0.510195\pi\)
\(182\) −1.96752 + 18.7197i −0.145842 + 1.38759i
\(183\) 0 0
\(184\) 41.5854 + 8.83926i 3.06572 + 0.651639i
\(185\) −0.136053 1.29446i −0.0100028 0.0951704i
\(186\) 0 0
\(187\) 3.36572 5.06808i 0.246126 0.370615i
\(188\) 8.13014 0.592951
\(189\) 0 0
\(190\) 0.634510 + 1.95282i 0.0460322 + 0.141673i
\(191\) −11.7220 + 2.49159i −0.848176 + 0.180285i −0.611442 0.791289i \(-0.709410\pi\)
−0.236734 + 0.971575i \(0.576077\pi\)
\(192\) 0 0
\(193\) −20.5852 + 9.16514i −1.48176 + 0.659721i −0.978843 0.204615i \(-0.934406\pi\)
−0.502915 + 0.864336i \(0.667739\pi\)
\(194\) 10.7198 + 11.9056i 0.769640 + 0.854771i
\(195\) 0 0
\(196\) −25.1075 11.1786i −1.79339 0.798469i
\(197\) −9.95308 −0.709127 −0.354564 0.935032i \(-0.615371\pi\)
−0.354564 + 0.935032i \(0.615371\pi\)
\(198\) 0 0
\(199\) −15.5617 −1.10314 −0.551570 0.834128i \(-0.685971\pi\)
−0.551570 + 0.834128i \(0.685971\pi\)
\(200\) −34.5859 15.3986i −2.44559 1.08885i
\(201\) 0 0
\(202\) −26.8433 29.8125i −1.88869 2.09760i
\(203\) −6.74374 + 3.00250i −0.473317 + 0.210735i
\(204\) 0 0
\(205\) −2.49920 + 0.531220i −0.174551 + 0.0371020i
\(206\) 10.1534 + 31.2488i 0.707418 + 2.17721i
\(207\) 0 0
\(208\) −62.2609 −4.31702
\(209\) −10.1330 + 3.77078i −0.700911 + 0.260831i
\(210\) 0 0
\(211\) 0.250333 + 2.38176i 0.0172337 + 0.163967i 0.999754 0.0221891i \(-0.00706358\pi\)
−0.982520 + 0.186156i \(0.940397\pi\)
\(212\) 41.5315 + 8.82779i 2.85240 + 0.606295i
\(213\) 0 0
\(214\) −2.96564 + 28.2161i −0.202727 + 1.92882i
\(215\) 2.35358 + 1.70998i 0.160513 + 0.116620i
\(216\) 0 0
\(217\) −1.45019 4.46324i −0.0984456 0.302984i
\(218\) −12.4170 5.52840i −0.840985 0.374430i
\(219\) 0 0
\(220\) −1.43630 + 3.62986i −0.0968352 + 0.244725i
\(221\) −5.53700 + 9.59036i −0.372459 + 0.645118i
\(222\) 0 0
\(223\) 8.68791 9.64890i 0.581785 0.646138i −0.378354 0.925661i \(-0.623510\pi\)
0.960139 + 0.279523i \(0.0901763\pi\)
\(224\) −4.32298 + 13.3048i −0.288841 + 0.888962i
\(225\) 0 0
\(226\) −4.33500 3.14956i −0.288360 0.209506i
\(227\) −18.0474 + 3.83610i −1.19785 + 0.254611i −0.763305 0.646039i \(-0.776424\pi\)
−0.434546 + 0.900650i \(0.643091\pi\)
\(228\) 0 0
\(229\) −2.10518 20.0294i −0.139114 1.32358i −0.811922 0.583765i \(-0.801579\pi\)
0.672808 0.739817i \(-0.265088\pi\)
\(230\) −1.74803 + 3.02767i −0.115261 + 0.199639i
\(231\) 0 0
\(232\) −23.8413 41.2943i −1.56526 2.71110i
\(233\) 5.95367 4.32560i 0.390038 0.283379i −0.375433 0.926850i \(-0.622506\pi\)
0.765471 + 0.643470i \(0.222506\pi\)
\(234\) 0 0
\(235\) −0.122498 + 0.377009i −0.00799087 + 0.0245934i
\(236\) 2.01722 19.1925i 0.131310 1.24933i
\(237\) 0 0
\(238\) 3.82700 + 4.25031i 0.248067 + 0.275507i
\(239\) −9.41547 2.00132i −0.609036 0.129455i −0.106939 0.994266i \(-0.534105\pi\)
−0.502098 + 0.864811i \(0.667438\pi\)
\(240\) 0 0
\(241\) 13.2816 + 23.0043i 0.855540 + 1.48184i 0.876143 + 0.482052i \(0.160108\pi\)
−0.0206023 + 0.999788i \(0.506558\pi\)
\(242\) −27.3174 9.50034i −1.75603 0.610705i
\(243\) 0 0
\(244\) 42.6340 30.9754i 2.72936 1.98300i
\(245\) 0.896668 0.995850i 0.0572860 0.0636225i
\(246\) 0 0
\(247\) 17.9785 8.00454i 1.14394 0.509317i
\(248\) 27.6925 12.3295i 1.75848 0.782925i
\(249\) 0 0
\(250\) 4.19049 4.65401i 0.265030 0.294345i
\(251\) −20.1137 + 14.6135i −1.26957 + 0.922394i −0.999185 0.0403590i \(-0.987150\pi\)
−0.270382 + 0.962753i \(0.587150\pi\)
\(252\) 0 0
\(253\) −16.3155 8.52528i −1.02575 0.535980i
\(254\) 1.57485 + 2.72772i 0.0988149 + 0.171152i
\(255\) 0 0
\(256\) 10.7395 + 2.28275i 0.671217 + 0.142672i
\(257\) 8.97309 + 9.96563i 0.559726 + 0.621639i 0.954886 0.296974i \(-0.0959774\pi\)
−0.395160 + 0.918612i \(0.629311\pi\)
\(258\) 0 0
\(259\) −0.673469 + 6.40763i −0.0418473 + 0.398151i
\(260\) 2.19574 6.75781i 0.136174 0.419101i
\(261\) 0 0
\(262\) 12.2672 8.91267i 0.757873 0.550627i
\(263\) 0.390951 + 0.677147i 0.0241071 + 0.0417546i 0.877827 0.478977i \(-0.158992\pi\)
−0.853720 + 0.520732i \(0.825659\pi\)
\(264\) 0 0
\(265\) −1.03512 + 1.79288i −0.0635870 + 0.110136i
\(266\) −1.06243 10.1084i −0.0651418 0.619783i
\(267\) 0 0
\(268\) −44.3148 + 9.41940i −2.70696 + 0.575382i
\(269\) 8.62814 + 6.26871i 0.526067 + 0.382210i 0.818884 0.573958i \(-0.194593\pi\)
−0.292818 + 0.956168i \(0.594593\pi\)
\(270\) 0 0
\(271\) −7.60141 + 23.3947i −0.461753 + 1.42113i 0.401268 + 0.915961i \(0.368570\pi\)
−0.863021 + 0.505168i \(0.831430\pi\)
\(272\) −12.6587 + 14.0589i −0.767548 + 0.852448i
\(273\) 0 0
\(274\) −0.175842 + 0.304567i −0.0106230 + 0.0183996i
\(275\) 12.6330 + 10.4466i 0.761799 + 0.629951i
\(276\) 0 0
\(277\) −8.19654 3.64933i −0.492482 0.219267i 0.145441 0.989367i \(-0.453540\pi\)
−0.637924 + 0.770100i \(0.720206\pi\)
\(278\) 9.05542 + 27.8697i 0.543108 + 1.67151i
\(279\) 0 0
\(280\) −1.76038 1.27899i −0.105203 0.0764344i
\(281\) −1.74835 + 16.6345i −0.104298 + 0.992330i 0.809764 + 0.586756i \(0.199595\pi\)
−0.914062 + 0.405574i \(0.867072\pi\)
\(282\) 0 0
\(283\) 5.72409 + 1.21669i 0.340262 + 0.0723249i 0.374874 0.927076i \(-0.377686\pi\)
−0.0346116 + 0.999401i \(0.511019\pi\)
\(284\) −3.66733 34.8923i −0.217616 2.07048i
\(285\) 0 0
\(286\) 50.7086 + 14.1468i 2.99846 + 0.836520i
\(287\) 12.6475 0.746560
\(288\) 0 0
\(289\) −4.21349 12.9678i −0.247852 0.762811i
\(290\) 3.83535 0.815229i 0.225219 0.0478719i
\(291\) 0 0
\(292\) −2.50859 + 1.11690i −0.146804 + 0.0653615i
\(293\) 10.0255 + 11.1344i 0.585695 + 0.650480i 0.961041 0.276404i \(-0.0891429\pi\)
−0.375346 + 0.926885i \(0.622476\pi\)
\(294\) 0 0
\(295\) 0.859599 + 0.382718i 0.0500478 + 0.0222827i
\(296\) −41.6171 −2.41895
\(297\) 0 0
\(298\) 10.3723 0.600850
\(299\) 30.6108 + 13.6288i 1.77027 + 0.788175i
\(300\) 0 0
\(301\) −9.63591 10.7018i −0.555404 0.616839i
\(302\) −6.43047 + 2.86303i −0.370032 + 0.164749i
\(303\) 0 0
\(304\) 32.8853 6.98999i 1.88610 0.400904i
\(305\) 0.794015 + 2.44373i 0.0454652 + 0.139927i
\(306\) 0 0
\(307\) 6.52424 0.372358 0.186179 0.982516i \(-0.440390\pi\)
0.186179 + 0.982516i \(0.440390\pi\)
\(308\) 10.6901 16.0971i 0.609127 0.917219i
\(309\) 0 0
\(310\) 0.260560 + 2.47907i 0.0147988 + 0.140802i
\(311\) −14.0999 2.99703i −0.799534 0.169946i −0.210012 0.977699i \(-0.567350\pi\)
−0.589522 + 0.807753i \(0.700684\pi\)
\(312\) 0 0
\(313\) −1.64511 + 15.6522i −0.0929873 + 0.884715i 0.844233 + 0.535977i \(0.180057\pi\)
−0.937220 + 0.348738i \(0.886610\pi\)
\(314\) 22.7072 + 16.4978i 1.28144 + 0.931022i
\(315\) 0 0
\(316\) 6.71524 + 20.6674i 0.377762 + 1.16263i
\(317\) 26.7830 + 11.9245i 1.50428 + 0.669749i 0.982995 0.183633i \(-0.0587859\pi\)
0.521286 + 0.853382i \(0.325453\pi\)
\(318\) 0 0
\(319\) 5.13865 + 19.9967i 0.287709 + 1.11960i
\(320\) 1.24473 2.15593i 0.0695824 0.120520i
\(321\) 0 0
\(322\) 11.5797 12.8606i 0.645314 0.716693i
\(323\) 1.84786 5.68713i 0.102818 0.316440i
\(324\) 0 0
\(325\) −24.1398 17.5386i −1.33904 0.972868i
\(326\) −18.9895 + 4.03634i −1.05173 + 0.223552i
\(327\) 0 0
\(328\) 8.53944 + 81.2473i 0.471512 + 4.48613i
\(329\) 0.981128 1.69936i 0.0540913 0.0936889i
\(330\) 0 0
\(331\) −6.70580 11.6148i −0.368584 0.638407i 0.620760 0.784001i \(-0.286824\pi\)
−0.989344 + 0.145594i \(0.953491\pi\)
\(332\) 61.2883 44.5285i 3.36363 2.44382i
\(333\) 0 0
\(334\) −8.38649 + 25.8110i −0.458888 + 1.41231i
\(335\) 0.230902 2.19688i 0.0126155 0.120028i
\(336\) 0 0
\(337\) 8.64664 + 9.60307i 0.471012 + 0.523112i 0.931101 0.364761i \(-0.118849\pi\)
−0.460089 + 0.887873i \(0.652182\pi\)
\(338\) −60.2974 12.8166i −3.27975 0.697132i
\(339\) 0 0
\(340\) −1.07953 1.86979i −0.0585455 0.101404i
\(341\) −12.9843 + 1.92009i −0.703141 + 0.103979i
\(342\) 0 0
\(343\) −12.0820 + 8.77807i −0.652365 + 0.473971i
\(344\) 62.2417 69.1264i 3.35585 3.72705i
\(345\) 0 0
\(346\) 38.6026 17.1870i 2.07529 0.923977i
\(347\) −31.8790 + 14.1935i −1.71136 + 0.761945i −0.713219 + 0.700941i \(0.752763\pi\)
−0.998138 + 0.0610035i \(0.980570\pi\)
\(348\) 0 0
\(349\) −2.48935 + 2.76470i −0.133252 + 0.147991i −0.806078 0.591810i \(-0.798414\pi\)
0.672826 + 0.739801i \(0.265080\pi\)
\(350\) −12.4674 + 9.05813i −0.666413 + 0.484177i
\(351\) 0 0
\(352\) 34.6780 + 18.1202i 1.84834 + 0.965807i
\(353\) 1.97626 + 3.42298i 0.105186 + 0.182187i 0.913814 0.406133i \(-0.133123\pi\)
−0.808628 + 0.588320i \(0.799790\pi\)
\(354\) 0 0
\(355\) 1.67328 + 0.355666i 0.0888083 + 0.0188768i
\(356\) −0.205788 0.228551i −0.0109068 0.0121132i
\(357\) 0 0
\(358\) 1.02118 9.71588i 0.0539711 0.513500i
\(359\) −2.28796 + 7.04162i −0.120754 + 0.371643i −0.993104 0.117240i \(-0.962595\pi\)
0.872350 + 0.488883i \(0.162595\pi\)
\(360\) 0 0
\(361\) 6.77400 4.92160i 0.356526 0.259031i
\(362\) 19.8650 + 34.4072i 1.04408 + 1.80840i
\(363\) 0 0
\(364\) −17.5865 + 30.4607i −0.921783 + 1.59657i
\(365\) −0.0139953 0.133156i −0.000732548 0.00696973i
\(366\) 0 0
\(367\) 24.8605 5.28426i 1.29771 0.275836i 0.493272 0.869875i \(-0.335801\pi\)
0.804436 + 0.594039i \(0.202468\pi\)
\(368\) 46.3103 + 33.6464i 2.41409 + 1.75394i
\(369\) 0 0
\(370\) 1.05754 3.25476i 0.0549787 0.169207i
\(371\) 6.85712 7.61561i 0.356004 0.395383i
\(372\) 0 0
\(373\) 2.38737 4.13505i 0.123614 0.214105i −0.797577 0.603218i \(-0.793885\pi\)
0.921190 + 0.389113i \(0.127218\pi\)
\(374\) 13.5044 8.57404i 0.698295 0.443353i
\(375\) 0 0
\(376\) 11.5791 + 5.15535i 0.597146 + 0.265867i
\(377\) −11.6131 35.7416i −0.598107 1.84079i
\(378\) 0 0
\(379\) 14.1162 + 10.2560i 0.725100 + 0.526816i 0.888009 0.459825i \(-0.152088\pi\)
−0.162910 + 0.986641i \(0.552088\pi\)
\(380\) −0.401067 + 3.81589i −0.0205743 + 0.195751i
\(381\) 0 0
\(382\) −30.8207 6.55115i −1.57693 0.335186i
\(383\) −0.354156 3.36957i −0.0180965 0.172177i 0.981741 0.190225i \(-0.0609216\pi\)
−0.999837 + 0.0180477i \(0.994255\pi\)
\(384\) 0 0
\(385\) 0.585384 + 0.738259i 0.0298339 + 0.0376251i
\(386\) −59.2469 −3.01559
\(387\) 0 0
\(388\) 9.25093 + 28.4714i 0.469645 + 1.44542i
\(389\) −18.3444 + 3.89923i −0.930099 + 0.197699i −0.647960 0.761675i \(-0.724377\pi\)
−0.282139 + 0.959373i \(0.591044\pi\)
\(390\) 0 0
\(391\) 9.30120 4.14116i 0.470382 0.209427i
\(392\) −28.6702 31.8414i −1.44806 1.60824i
\(393\) 0 0
\(394\) −23.9071 10.6441i −1.20442 0.536244i
\(395\) −1.05956 −0.0533125
\(396\) 0 0
\(397\) 10.7157 0.537806 0.268903 0.963167i \(-0.413339\pi\)
0.268903 + 0.963167i \(0.413339\pi\)
\(398\) −37.3790 16.6422i −1.87364 0.834198i
\(399\) 0 0
\(400\) −34.1085 37.8813i −1.70542 1.89407i
\(401\) 2.58776 1.15214i 0.129226 0.0575353i −0.341105 0.940025i \(-0.610801\pi\)
0.470331 + 0.882490i \(0.344134\pi\)
\(402\) 0 0
\(403\) 23.3693 4.96729i 1.16411 0.247438i
\(404\) −23.1650 71.2945i −1.15250 3.54704i
\(405\) 0 0
\(406\) −19.4093 −0.963268
\(407\) 17.3572 + 4.84238i 0.860366 + 0.240028i
\(408\) 0 0
\(409\) −2.46099 23.4148i −0.121688 1.15779i −0.869520 0.493897i \(-0.835572\pi\)
0.747832 0.663888i \(-0.231095\pi\)
\(410\) −6.57113 1.39674i −0.324525 0.0689799i
\(411\) 0 0
\(412\) −6.41782 + 61.0615i −0.316183 + 3.00828i
\(413\) −3.76819 2.73775i −0.185421 0.134716i
\(414\) 0 0
\(415\) 1.14143 + 3.51297i 0.0560307 + 0.172445i
\(416\) −65.0621 28.9675i −3.18993 1.42025i
\(417\) 0 0
\(418\) −28.3718 1.77915i −1.38771 0.0870209i
\(419\) −10.5587 + 18.2882i −0.515826 + 0.893437i 0.484005 + 0.875065i \(0.339182\pi\)
−0.999831 + 0.0183715i \(0.994152\pi\)
\(420\) 0 0
\(421\) −15.7361 + 17.4767i −0.766930 + 0.851763i −0.992472 0.122471i \(-0.960918\pi\)
0.225542 + 0.974234i \(0.427585\pi\)
\(422\) −1.94584 + 5.98867i −0.0947218 + 0.291524i
\(423\) 0 0
\(424\) 53.5522 + 38.9080i 2.60073 + 1.88954i
\(425\) −8.86839 + 1.88503i −0.430180 + 0.0914376i
\(426\) 0 0
\(427\) −1.32951 12.6494i −0.0643394 0.612148i
\(428\) −26.5081 + 45.9134i −1.28132 + 2.21931i
\(429\) 0 0
\(430\) 3.82456 + 6.62434i 0.184437 + 0.319454i
\(431\) 4.02881 2.92710i 0.194061 0.140994i −0.486512 0.873674i \(-0.661731\pi\)
0.680573 + 0.732680i \(0.261731\pi\)
\(432\) 0 0
\(433\) −7.90629 + 24.3331i −0.379952 + 1.16937i 0.560124 + 0.828409i \(0.310753\pi\)
−0.940076 + 0.340964i \(0.889247\pi\)
\(434\) 1.28979 12.2715i 0.0619118 0.589051i
\(435\) 0 0
\(436\) −16.9951 18.8749i −0.813916 0.903945i
\(437\) −17.6983 3.76189i −0.846625 0.179956i
\(438\) 0 0
\(439\) 2.33003 + 4.03572i 0.111206 + 0.192615i 0.916257 0.400591i \(-0.131195\pi\)
−0.805051 + 0.593206i \(0.797862\pi\)
\(440\) −4.34731 + 4.25895i −0.207250 + 0.203037i
\(441\) 0 0
\(442\) −23.5560 + 17.1145i −1.12045 + 0.814052i
\(443\) −15.4728 + 17.1843i −0.735135 + 0.816450i −0.988548 0.150908i \(-0.951780\pi\)
0.253413 + 0.967358i \(0.418447\pi\)
\(444\) 0 0
\(445\) 0.0136990 0.00609917i 0.000649393 0.000289128i
\(446\) 31.1871 13.8854i 1.47675 0.657492i
\(447\) 0 0
\(448\) −8.24566 + 9.15773i −0.389571 + 0.432662i
\(449\) −11.1354 + 8.09035i −0.525512 + 0.381807i −0.818676 0.574255i \(-0.805292\pi\)
0.293164 + 0.956062i \(0.405292\pi\)
\(450\) 0 0
\(451\) 5.89203 34.8794i 0.277445 1.64241i
\(452\) −5.00642 8.67137i −0.235482 0.407867i
\(453\) 0 0
\(454\) −47.4521 10.0863i −2.22704 0.473372i
\(455\) −1.14754 1.27447i −0.0537975 0.0597482i
\(456\) 0 0
\(457\) −1.13304 + 10.7801i −0.0530013 + 0.504274i 0.935529 + 0.353250i \(0.114924\pi\)
−0.988530 + 0.151023i \(0.951743\pi\)
\(458\) 16.3635 50.3617i 0.764617 2.35325i
\(459\) 0 0
\(460\) −5.28520 + 3.83992i −0.246424 + 0.179037i
\(461\) −1.46396 2.53565i −0.0681833 0.118097i 0.829918 0.557885i \(-0.188387\pi\)
−0.898102 + 0.439788i \(0.855054\pi\)
\(462\) 0 0
\(463\) 13.5417 23.4550i 0.629337 1.09004i −0.358347 0.933588i \(-0.616660\pi\)
0.987685 0.156456i \(-0.0500070\pi\)
\(464\) −6.71084 63.8493i −0.311543 2.96413i
\(465\) 0 0
\(466\) 18.9266 4.02296i 0.876756 0.186360i
\(467\) 9.14721 + 6.64584i 0.423282 + 0.307533i 0.778957 0.627077i \(-0.215749\pi\)
−0.355675 + 0.934610i \(0.615749\pi\)
\(468\) 0 0
\(469\) −3.37897 + 10.3994i −0.156026 + 0.480200i
\(470\) −0.697424 + 0.774567i −0.0321697 + 0.0357281i
\(471\) 0 0
\(472\) 15.0430 26.0552i 0.692410 1.19929i
\(473\) −34.0024 + 21.5884i −1.56343 + 0.992634i
\(474\) 0 0
\(475\) 14.7194 + 6.55349i 0.675371 + 0.300695i
\(476\) 3.30259 + 10.1643i 0.151374 + 0.465882i
\(477\) 0 0
\(478\) −20.4755 14.8764i −0.936530 0.680429i
\(479\) 3.17618 30.2193i 0.145123 1.38076i −0.643296 0.765618i \(-0.722433\pi\)
0.788419 0.615138i \(-0.210900\pi\)
\(480\) 0 0
\(481\) −32.0837 6.81960i −1.46289 0.310947i
\(482\) 7.30052 + 69.4598i 0.332529 + 3.16381i
\(483\) 0 0
\(484\) −39.4126 36.9804i −1.79148 1.68093i
\(485\) −1.45966 −0.0662796
\(486\) 0 0
\(487\) −0.988742 3.04303i −0.0448042 0.137893i 0.926152 0.377150i \(-0.123096\pi\)
−0.970956 + 0.239257i \(0.923096\pi\)
\(488\) 80.3618 17.0814i 3.63781 0.773240i
\(489\) 0 0
\(490\) 3.21878 1.43309i 0.145409 0.0647405i
\(491\) −4.00249 4.44522i −0.180630 0.200610i 0.646029 0.763312i \(-0.276428\pi\)
−0.826659 + 0.562703i \(0.809762\pi\)
\(492\) 0 0
\(493\) −10.4318 4.64456i −0.469827 0.209180i
\(494\) 51.7444 2.32809
\(495\) 0 0
\(496\) 40.8146 1.83263
\(497\) −7.73576 3.44418i −0.346996 0.154493i
\(498\) 0 0
\(499\) 19.6572 + 21.8316i 0.879979 + 0.977316i 0.999880 0.0154701i \(-0.00492449\pi\)
−0.119901 + 0.992786i \(0.538258\pi\)
\(500\) 10.6908 4.75985i 0.478107 0.212867i
\(501\) 0 0
\(502\) −63.9410 + 13.5911i −2.85382 + 0.606599i
\(503\) −4.45188 13.7015i −0.198500 0.610919i −0.999918 0.0128145i \(-0.995921\pi\)
0.801418 0.598104i \(-0.204079\pi\)
\(504\) 0 0
\(505\) 3.65509 0.162649
\(506\) −30.0724 37.9259i −1.33688 1.68601i
\(507\) 0 0
\(508\) 0.615219 + 5.85342i 0.0272959 + 0.259703i
\(509\) 42.8833 + 9.11513i 1.90077 + 0.404021i 0.999568 0.0293818i \(-0.00935386\pi\)
0.901200 + 0.433403i \(0.142687\pi\)
\(510\) 0 0
\(511\) −0.0692775 + 0.659132i −0.00306466 + 0.0291583i
\(512\) 29.3882 + 21.3518i 1.29879 + 0.943624i
\(513\) 0 0
\(514\) 10.8957 + 33.5334i 0.480587 + 1.47909i
\(515\) −2.73483 1.21763i −0.120511 0.0536550i
\(516\) 0 0
\(517\) −4.22944 3.49743i −0.186010 0.153817i
\(518\) −8.47019 + 14.6708i −0.372159 + 0.644598i
\(519\) 0 0
\(520\) 7.41237 8.23227i 0.325054 0.361009i
\(521\) 6.23122 19.1777i 0.272995 0.840191i −0.716748 0.697332i \(-0.754370\pi\)
0.989743 0.142859i \(-0.0456296\pi\)
\(522\) 0 0
\(523\) −31.6906 23.0245i −1.38573 1.00679i −0.996318 0.0857293i \(-0.972678\pi\)
−0.389413 0.921063i \(-0.627322\pi\)
\(524\) 27.7153 5.89107i 1.21075 0.257352i
\(525\) 0 0
\(526\) 0.214895 + 2.04459i 0.00936987 + 0.0891484i
\(527\) 3.62973 6.28688i 0.158114 0.273861i
\(528\) 0 0
\(529\) −3.90349 6.76105i −0.169717 0.293959i
\(530\) −4.40371 + 3.19948i −0.191285 + 0.138977i
\(531\) 0 0
\(532\) 5.86914 18.0633i 0.254459 0.783145i
\(533\) −6.73035 + 64.0350i −0.291524 + 2.77366i
\(534\) 0 0
\(535\) −1.72969 1.92101i −0.0747809 0.0830526i
\(536\) −69.0869 14.6849i −2.98410 0.634290i
\(537\) 0 0
\(538\) 14.0207 + 24.2845i 0.604475 + 1.04698i
\(539\) 8.25253 + 16.6160i 0.355462 + 0.715703i
\(540\) 0 0
\(541\) −14.5837 + 10.5957i −0.627002 + 0.455544i −0.855360 0.518034i \(-0.826664\pi\)
0.228358 + 0.973577i \(0.426664\pi\)
\(542\) −43.2776 + 48.0646i −1.85893 + 2.06455i
\(543\) 0 0
\(544\) −19.7693 + 8.80187i −0.847603 + 0.377377i
\(545\) 1.13133 0.503701i 0.0484609 0.0215762i
\(546\) 0 0
\(547\) −0.0599338 + 0.0665633i −0.00256259 + 0.00284604i −0.744425 0.667706i \(-0.767276\pi\)
0.741862 + 0.670552i \(0.233943\pi\)
\(548\) −0.531662 + 0.386275i −0.0227115 + 0.0165008i
\(549\) 0 0
\(550\) 19.1724 + 38.6026i 0.817514 + 1.64602i
\(551\) 10.1466 + 17.5744i 0.432259 + 0.748695i
\(552\) 0 0
\(553\) 5.13028 + 1.09048i 0.218162 + 0.0463717i
\(554\) −15.7852 17.5313i −0.670651 0.744833i
\(555\) 0 0
\(556\) −5.72383 + 54.4586i −0.242744 + 2.30956i
\(557\) −0.950270 + 2.92463i −0.0402642 + 0.123921i −0.969168 0.246400i \(-0.920752\pi\)
0.928904 + 0.370321i \(0.120752\pi\)
\(558\) 0 0
\(559\) 59.3112 43.0921i 2.50859 1.82260i
\(560\) −1.46488 2.53725i −0.0619024 0.107218i
\(561\) 0 0
\(562\) −21.9890 + 38.0860i −0.927548 + 1.60656i
\(563\) −1.86208 17.7165i −0.0784773 0.746662i −0.961029 0.276447i \(-0.910843\pi\)
0.882552 0.470215i \(-0.155824\pi\)
\(564\) 0 0
\(565\) 0.477540 0.101504i 0.0200902 0.00427031i
\(566\) 12.4480 + 9.04401i 0.523229 + 0.380148i
\(567\) 0 0
\(568\) 16.9022 52.0197i 0.709202 2.18270i
\(569\) −2.84313 + 3.15761i −0.119190 + 0.132374i −0.799787 0.600284i \(-0.795054\pi\)
0.680596 + 0.732658i \(0.261721\pi\)
\(570\) 0 0
\(571\) 22.5287 39.0208i 0.942795 1.63297i 0.182688 0.983171i \(-0.441520\pi\)
0.760107 0.649798i \(-0.225146\pi\)
\(572\) 75.8117 + 62.6907i 3.16985 + 2.62123i
\(573\) 0 0
\(574\) 30.3792 + 13.5257i 1.26800 + 0.564551i
\(575\) 8.47741 + 26.0908i 0.353533 + 1.08806i
\(576\) 0 0
\(577\) 12.3578 + 8.97845i 0.514461 + 0.373778i 0.814513 0.580145i \(-0.197004\pi\)
−0.300052 + 0.953923i \(0.597004\pi\)
\(578\) 3.74743 35.6544i 0.155873 1.48303i
\(579\) 0 0
\(580\) 7.16689 + 1.52337i 0.297589 + 0.0632545i
\(581\) −1.91123 18.1841i −0.0792910 0.754404i
\(582\) 0 0
\(583\) −17.8079 22.4584i −0.737526 0.930133i
\(584\) −4.28101 −0.177150
\(585\) 0 0
\(586\) 12.1735 + 37.4663i 0.502884 + 1.54772i
\(587\) 41.6554 8.85413i 1.71930 0.365449i 0.760460 0.649385i \(-0.224974\pi\)
0.958843 + 0.283936i \(0.0916404\pi\)
\(588\) 0 0
\(589\) −11.7856 + 5.24731i −0.485619 + 0.216212i
\(590\) 1.65545 + 1.83857i 0.0681539 + 0.0756925i
\(591\) 0 0
\(592\) −51.1900 22.7912i −2.10389 0.936714i
\(593\) −10.6230 −0.436236 −0.218118 0.975922i \(-0.569992\pi\)
−0.218118 + 0.975922i \(0.569992\pi\)
\(594\) 0 0
\(595\) −0.521100 −0.0213630
\(596\) 17.7064 + 7.88339i 0.725282 + 0.322916i
\(597\) 0 0
\(598\) 58.9516 + 65.4724i 2.41071 + 2.67737i
\(599\) 31.7620 14.1414i 1.29776 0.577801i 0.362575 0.931955i \(-0.381898\pi\)
0.935187 + 0.354154i \(0.115231\pi\)
\(600\) 0 0
\(601\) −8.88904 + 1.88942i −0.362592 + 0.0770712i −0.385605 0.922664i \(-0.626007\pi\)
0.0230134 + 0.999735i \(0.492674\pi\)
\(602\) −11.7005 36.0104i −0.476876 1.46767i
\(603\) 0 0
\(604\) −13.1534 −0.535204
\(605\) 2.30868 1.27045i 0.0938613 0.0516509i
\(606\) 0 0
\(607\) 1.63024 + 15.5107i 0.0661696 + 0.629561i 0.976476 + 0.215626i \(0.0691793\pi\)
−0.910306 + 0.413935i \(0.864154\pi\)
\(608\) 37.6171 + 7.99576i 1.52557 + 0.324271i
\(609\) 0 0
\(610\) −0.706189 + 6.71894i −0.0285928 + 0.272042i
\(611\) 8.08184 + 5.87180i 0.326956 + 0.237548i
\(612\) 0 0
\(613\) −8.59141 26.4417i −0.347004 1.06797i −0.960502 0.278272i \(-0.910238\pi\)
0.613498 0.789696i \(-0.289762\pi\)
\(614\) 15.6711 + 6.97723i 0.632435 + 0.281578i
\(615\) 0 0
\(616\) 25.4323 16.1472i 1.02470 0.650589i
\(617\) 4.01690 6.95747i 0.161714 0.280097i −0.773769 0.633467i \(-0.781631\pi\)
0.935484 + 0.353370i \(0.114964\pi\)
\(618\) 0 0
\(619\) 2.40894 2.67540i 0.0968236 0.107533i −0.692785 0.721144i \(-0.743617\pi\)
0.789609 + 0.613610i \(0.210283\pi\)
\(620\) −1.43940 + 4.43002i −0.0578078 + 0.177914i
\(621\) 0 0
\(622\) −30.6627 22.2777i −1.22946 0.893256i
\(623\) −0.0726059 + 0.0154329i −0.00290889 + 0.000618304i
\(624\) 0 0
\(625\) −2.52357 24.0102i −0.100943 0.960408i
\(626\) −20.6905 + 35.8370i −0.826959 + 1.43234i
\(627\) 0 0
\(628\) 26.2242 + 45.4216i 1.04646 + 1.81252i
\(629\) −8.06309 + 5.85818i −0.321496 + 0.233581i
\(630\) 0 0
\(631\) −6.25432 + 19.2488i −0.248981 + 0.766283i 0.745976 + 0.665973i \(0.231984\pi\)
−0.994956 + 0.100310i \(0.968016\pi\)
\(632\) −3.54128 + 33.6931i −0.140865 + 1.34024i
\(633\) 0 0
\(634\) 51.5797 + 57.2851i 2.04849 + 2.27508i
\(635\) −0.280703 0.0596653i −0.0111394 0.00236775i
\(636\) 0 0
\(637\) −16.8849 29.2454i −0.669002 1.15875i
\(638\) −9.04211 + 53.5271i −0.357981 + 2.11916i
\(639\) 0 0
\(640\) 0.722676 0.525055i 0.0285663 0.0207546i
\(641\) 18.6545 20.7179i 0.736809 0.818310i −0.251963 0.967737i \(-0.581076\pi\)
0.988773 + 0.149427i \(0.0477429\pi\)
\(642\) 0 0
\(643\) 0.0817314 0.0363892i 0.00322317 0.00143505i −0.405124 0.914262i \(-0.632772\pi\)
0.408348 + 0.912827i \(0.366105\pi\)
\(644\) 29.5423 13.1531i 1.16413 0.518303i
\(645\) 0 0
\(646\) 10.5205 11.6842i 0.413925 0.459710i
\(647\) −38.1698 + 27.7320i −1.50061 + 1.09026i −0.530473 + 0.847702i \(0.677986\pi\)
−0.970137 + 0.242556i \(0.922014\pi\)
\(648\) 0 0
\(649\) −9.30565 + 9.11651i −0.365279 + 0.357854i
\(650\) −39.2272 67.9434i −1.53862 2.66496i
\(651\) 0 0
\(652\) −35.4845 7.54247i −1.38968 0.295386i
\(653\) −11.5631 12.8421i −0.452499 0.502551i 0.473125 0.880995i \(-0.343126\pi\)
−0.925624 + 0.378444i \(0.876459\pi\)
\(654\) 0 0
\(655\) −0.144410 + 1.37397i −0.00564257 + 0.0536854i
\(656\) −33.9907 + 104.613i −1.32711 + 4.08443i
\(657\) 0 0
\(658\) 4.17401 3.03259i 0.162720 0.118223i
\(659\) −6.04319 10.4671i −0.235409 0.407741i 0.723982 0.689818i \(-0.242310\pi\)
−0.959391 + 0.282078i \(0.908976\pi\)
\(660\) 0 0
\(661\) −19.2915 + 33.4139i −0.750353 + 1.29965i 0.197299 + 0.980343i \(0.436783\pi\)
−0.947652 + 0.319306i \(0.896550\pi\)
\(662\) −3.68600 35.0700i −0.143260 1.36303i
\(663\) 0 0
\(664\) 115.524 24.5553i 4.48319 0.952931i
\(665\) 0.749199 + 0.544325i 0.0290527 + 0.0211080i
\(666\) 0 0
\(667\) −10.6771 + 32.8608i −0.413420 + 1.27237i
\(668\) −33.9340 + 37.6875i −1.31294 + 1.45817i
\(669\) 0 0
\(670\) 2.90404 5.02994i 0.112193 0.194324i
\(671\) −35.5040 2.22639i −1.37062 0.0859490i
\(672\) 0 0
\(673\) 26.3490 + 11.7313i 1.01568 + 0.452210i 0.845940 0.533279i \(-0.179040\pi\)
0.169741 + 0.985489i \(0.445707\pi\)
\(674\) 10.4993 + 32.3134i 0.404416 + 1.24467i
\(675\) 0 0
\(676\) −93.1918 67.7078i −3.58430 2.60415i
\(677\) −0.736623 + 7.00850i −0.0283107 + 0.269359i 0.971205 + 0.238245i \(0.0765721\pi\)
−0.999516 + 0.0311137i \(0.990095\pi\)
\(678\) 0 0
\(679\) 7.06749 + 1.50224i 0.271225 + 0.0576507i
\(680\) −0.351839 3.34753i −0.0134924 0.128372i
\(681\) 0 0
\(682\) −33.2416 9.27384i −1.27288 0.355114i
\(683\) −32.5733 −1.24638 −0.623191 0.782070i \(-0.714164\pi\)
−0.623191 + 0.782070i \(0.714164\pi\)
\(684\) 0 0
\(685\) −0.00990166 0.0304742i −0.000378323 0.00116436i
\(686\) −38.4082 + 8.16393i −1.46643 + 0.311700i
\(687\) 0 0
\(688\) 114.415 50.9409i 4.36204 1.94210i
\(689\) 34.9091 + 38.7705i 1.32993 + 1.47704i
\(690\) 0 0
\(691\) 39.4477 + 17.5632i 1.50066 + 0.668137i 0.982349 0.187055i \(-0.0598942\pi\)
0.518311 + 0.855192i \(0.326561\pi\)
\(692\) 78.9608 3.00164
\(693\) 0 0
\(694\) −91.7519 −3.48285
\(695\) −2.43910 1.08596i −0.0925204 0.0411927i
\(696\) 0 0
\(697\) 13.0911 + 14.5392i 0.495862 + 0.550711i
\(698\) −8.93604 + 3.97858i −0.338234 + 0.150592i
\(699\) 0 0
\(700\) −28.1676 + 5.98721i −1.06463 + 0.226295i
\(701\) −8.39620 25.8408i −0.317120 0.975995i −0.974873 0.222761i \(-0.928493\pi\)
0.657753 0.753234i \(-0.271507\pi\)
\(702\) 0 0
\(703\) 17.7118 0.668013
\(704\) 21.4139 + 27.0062i 0.807065 + 1.01783i
\(705\) 0 0
\(706\) 1.08630 + 10.3354i 0.0408833 + 0.388979i
\(707\) −17.6975 3.76172i −0.665583 0.141474i
\(708\) 0 0
\(709\) 2.24331 21.3437i 0.0842493 0.801578i −0.868063 0.496454i \(-0.834635\pi\)
0.952312 0.305125i \(-0.0986981\pi\)
\(710\) 3.63882 + 2.64376i 0.136563 + 0.0992185i
\(711\) 0 0
\(712\) −0.148163 0.455998i −0.00555263 0.0170892i
\(713\) −20.0667 8.93426i −0.751503 0.334590i
\(714\) 0 0
\(715\) −4.04934 + 2.57096i −0.151437 + 0.0961484i
\(716\) 9.12775 15.8097i 0.341120 0.590837i
\(717\) 0 0
\(718\) −13.0262 + 14.4670i −0.486133 + 0.539905i
\(719\) −5.61293 + 17.2748i −0.209327 + 0.644242i 0.790181 + 0.612874i \(0.209987\pi\)
−0.999508 + 0.0313684i \(0.990013\pi\)
\(720\) 0 0
\(721\) 11.9886 + 8.71023i 0.446479 + 0.324386i
\(722\) 21.5343 4.57727i 0.801426 0.170348i
\(723\) 0 0
\(724\) 7.76032 + 73.8345i 0.288410 + 2.74404i
\(725\) 15.3842 26.6461i 0.571353 0.989612i
\(726\) 0 0
\(727\) 12.7753 + 22.1275i 0.473810 + 0.820662i 0.999550 0.0299825i \(-0.00954516\pi\)
−0.525741 + 0.850645i \(0.676212\pi\)
\(728\) −44.3622 + 32.2311i −1.64417 + 1.19456i
\(729\) 0 0
\(730\) 0.108785 0.334807i 0.00402633 0.0123918i
\(731\) 2.32850 22.1542i 0.0861228 0.819404i
\(732\) 0 0
\(733\) −27.2582 30.2734i −1.00681 1.11817i −0.992982 0.118267i \(-0.962266\pi\)
−0.0138245 0.999904i \(-0.504401\pi\)
\(734\) 65.3657 + 13.8939i 2.41269 + 0.512834i
\(735\) 0 0
\(736\) 32.7395 + 56.7065i 1.20679 + 2.09023i
\(737\) 27.1054 + 14.1633i 0.998439 + 0.521710i
\(738\) 0 0
\(739\) 25.9774 18.8737i 0.955596 0.694281i 0.00347186 0.999994i \(-0.498895\pi\)
0.952124 + 0.305713i \(0.0988949\pi\)
\(740\) 4.27907 4.75239i 0.157302 0.174701i
\(741\) 0 0
\(742\) 24.6151 10.9593i 0.903648 0.402330i
\(743\) 16.4094 7.30594i 0.602003 0.268029i −0.0830233 0.996548i \(-0.526458\pi\)
0.685026 + 0.728519i \(0.259791\pi\)
\(744\) 0 0
\(745\) −0.632352 + 0.702298i −0.0231676 + 0.0257302i
\(746\) 10.1566 7.37920i 0.371859 0.270172i
\(747\) 0 0
\(748\) 29.5698 4.37270i 1.08118 0.159882i
\(749\) 6.39789 + 11.0815i 0.233774 + 0.404908i
\(750\) 0 0
\(751\) 24.3399 + 5.17361i 0.888176 + 0.188788i 0.629337 0.777133i \(-0.283327\pi\)
0.258839 + 0.965920i \(0.416660\pi\)
\(752\) 11.4193 + 12.6824i 0.416418 + 0.462479i
\(753\) 0 0
\(754\) 10.3286 98.2702i 0.376146 3.57879i
\(755\) 0.198184 0.609947i 0.00721265 0.0221983i
\(756\) 0 0
\(757\) 26.3079 19.1138i 0.956178 0.694704i 0.00391833 0.999992i \(-0.498753\pi\)
0.952260 + 0.305288i \(0.0987528\pi\)
\(758\) 22.9387 + 39.7311i 0.833173 + 1.44310i
\(759\) 0 0
\(760\) −2.99088 + 5.18035i −0.108491 + 0.187911i
\(761\) 0.922270 + 8.77482i 0.0334323 + 0.318087i 0.998439 + 0.0558602i \(0.0177901\pi\)
−0.965006 + 0.262227i \(0.915543\pi\)
\(762\) 0 0
\(763\) −5.99617 + 1.27452i −0.217076 + 0.0461409i
\(764\) −47.6345 34.6085i −1.72336 1.25209i
\(765\) 0 0
\(766\) 2.75285 8.47239i 0.0994644 0.306120i
\(767\) 15.8666 17.6216i 0.572909 0.636280i
\(768\) 0 0
\(769\) 13.4824 23.3523i 0.486189 0.842104i −0.513685 0.857979i \(-0.671720\pi\)
0.999874 + 0.0158750i \(0.00505339\pi\)
\(770\) 0.616565 + 2.39931i 0.0222195 + 0.0864653i
\(771\) 0 0
\(772\) −101.140 45.0303i −3.64010 1.62068i
\(773\) −8.24081 25.3626i −0.296401 0.912230i −0.982747 0.184954i \(-0.940786\pi\)
0.686346 0.727276i \(-0.259214\pi\)
\(774\) 0 0
\(775\) 15.8247 + 11.4973i 0.568439 + 0.412995i
\(776\) −4.87848 + 46.4156i −0.175127 + 1.66622i
\(777\) 0 0
\(778\) −48.2330 10.2522i −1.72924 0.367560i
\(779\) −3.63429 34.5780i −0.130212 1.23888i
\(780\) 0 0
\(781\) −13.1022 + 19.7292i −0.468833 + 0.705966i
\(782\) 26.7700 0.957294
\(783\) 0 0
\(784\) −17.8273 54.8666i −0.636688 1.95952i
\(785\) −2.50140 + 0.531690i −0.0892790 + 0.0189768i
\(786\) 0 0
\(787\) −15.1150 + 6.72964i −0.538792 + 0.239886i −0.658046 0.752978i \(-0.728617\pi\)
0.119253 + 0.992864i \(0.461950\pi\)
\(788\) −32.7216 36.3410i −1.16566 1.29459i
\(789\) 0 0
\(790\) −2.54506 1.13313i −0.0905490 0.0403150i
\(791\) −2.41666 −0.0859264
\(792\) 0 0
\(793\) 64.7520 2.29941
\(794\) 25.7389 + 11.4597i 0.913441 + 0.406690i
\(795\) 0 0
\(796\) −51.1604 56.8194i −1.81333 2.01391i
\(797\) 40.6697 18.1073i 1.44059 0.641394i 0.470121 0.882602i \(-0.344210\pi\)
0.970473 + 0.241209i \(0.0775438\pi\)
\(798\) 0 0
\(799\) 2.96907 0.631096i 0.105038 0.0223266i
\(800\) −18.0184 55.4550i −0.637047 1.96063i
\(801\) 0 0
\(802\) 7.44789 0.262994
\(803\) 1.78548 + 0.498120i 0.0630083 + 0.0175783i
\(804\) 0 0
\(805\) 0.164815 + 1.56811i 0.00580896 + 0.0552685i
\(806\) 61.4448 + 13.0605i 2.16430 + 0.460036i
\(807\) 0 0
\(808\) 12.2161 116.228i 0.429759 4.08889i
\(809\) 39.7013 + 28.8447i 1.39582 + 1.01413i 0.995198 + 0.0978851i \(0.0312078\pi\)
0.400627 + 0.916241i \(0.368792\pi\)
\(810\) 0 0
\(811\) −13.2047 40.6400i −0.463681 1.42706i −0.860634 0.509224i \(-0.829933\pi\)
0.396953 0.917839i \(-0.370067\pi\)
\(812\) −33.1334 14.7519i −1.16275 0.517692i
\(813\) 0 0
\(814\) 36.5132 + 30.1937i 1.27979 + 1.05829i
\(815\) 0.884408 1.53184i 0.0309795 0.0536580i
\(816\) 0 0
\(817\) −26.4894 + 29.4195i −0.926747 + 1.02926i
\(818\) 19.1292 58.8737i 0.668838 2.05847i
\(819\) 0 0
\(820\) −10.1559 7.37871i −0.354660 0.257676i
\(821\) −28.3438 + 6.02466i −0.989205 + 0.210262i −0.673976 0.738753i \(-0.735415\pi\)
−0.315229 + 0.949015i \(0.602081\pi\)
\(822\) 0 0
\(823\) −2.01003 19.1241i −0.0700652 0.666626i −0.972036 0.234830i \(-0.924547\pi\)
0.901971 0.431796i \(-0.142120\pi\)
\(824\) −47.8597 + 82.8954i −1.66727 + 2.88780i
\(825\) 0 0
\(826\) −6.12330 10.6059i −0.213057 0.369025i
\(827\) 35.2773 25.6305i 1.22671 0.891259i 0.230074 0.973173i \(-0.426103\pi\)
0.996639 + 0.0819138i \(0.0261032\pi\)
\(828\) 0 0
\(829\) 6.68209 20.5654i 0.232078 0.714264i −0.765417 0.643535i \(-0.777467\pi\)
0.997496 0.0707296i \(-0.0225327\pi\)
\(830\) −1.01518 + 9.65877i −0.0352373 + 0.335261i
\(831\) 0 0
\(832\) −41.9781 46.6214i −1.45533 1.61630i
\(833\) −10.0368 2.13339i −0.347755 0.0739175i
\(834\) 0 0
\(835\) −1.23635 2.14142i −0.0427857 0.0741069i
\(836\) −47.0809 24.6010i −1.62833 0.850843i
\(837\) 0 0
\(838\) −44.9198 + 32.6361i −1.55173 + 1.12740i
\(839\) 14.8571 16.5005i 0.512925 0.569660i −0.429931 0.902862i \(-0.641462\pi\)
0.942856 + 0.333201i \(0.108129\pi\)
\(840\) 0 0
\(841\) 8.90890 3.96650i 0.307203 0.136776i
\(842\) −56.4880 + 25.1501i −1.94671 + 0.866729i
\(843\) 0 0
\(844\) −7.87337 + 8.74426i −0.271012 + 0.300990i
\(845\) 4.54387 3.30131i 0.156314 0.113569i
\(846\) 0 0
\(847\) −12.4859 + 3.77531i −0.429020 + 0.129721i
\(848\) 44.5628 + 77.1851i 1.53029 + 2.65055i
\(849\) 0 0
\(850\) −23.3177 4.95632i −0.799789 0.170000i
\(851\) 20.1788 + 22.4108i 0.691720 + 0.768233i
\(852\) 0 0
\(853\) −2.75078 + 26.1720i −0.0941850 + 0.896111i 0.840781 + 0.541375i \(0.182096\pi\)
−0.934966 + 0.354736i \(0.884571\pi\)
\(854\) 10.3342 31.8055i 0.353630 1.08836i
\(855\) 0 0
\(856\) −66.8672 + 48.5819i −2.28547 + 1.66049i
\(857\) −13.9851 24.2229i −0.477721 0.827437i 0.521953 0.852974i \(-0.325204\pi\)
−0.999674 + 0.0255371i \(0.991870\pi\)
\(858\) 0 0
\(859\) −7.69037 + 13.3201i −0.262392 + 0.454476i −0.966877 0.255243i \(-0.917845\pi\)
0.704485 + 0.709719i \(0.251178\pi\)
\(860\) 1.49407 + 14.2152i 0.0509475 + 0.484733i
\(861\) 0 0
\(862\) 12.8075 2.72231i 0.436225 0.0927224i
\(863\) −26.5699 19.3041i −0.904449 0.657121i 0.0351559 0.999382i \(-0.488807\pi\)
−0.939605 + 0.342261i \(0.888807\pi\)
\(864\) 0 0
\(865\) −1.18971 + 3.66156i −0.0404514 + 0.124497i
\(866\) −45.0134 + 49.9924i −1.52962 + 1.69881i
\(867\) 0 0
\(868\) 11.5287 19.9682i 0.391309 0.677767i
\(869\) 5.39733 13.6403i 0.183092 0.462716i
\(870\) 0 0
\(871\) −50.8545 22.6419i −1.72314 0.767191i
\(872\) −12.2360 37.6586i −0.414364 1.27528i
\(873\) 0 0
\(874\) −38.4880 27.9632i −1.30188 0.945868i
\(875\) 0.295238 2.80900i 0.00998086 0.0949615i
\(876\) 0 0
\(877\) −48.9243 10.3992i −1.65206 0.351155i −0.714674 0.699457i \(-0.753425\pi\)
−0.937382 + 0.348302i \(0.886758\pi\)
\(878\) 1.28075 + 12.1855i 0.0432233 + 0.411242i
\(879\) 0 0
\(880\) −7.67966 + 2.85784i −0.258881 + 0.0963377i
\(881\) 32.0798 1.08080 0.540399 0.841409i \(-0.318273\pi\)
0.540399 + 0.841409i \(0.318273\pi\)
\(882\) 0 0
\(883\) 14.4035 + 44.3294i 0.484716 + 1.49180i 0.832392 + 0.554188i \(0.186971\pi\)
−0.347676 + 0.937615i \(0.613029\pi\)
\(884\) −53.2199 + 11.3122i −1.78998 + 0.380472i
\(885\) 0 0
\(886\) −55.5428 + 24.7293i −1.86600 + 0.830796i
\(887\) −19.6390 21.8113i −0.659414 0.732353i 0.316961 0.948439i \(-0.397338\pi\)
−0.976374 + 0.216086i \(0.930671\pi\)
\(888\) 0 0
\(889\) 1.29773 + 0.577785i 0.0435243 + 0.0193783i
\(890\) 0.0394273 0.00132161
\(891\) 0 0
\(892\) 63.7925 2.13593
\(893\) −4.92794 2.19406i −0.164907 0.0734214i
\(894\) 0 0
\(895\) 0.595597 + 0.661477i 0.0199086 + 0.0221107i
\(896\) −4.03949 + 1.79849i −0.134950 + 0.0600835i
\(897\) 0 0
\(898\) −35.3991 + 7.52432i −1.18128 + 0.251090i
\(899\) 7.61290 + 23.4301i 0.253904 + 0.781437i
\(900\) 0 0
\(901\) 15.8523 0.528116
\(902\) 51.4537 77.4786i 1.71322 2.57976i
\(903\) 0 0
\(904\) −1.63169 15.5245i −0.0542693 0.516338i
\(905\) −3.54077 0.752613i −0.117699 0.0250177i
\(906\) 0 0
\(907\) 2.62571 24.9819i 0.0871852 0.829512i −0.860316 0.509761i \(-0.829734\pi\)
0.947502 0.319751i \(-0.103599\pi\)
\(908\) −73.3389 53.2838i −2.43384 1.76829i
\(909\) 0 0
\(910\) −1.39341 4.28848i −0.0461912 0.142162i
\(911\) −2.52956 1.12623i −0.0838079 0.0373137i 0.364405 0.931241i \(-0.381273\pi\)
−0.448212 + 0.893927i \(0.647939\pi\)
\(912\) 0 0
\(913\) −51.0385 3.20054i −1.68913 0.105922i
\(914\) −14.2502 + 24.6820i −0.471354 + 0.816408i
\(915\) 0 0
\(916\) 66.2111 73.5349i 2.18768 2.42966i
\(917\) 2.11327 6.50398i 0.0697863 0.214780i
\(918\) 0 0
\(919\) −9.58156 6.96141i −0.316066 0.229636i 0.418429 0.908250i \(-0.362581\pi\)
−0.734495 + 0.678614i \(0.762581\pi\)
\(920\) −9.96219 + 2.11753i −0.328444 + 0.0698128i
\(921\) 0 0
\(922\) −0.804698 7.65619i −0.0265013 0.252143i
\(923\) 21.5546 37.3337i 0.709478 1.22885i
\(924\) 0 0
\(925\) −13.4272 23.2566i −0.441484 0.764673i
\(926\) 57.6105 41.8565i 1.89320 1.37549i
\(927\) 0 0
\(928\) 22.6938 69.8443i 0.744960 2.29275i
\(929\) 1.17684 11.1968i 0.0386107 0.367356i −0.958108 0.286408i \(-0.907539\pi\)
0.996718 0.0809480i \(-0.0257948\pi\)
\(930\) 0 0
\(931\) 12.2017 + 13.5514i 0.399895 + 0.444128i
\(932\) 35.3669 + 7.51747i 1.15848 + 0.246243i
\(933\) 0 0
\(934\) 14.8642 + 25.7455i 0.486371 + 0.842419i
\(935\) −0.242762 + 1.43709i −0.00793916 + 0.0469979i
\(936\) 0 0
\(937\) 25.6860 18.6619i 0.839123 0.609659i −0.0830022 0.996549i \(-0.526451\pi\)
0.922126 + 0.386891i \(0.126451\pi\)
\(938\) −19.2377 + 21.3656i −0.628133 + 0.697612i
\(939\) 0 0
\(940\) −1.77927 + 0.792181i −0.0580333 + 0.0258381i
\(941\) −11.5197 + 5.12890i −0.375532 + 0.167197i −0.585818 0.810442i \(-0.699227\pi\)
0.210287 + 0.977640i \(0.432560\pi\)
\(942\) 0 0
\(943\) 39.6112 43.9927i 1.28992 1.43260i
\(944\) 32.7721 23.8104i 1.06664 0.774961i
\(945\) 0 0
\(946\) −104.760 + 15.4917i −3.40606 + 0.503678i
\(947\) −0.184885 0.320230i −0.00600796 0.0104061i 0.863006 0.505194i \(-0.168579\pi\)
−0.869014 + 0.494788i \(0.835246\pi\)
\(948\) 0 0
\(949\) −3.30034 0.701510i −0.107134 0.0227720i
\(950\) 28.3472 + 31.4828i 0.919705 + 1.02144i
\(951\) 0 0
\(952\) −1.74162 + 16.5704i −0.0564463 + 0.537051i
\(953\) −5.23478 + 16.1110i −0.169571 + 0.521886i −0.999344 0.0362151i \(-0.988470\pi\)
0.829773 + 0.558101i \(0.188470\pi\)
\(954\) 0 0
\(955\) 2.32257 1.68745i 0.0751567 0.0546046i
\(956\) −23.6469 40.9576i −0.764794 1.32466i
\(957\) 0 0
\(958\) 39.9467 69.1896i 1.29062 2.23542i
\(959\) 0.0165794 + 0.157743i 0.000535378 + 0.00509378i
\(960\) 0 0
\(961\) 15.0031 3.18900i 0.483969 0.102871i
\(962\) −69.7714 50.6919i −2.24952 1.63437i
\(963\) 0 0
\(964\) −40.3299 + 124.123i −1.29894 + 3.99772i
\(965\) 3.61202 4.01155i 0.116275 0.129137i
\(966\) 0 0
\(967\) −12.4080 + 21.4914i −0.399016 + 0.691115i −0.993605 0.112914i \(-0.963981\pi\)
0.594589 + 0.804030i \(0.297315\pi\)
\(968\) −32.6828 77.6598i −1.05046 2.49608i
\(969\) 0 0
\(970\) −3.50607 1.56100i −0.112573 0.0501208i
\(971\) −3.75006 11.5415i −0.120345 0.370384i 0.872679 0.488294i \(-0.162381\pi\)
−0.993024 + 0.117910i \(0.962381\pi\)
\(972\) 0 0
\(973\) 10.6922 + 7.76834i 0.342776 + 0.249042i
\(974\) 0.879377 8.36671i 0.0281771 0.268087i
\(975\) 0 0
\(976\) 108.201 + 22.9989i 3.46344 + 0.736176i
\(977\) −3.69784 35.1826i −0.118305 1.12559i −0.879112 0.476615i \(-0.841864\pi\)
0.760808 0.648978i \(-0.224803\pi\)
\(978\) 0 0
\(979\) 0.00873629 + 0.207422i 0.000279213 + 0.00662925i
\(980\) 6.58394 0.210316
\(981\) 0 0
\(982\) −4.86006 14.9577i −0.155091 0.477321i
\(983\) −21.9946 + 4.67509i −0.701518 + 0.149112i −0.544843 0.838538i \(-0.683411\pi\)
−0.156675 + 0.987650i \(0.550077\pi\)
\(984\) 0 0
\(985\) 2.17822 0.969805i 0.0694038 0.0309005i
\(986\) −20.0901 22.3123i −0.639799 0.710569i
\(987\) 0 0
\(988\) 88.3322 + 39.3280i 2.81022 + 1.25119i
\(989\) −67.4036 −2.14331
\(990\) 0 0
\(991\) 16.2761 0.517028 0.258514 0.966008i \(-0.416767\pi\)
0.258514 + 0.966008i \(0.416767\pi\)
\(992\) 42.6509 + 18.9894i 1.35417 + 0.602914i
\(993\) 0 0
\(994\) −14.8979 16.5457i −0.472531 0.524799i
\(995\) 3.40566 1.51630i 0.107967 0.0480698i
\(996\) 0 0
\(997\) −4.52313 + 0.961421i −0.143249 + 0.0304485i −0.278978 0.960297i \(-0.589996\pi\)
0.135729 + 0.990746i \(0.456662\pi\)
\(998\) 23.8690 + 73.4612i 0.755560 + 2.32537i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.n.k.190.6 48
3.2 odd 2 891.2.n.j.190.1 48
9.2 odd 6 891.2.n.j.784.6 48
9.4 even 3 891.2.f.c.487.1 24
9.5 odd 6 891.2.f.d.487.6 yes 24
9.7 even 3 inner 891.2.n.k.784.1 48
11.4 even 5 inner 891.2.n.k.433.1 48
33.26 odd 10 891.2.n.j.433.6 48
99.4 even 15 891.2.f.c.730.1 yes 24
99.13 odd 30 9801.2.a.cl.1.1 12
99.31 even 15 9801.2.a.cg.1.12 12
99.59 odd 30 891.2.f.d.730.6 yes 24
99.68 even 30 9801.2.a.cf.1.12 12
99.70 even 15 inner 891.2.n.k.136.6 48
99.86 odd 30 9801.2.a.ck.1.1 12
99.92 odd 30 891.2.n.j.136.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
891.2.f.c.487.1 24 9.4 even 3
891.2.f.c.730.1 yes 24 99.4 even 15
891.2.f.d.487.6 yes 24 9.5 odd 6
891.2.f.d.730.6 yes 24 99.59 odd 30
891.2.n.j.136.1 48 99.92 odd 30
891.2.n.j.190.1 48 3.2 odd 2
891.2.n.j.433.6 48 33.26 odd 10
891.2.n.j.784.6 48 9.2 odd 6
891.2.n.k.136.6 48 99.70 even 15 inner
891.2.n.k.190.6 48 1.1 even 1 trivial
891.2.n.k.433.1 48 11.4 even 5 inner
891.2.n.k.784.1 48 9.7 even 3 inner
9801.2.a.cf.1.12 12 99.68 even 30
9801.2.a.cg.1.12 12 99.31 even 15
9801.2.a.ck.1.1 12 99.86 odd 30
9801.2.a.cl.1.1 12 99.13 odd 30