| L(s) = 1 | + (−2.12 + 1.54i)2-s + (1.51 − 4.67i)4-s + (0.193 + 0.140i)5-s + (−0.366 + 1.12i)7-s + (2.36 + 7.28i)8-s − 0.629·10-s + (2.93 + 1.53i)11-s + (4.88 − 3.54i)13-s + (−0.963 − 2.96i)14-s + (−8.34 − 6.06i)16-s + (1.48 + 1.07i)17-s + (−1.00 − 3.10i)19-s + (0.952 − 0.691i)20-s + (−8.62 + 1.27i)22-s − 5.55·23-s + ⋯ |
| L(s) = 1 | + (−1.50 + 1.09i)2-s + (0.759 − 2.33i)4-s + (0.0866 + 0.0629i)5-s + (−0.138 + 0.426i)7-s + (0.836 + 2.57i)8-s − 0.199·10-s + (0.886 + 0.463i)11-s + (1.35 − 0.984i)13-s + (−0.257 − 0.792i)14-s + (−2.08 − 1.51i)16-s + (0.359 + 0.261i)17-s + (−0.231 − 0.711i)19-s + (0.212 − 0.154i)20-s + (−1.83 + 0.271i)22-s − 1.15·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.730 - 0.682i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.730 - 0.682i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.736352 + 0.290425i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.736352 + 0.290425i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 11 | \( 1 + (-2.93 - 1.53i)T \) |
| good | 2 | \( 1 + (2.12 - 1.54i)T + (0.618 - 1.90i)T^{2} \) |
| 5 | \( 1 + (-0.193 - 0.140i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (0.366 - 1.12i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-4.88 + 3.54i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-1.48 - 1.07i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (1.00 + 3.10i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 5.55T + 23T^{2} \) |
| 29 | \( 1 + (-1.92 + 5.92i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (3.20 - 2.32i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (1.67 - 5.16i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (3.29 + 10.1i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 12.1T + 43T^{2} \) |
| 47 | \( 1 + (-0.511 - 1.57i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-6.99 + 5.07i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (1.21 - 3.73i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-8.67 - 6.30i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 9.22T + 67T^{2} \) |
| 71 | \( 1 + (5.77 + 4.19i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (0.172 - 0.531i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (3.57 - 2.59i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-12.4 - 9.06i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 0.0625T + 89T^{2} \) |
| 97 | \( 1 + (4.92 - 3.58i)T + (29.9 - 92.2i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.08659881970470604925212454361, −9.123207169677317284311363313882, −8.555031889801975027002544180023, −7.86609689007674990671503936944, −6.89057432670950296485638120161, −6.10975084183929983780369205919, −5.57892328762951052708961878118, −4.00010638002098044120664335315, −2.20129473282072452433620096169, −0.831035979955880272111811836334,
1.04720957746543300519499141383, 1.95427500840102451183935398832, 3.52307170944938480959799247413, 3.96763718444200866638952341471, 5.95259491233332255212686343963, 6.91803492472255449073404111519, 7.80891086098901090105421780081, 8.708896709653311252578991677665, 9.190547888805535951668800284471, 9.986903319936418125590750293969