Properties

Label 891.2
Level 891
Weight 2
Dimension 22152
Nonzero newspaces 16
Newform subspaces 89
Sturm bound 116640
Trace bound 7

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 16 \)
Newform subspaces: \( 89 \)
Sturm bound: \(116640\)
Trace bound: \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(891))\).

Total New Old
Modular forms 30240 23160 7080
Cusp forms 28081 22152 5929
Eisenstein series 2159 1008 1151

Trace form

\( 22152 q - 96 q^{2} - 144 q^{3} - 156 q^{4} - 90 q^{5} - 144 q^{6} - 154 q^{7} - 72 q^{8} - 144 q^{9} - 212 q^{10} - 99 q^{11} - 324 q^{12} - 142 q^{13} - 54 q^{14} - 144 q^{15} - 156 q^{16} - 66 q^{17}+ \cdots - 234 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(891))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
891.2.a \(\chi_{891}(1, \cdot)\) 891.2.a.a 1 1
891.2.a.b 1
891.2.a.c 1
891.2.a.d 1
891.2.a.e 1
891.2.a.f 1
891.2.a.g 1
891.2.a.h 1
891.2.a.i 2
891.2.a.j 2
891.2.a.k 3
891.2.a.l 3
891.2.a.m 3
891.2.a.n 3
891.2.a.o 4
891.2.a.p 4
891.2.a.q 4
891.2.a.r 4
891.2.d \(\chi_{891}(890, \cdot)\) 891.2.d.a 4 1
891.2.d.b 16
891.2.d.c 24
891.2.e \(\chi_{891}(298, \cdot)\) 891.2.e.a 2 2
891.2.e.b 2
891.2.e.c 2
891.2.e.d 2
891.2.e.e 2
891.2.e.f 2
891.2.e.g 2
891.2.e.h 2
891.2.e.i 2
891.2.e.j 2
891.2.e.k 2
891.2.e.l 2
891.2.e.m 4
891.2.e.n 4
891.2.e.o 4
891.2.e.p 4
891.2.e.q 6
891.2.e.r 6
891.2.e.s 6
891.2.e.t 6
891.2.e.u 8
891.2.e.v 8
891.2.f \(\chi_{891}(82, \cdot)\) 891.2.f.a 4 4
891.2.f.b 4
891.2.f.c 24
891.2.f.d 24
891.2.f.e 36
891.2.f.f 36
891.2.f.g 48
891.2.g \(\chi_{891}(296, \cdot)\) 891.2.g.a 4 2
891.2.g.b 8
891.2.g.c 8
891.2.g.d 8
891.2.g.e 16
891.2.g.f 48
891.2.j \(\chi_{891}(100, \cdot)\) 891.2.j.a 6 6
891.2.j.b 72
891.2.j.c 102
891.2.k \(\chi_{891}(161, \cdot)\) 891.2.k.a 80 4
891.2.k.b 96
891.2.n \(\chi_{891}(136, \cdot)\) 891.2.n.a 8 8
891.2.n.b 8
891.2.n.c 8
891.2.n.d 8
891.2.n.e 16
891.2.n.f 32
891.2.n.g 32
891.2.n.h 32
891.2.n.i 32
891.2.n.j 48
891.2.n.k 48
891.2.n.l 96
891.2.o \(\chi_{891}(98, \cdot)\) 891.2.o.a 12 6
891.2.o.b 192
891.2.r \(\chi_{891}(34, \cdot)\) 891.2.r.a 774 18
891.2.r.b 846
891.2.u \(\chi_{891}(107, \cdot)\) 891.2.u.a 16 8
891.2.u.b 32
891.2.u.c 32
891.2.u.d 32
891.2.u.e 64
891.2.u.f 192
891.2.v \(\chi_{891}(37, \cdot)\) 891.2.v.a 816 24
891.2.y \(\chi_{891}(32, \cdot)\) 891.2.y.a 36 18
891.2.y.b 1872
891.2.bb \(\chi_{891}(8, \cdot)\) 891.2.bb.a 816 24
891.2.bc \(\chi_{891}(4, \cdot)\) 891.2.bc.a 7632 72
891.2.bd \(\chi_{891}(2, \cdot)\) 891.2.bd.a 7632 72

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(891))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(891)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(99))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(297))\)\(^{\oplus 2}\)