Defining parameters
Level: | \( N \) | \(=\) | \( 9801 = 3^{4} \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 9801.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 70 \) | ||
Sturm bound: | \(2376\) | ||
Trace bound: | \(14\) | ||
Distinguishing \(T_p\): | \(2\), \(5\), \(7\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(9801))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1260 | 454 | 806 |
Cusp forms | 1117 | 418 | 699 |
Eisenstein series | 143 | 36 | 107 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(306\) | \(106\) | \(200\) | \(271\) | \(98\) | \(173\) | \(35\) | \(8\) | \(27\) | |||
\(+\) | \(-\) | \(-\) | \(324\) | \(120\) | \(204\) | \(288\) | \(110\) | \(178\) | \(36\) | \(10\) | \(26\) | |||
\(-\) | \(+\) | \(-\) | \(324\) | \(118\) | \(206\) | \(288\) | \(110\) | \(178\) | \(36\) | \(8\) | \(28\) | |||
\(-\) | \(-\) | \(+\) | \(306\) | \(110\) | \(196\) | \(270\) | \(100\) | \(170\) | \(36\) | \(10\) | \(26\) | |||
Plus space | \(+\) | \(612\) | \(216\) | \(396\) | \(541\) | \(198\) | \(343\) | \(71\) | \(18\) | \(53\) | ||||
Minus space | \(-\) | \(648\) | \(238\) | \(410\) | \(576\) | \(220\) | \(356\) | \(72\) | \(18\) | \(54\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(9801))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(9801))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(9801)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(81))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(99))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(297))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(363))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(891))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1089))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3267))\)\(^{\oplus 2}\)