Properties

Label 841.2.e.d.270.1
Level $841$
Weight $2$
Character 841.270
Analytic conductor $6.715$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [841,2,Mod(63,841)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(841, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([11])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("841.63"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.e (of order \(14\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,4,-2,6,2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{14})\)
Coefficient field: \(\Q(\zeta_{28})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 29)
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 270.1
Root \(-0.433884 + 0.900969i\) of defining polynomial
Character \(\chi\) \(=\) 841.270
Dual form 841.2.e.d.651.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.193096 - 0.400969i) q^{2} +(-0.974928 + 0.777479i) q^{3} +(1.12349 - 1.40881i) q^{4} +(0.623490 - 0.300257i) q^{5} +(0.500000 + 0.240787i) q^{6} +(0.222521 + 0.279032i) q^{7} +(-1.64960 - 0.376510i) q^{8} +(-0.321552 + 1.40881i) q^{9} +(-0.240787 - 0.192021i) q^{10} +(-4.81517 + 1.09903i) q^{11} +2.24698i q^{12} +(-1.25786 - 5.51107i) q^{13} +(0.0689153 - 0.143104i) q^{14} +(-0.374414 + 0.777479i) q^{15} +(-0.634375 - 2.77938i) q^{16} -4.49396i q^{17} +(0.626980 - 0.143104i) q^{18} +(1.84270 + 1.46950i) q^{19} +(0.277479 - 1.21572i) q^{20} +(-0.433884 - 0.0990311i) q^{21} +(1.37047 + 1.71851i) q^{22} +(-2.06853 - 0.996152i) q^{23} +(1.90097 - 0.915458i) q^{24} +(-2.81886 + 3.53474i) q^{25} +(-1.96688 + 1.56853i) q^{26} +(-2.40496 - 4.99396i) q^{27} +0.643104 q^{28} +0.384043 q^{30} +(-2.90356 - 6.02930i) q^{31} +(-3.63770 + 2.90097i) q^{32} +(3.83997 - 4.81517i) q^{33} +(-1.80194 + 0.867767i) q^{34} +(0.222521 + 0.107160i) q^{35} +(1.62349 + 2.03579i) q^{36} +(4.81517 + 1.09903i) q^{37} +(0.233406 - 1.02262i) q^{38} +(5.51107 + 4.39493i) q^{39} +(-1.14156 + 0.260553i) q^{40} +3.10992i q^{41} +(0.0440730 + 0.193096i) q^{42} +(1.47773 - 3.06853i) q^{43} +(-3.86147 + 8.01842i) q^{44} +(0.222521 + 0.974928i) q^{45} +1.02177i q^{46} +(-6.28345 + 1.43416i) q^{47} +(2.77938 + 2.21648i) q^{48} +(1.52930 - 6.70031i) q^{49} +(1.96163 + 0.447730i) q^{50} +(3.49396 + 4.38129i) q^{51} +(-9.17725 - 4.41953i) q^{52} +(4.22737 - 2.03579i) q^{53} +(-1.53803 + 1.92863i) q^{54} +(-2.67222 + 2.13102i) q^{55} +(-0.262012 - 0.544073i) q^{56} -2.93900 q^{57} -12.4940 q^{59} +(0.674671 + 1.40097i) q^{60} +(-1.28463 + 1.02446i) q^{61} +(-1.85690 + 2.32847i) q^{62} +(-0.464656 + 0.223767i) q^{63} +(-3.27144 - 1.57544i) q^{64} +(-2.43900 - 3.05841i) q^{65} +(-2.67222 - 0.609916i) q^{66} +(-0.516926 + 2.26480i) q^{67} +(-6.33114 - 5.04892i) q^{68} +(2.79116 - 0.637063i) q^{69} -0.109916i q^{70} +(-1.63222 - 7.15122i) q^{71} +(1.06086 - 2.20291i) q^{72} +(2.44088 - 5.06853i) q^{73} +(-0.489115 - 2.14295i) q^{74} -5.63773i q^{75} +(4.14050 - 0.945042i) q^{76} +(-1.37814 - 1.09903i) q^{77} +(0.698062 - 3.05841i) q^{78} +(-4.54792 - 1.03803i) q^{79} +(-1.23005 - 1.54244i) q^{80} +(2.32155 + 1.11800i) q^{81} +(1.24698 - 0.600514i) q^{82} +(2.77748 - 3.48285i) q^{83} +(-0.626980 + 0.500000i) q^{84} +(-1.34934 - 2.80194i) q^{85} -1.51573 q^{86} +8.35690 q^{88} +(-2.46443 - 5.11745i) q^{89} +(0.347948 - 0.277479i) q^{90} +(1.25786 - 1.57731i) q^{91} +(-3.72737 + 1.79500i) q^{92} +(7.51842 + 3.62068i) q^{93} +(1.78836 + 2.24254i) q^{94} +(1.59013 + 0.362937i) q^{95} +(1.29105 - 5.65647i) q^{96} +(-0.141202 - 0.112605i) q^{97} +(-2.98192 + 0.680604i) q^{98} -7.13706i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{4} - 2 q^{5} + 6 q^{6} + 2 q^{7} - 12 q^{9} + 10 q^{13} + 8 q^{16} + 4 q^{20} - 12 q^{22} - 14 q^{23} + 14 q^{24} - 48 q^{25} + 24 q^{28} - 36 q^{30} - 2 q^{33} - 4 q^{34} + 2 q^{35} + 10 q^{36}+ \cdots + 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/841\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{14}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.193096 0.400969i −0.136540 0.283528i 0.821476 0.570243i \(-0.193151\pi\)
−0.958016 + 0.286715i \(0.907437\pi\)
\(3\) −0.974928 + 0.777479i −0.562875 + 0.448878i −0.863130 0.504981i \(-0.831499\pi\)
0.300256 + 0.953859i \(0.402928\pi\)
\(4\) 1.12349 1.40881i 0.561745 0.704406i
\(5\) 0.623490 0.300257i 0.278833 0.134279i −0.289241 0.957256i \(-0.593403\pi\)
0.568074 + 0.822977i \(0.307689\pi\)
\(6\) 0.500000 + 0.240787i 0.204124 + 0.0983010i
\(7\) 0.222521 + 0.279032i 0.0841050 + 0.105464i 0.822104 0.569338i \(-0.192800\pi\)
−0.737999 + 0.674802i \(0.764229\pi\)
\(8\) −1.64960 0.376510i −0.583221 0.133116i
\(9\) −0.321552 + 1.40881i −0.107184 + 0.469604i
\(10\) −0.240787 0.192021i −0.0761436 0.0607225i
\(11\) −4.81517 + 1.09903i −1.45183 + 0.331370i −0.874454 0.485109i \(-0.838780\pi\)
−0.577375 + 0.816479i \(0.695923\pi\)
\(12\) 2.24698i 0.648647i
\(13\) −1.25786 5.51107i −0.348869 1.52849i −0.779753 0.626087i \(-0.784655\pi\)
0.430884 0.902407i \(-0.358202\pi\)
\(14\) 0.0689153 0.143104i 0.0184184 0.0382462i
\(15\) −0.374414 + 0.777479i −0.0966733 + 0.200744i
\(16\) −0.634375 2.77938i −0.158594 0.694845i
\(17\) 4.49396i 1.08995i −0.838454 0.544973i \(-0.816540\pi\)
0.838454 0.544973i \(-0.183460\pi\)
\(18\) 0.626980 0.143104i 0.147781 0.0337300i
\(19\) 1.84270 + 1.46950i 0.422743 + 0.337127i 0.811643 0.584153i \(-0.198573\pi\)
−0.388900 + 0.921280i \(0.627145\pi\)
\(20\) 0.277479 1.21572i 0.0620462 0.271842i
\(21\) −0.433884 0.0990311i −0.0946812 0.0216104i
\(22\) 1.37047 + 1.71851i 0.292185 + 0.366388i
\(23\) −2.06853 0.996152i −0.431319 0.207712i 0.205611 0.978634i \(-0.434082\pi\)
−0.636930 + 0.770922i \(0.719796\pi\)
\(24\) 1.90097 0.915458i 0.388034 0.186867i
\(25\) −2.81886 + 3.53474i −0.563773 + 0.706949i
\(26\) −1.96688 + 1.56853i −0.385736 + 0.307614i
\(27\) −2.40496 4.99396i −0.462836 0.961088i
\(28\) 0.643104 0.121535
\(29\) 0 0
\(30\) 0.384043 0.0701163
\(31\) −2.90356 6.02930i −0.521495 1.08289i −0.980872 0.194654i \(-0.937642\pi\)
0.459377 0.888241i \(-0.348073\pi\)
\(32\) −3.63770 + 2.90097i −0.643061 + 0.512824i
\(33\) 3.83997 4.81517i 0.668453 0.838214i
\(34\) −1.80194 + 0.867767i −0.309030 + 0.148821i
\(35\) 0.222521 + 0.107160i 0.0376129 + 0.0181134i
\(36\) 1.62349 + 2.03579i 0.270582 + 0.339299i
\(37\) 4.81517 + 1.09903i 0.791609 + 0.180680i 0.599162 0.800628i \(-0.295501\pi\)
0.192447 + 0.981307i \(0.438358\pi\)
\(38\) 0.233406 1.02262i 0.0378635 0.165891i
\(39\) 5.51107 + 4.39493i 0.882477 + 0.703752i
\(40\) −1.14156 + 0.260553i −0.180496 + 0.0411971i
\(41\) 3.10992i 0.485687i 0.970065 + 0.242844i \(0.0780802\pi\)
−0.970065 + 0.242844i \(0.921920\pi\)
\(42\) 0.0440730 + 0.193096i 0.00680061 + 0.0297954i
\(43\) 1.47773 3.06853i 0.225351 0.467947i −0.757383 0.652971i \(-0.773522\pi\)
0.982734 + 0.185025i \(0.0592365\pi\)
\(44\) −3.86147 + 8.01842i −0.582138 + 1.20882i
\(45\) 0.222521 + 0.974928i 0.0331715 + 0.145334i
\(46\) 1.02177i 0.150652i
\(47\) −6.28345 + 1.43416i −0.916536 + 0.209193i −0.654673 0.755912i \(-0.727194\pi\)
−0.261862 + 0.965105i \(0.584337\pi\)
\(48\) 2.77938 + 2.21648i 0.401169 + 0.319921i
\(49\) 1.52930 6.70031i 0.218472 0.957188i
\(50\) 1.96163 + 0.447730i 0.277417 + 0.0633186i
\(51\) 3.49396 + 4.38129i 0.489252 + 0.613503i
\(52\) −9.17725 4.41953i −1.27266 0.612879i
\(53\) 4.22737 2.03579i 0.580673 0.279638i −0.120401 0.992725i \(-0.538418\pi\)
0.701075 + 0.713088i \(0.252704\pi\)
\(54\) −1.53803 + 1.92863i −0.209300 + 0.262453i
\(55\) −2.67222 + 2.13102i −0.360322 + 0.287347i
\(56\) −0.262012 0.544073i −0.0350128 0.0727048i
\(57\) −2.93900 −0.389280
\(58\) 0 0
\(59\) −12.4940 −1.62657 −0.813287 0.581862i \(-0.802324\pi\)
−0.813287 + 0.581862i \(0.802324\pi\)
\(60\) 0.674671 + 1.40097i 0.0870997 + 0.180864i
\(61\) −1.28463 + 1.02446i −0.164480 + 0.131168i −0.702271 0.711910i \(-0.747830\pi\)
0.537791 + 0.843078i \(0.319259\pi\)
\(62\) −1.85690 + 2.32847i −0.235826 + 0.295716i
\(63\) −0.464656 + 0.223767i −0.0585412 + 0.0281919i
\(64\) −3.27144 1.57544i −0.408930 0.196930i
\(65\) −2.43900 3.05841i −0.302521 0.379349i
\(66\) −2.67222 0.609916i −0.328927 0.0750755i
\(67\) −0.516926 + 2.26480i −0.0631526 + 0.276689i −0.996639 0.0819245i \(-0.973893\pi\)
0.933486 + 0.358614i \(0.116751\pi\)
\(68\) −6.33114 5.04892i −0.767764 0.612271i
\(69\) 2.79116 0.637063i 0.336016 0.0766934i
\(70\) 0.109916i 0.0131375i
\(71\) −1.63222 7.15122i −0.193709 0.848694i −0.974587 0.224010i \(-0.928085\pi\)
0.780878 0.624683i \(-0.214772\pi\)
\(72\) 1.06086 2.20291i 0.125024 0.259615i
\(73\) 2.44088 5.06853i 0.285683 0.593227i −0.707903 0.706310i \(-0.750358\pi\)
0.993586 + 0.113083i \(0.0360727\pi\)
\(74\) −0.489115 2.14295i −0.0568584 0.249113i
\(75\) 5.63773i 0.650989i
\(76\) 4.14050 0.945042i 0.474948 0.108404i
\(77\) −1.37814 1.09903i −0.157054 0.125246i
\(78\) 0.698062 3.05841i 0.0790400 0.346297i
\(79\) −4.54792 1.03803i −0.511681 0.116788i −0.0411178 0.999154i \(-0.513092\pi\)
−0.470563 + 0.882367i \(0.655949\pi\)
\(80\) −1.23005 1.54244i −0.137524 0.172450i
\(81\) 2.32155 + 1.11800i 0.257950 + 0.124222i
\(82\) 1.24698 0.600514i 0.137706 0.0663156i
\(83\) 2.77748 3.48285i 0.304868 0.382292i −0.605671 0.795715i \(-0.707095\pi\)
0.910539 + 0.413423i \(0.135667\pi\)
\(84\) −0.626980 + 0.500000i −0.0684091 + 0.0545545i
\(85\) −1.34934 2.80194i −0.146357 0.303913i
\(86\) −1.51573 −0.163445
\(87\) 0 0
\(88\) 8.35690 0.890848
\(89\) −2.46443 5.11745i −0.261229 0.542449i 0.728561 0.684981i \(-0.240190\pi\)
−0.989790 + 0.142533i \(0.954475\pi\)
\(90\) 0.347948 0.277479i 0.0366769 0.0292489i
\(91\) 1.25786 1.57731i 0.131860 0.165347i
\(92\) −3.72737 + 1.79500i −0.388605 + 0.187142i
\(93\) 7.51842 + 3.62068i 0.779624 + 0.375447i
\(94\) 1.78836 + 2.24254i 0.184456 + 0.231300i
\(95\) 1.59013 + 0.362937i 0.163144 + 0.0372365i
\(96\) 1.29105 5.65647i 0.131768 0.577311i
\(97\) −0.141202 0.112605i −0.0143369 0.0114333i 0.616295 0.787515i \(-0.288633\pi\)
−0.630632 + 0.776082i \(0.717204\pi\)
\(98\) −2.98192 + 0.680604i −0.301219 + 0.0687514i
\(99\) 7.13706i 0.717302i
\(100\) 1.81282 + 7.94250i 0.181282 + 0.794250i
\(101\) −1.40124 + 2.90970i −0.139428 + 0.289526i −0.958977 0.283484i \(-0.908510\pi\)
0.819549 + 0.573009i \(0.194224\pi\)
\(102\) 1.08209 2.24698i 0.107143 0.222484i
\(103\) 3.03803 + 13.3105i 0.299346 + 1.31152i 0.871104 + 0.491099i \(0.163405\pi\)
−0.571758 + 0.820423i \(0.693738\pi\)
\(104\) 9.56465i 0.937891i
\(105\) −0.300257 + 0.0685317i −0.0293021 + 0.00668801i
\(106\) −1.63258 1.30194i −0.158570 0.126455i
\(107\) −3.61476 + 15.8373i −0.349452 + 1.53105i 0.428976 + 0.903316i \(0.358874\pi\)
−0.778428 + 0.627734i \(0.783983\pi\)
\(108\) −9.73750 2.22252i −0.936991 0.213862i
\(109\) −3.40850 4.27413i −0.326475 0.409387i 0.591323 0.806435i \(-0.298606\pi\)
−0.917798 + 0.397048i \(0.870035\pi\)
\(110\) 1.37047 + 0.659983i 0.130669 + 0.0629269i
\(111\) −5.54892 + 2.67222i −0.526680 + 0.253636i
\(112\) 0.634375 0.795481i 0.0599428 0.0751659i
\(113\) 8.34571 6.65548i 0.785098 0.626095i −0.146655 0.989188i \(-0.546851\pi\)
0.931753 + 0.363093i \(0.118279\pi\)
\(114\) 0.567511 + 1.17845i 0.0531522 + 0.110372i
\(115\) −1.58881 −0.148157
\(116\) 0 0
\(117\) 8.16852 0.755180
\(118\) 2.41254 + 5.00969i 0.222092 + 0.461179i
\(119\) 1.25396 1.00000i 0.114950 0.0916698i
\(120\) 0.910362 1.14156i 0.0831043 0.104210i
\(121\) 12.0673 5.81132i 1.09703 0.528302i
\(122\) 0.658834 + 0.317278i 0.0596480 + 0.0287250i
\(123\) −2.41789 3.03194i −0.218014 0.273381i
\(124\) −11.7563 2.68329i −1.05574 0.240967i
\(125\) −1.46615 + 6.42361i −0.131136 + 0.574546i
\(126\) 0.179447 + 0.143104i 0.0159864 + 0.0127487i
\(127\) 1.01084 0.230718i 0.0896976 0.0204729i −0.177437 0.984132i \(-0.556780\pi\)
0.267134 + 0.963659i \(0.413923\pi\)
\(128\) 10.9215i 0.965337i
\(129\) 0.945042 + 4.14050i 0.0832063 + 0.364551i
\(130\) −0.755365 + 1.56853i −0.0662499 + 0.137569i
\(131\) 3.48052 7.22737i 0.304094 0.631458i −0.691790 0.722099i \(-0.743177\pi\)
0.995884 + 0.0906414i \(0.0288917\pi\)
\(132\) −2.46950 10.8196i −0.214942 0.941724i
\(133\) 0.841166i 0.0729384i
\(134\) 1.00793 0.230054i 0.0870720 0.0198736i
\(135\) −2.99894 2.39158i −0.258108 0.205834i
\(136\) −1.69202 + 7.41323i −0.145090 + 0.635679i
\(137\) 16.8005 + 3.83459i 1.43536 + 0.327611i 0.868289 0.496058i \(-0.165220\pi\)
0.567070 + 0.823670i \(0.308077\pi\)
\(138\) −0.794405 0.996152i −0.0676242 0.0847981i
\(139\) 15.0172 + 7.23191i 1.27374 + 0.613403i 0.943775 0.330589i \(-0.107247\pi\)
0.329969 + 0.943992i \(0.392962\pi\)
\(140\) 0.400969 0.193096i 0.0338881 0.0163196i
\(141\) 5.01089 6.28345i 0.421993 0.529162i
\(142\) −2.55224 + 2.03534i −0.214179 + 0.170802i
\(143\) 12.1137 + 25.1543i 1.01300 + 2.10351i
\(144\) 4.11960 0.343300
\(145\) 0 0
\(146\) −2.50365 −0.207203
\(147\) 3.71839 + 7.72132i 0.306688 + 0.636844i
\(148\) 6.95812 5.54892i 0.571954 0.456118i
\(149\) −11.6012 + 14.5474i −0.950406 + 1.19177i 0.0309396 + 0.999521i \(0.490150\pi\)
−0.981346 + 0.192251i \(0.938421\pi\)
\(150\) −2.26055 + 1.08863i −0.184573 + 0.0888859i
\(151\) −6.78232 3.26619i −0.551938 0.265799i 0.137060 0.990563i \(-0.456235\pi\)
−0.688998 + 0.724764i \(0.741949\pi\)
\(152\) −2.48643 3.11788i −0.201676 0.252893i
\(153\) 6.33114 + 1.44504i 0.511843 + 0.116825i
\(154\) −0.174563 + 0.764811i −0.0140667 + 0.0616302i
\(155\) −3.62068 2.88740i −0.290820 0.231921i
\(156\) 12.3833 2.82640i 0.991454 0.226293i
\(157\) 18.2392i 1.45565i −0.685764 0.727824i \(-0.740532\pi\)
0.685764 0.727824i \(-0.259468\pi\)
\(158\) 0.461968 + 2.02401i 0.0367522 + 0.161022i
\(159\) −2.53859 + 5.27144i −0.201323 + 0.418052i
\(160\) −1.39703 + 2.90097i −0.110445 + 0.229342i
\(161\) −0.182333 0.798852i −0.0143698 0.0629584i
\(162\) 1.14675i 0.0900973i
\(163\) 12.3238 2.81282i 0.965273 0.220317i 0.289296 0.957240i \(-0.406579\pi\)
0.675977 + 0.736922i \(0.263722\pi\)
\(164\) 4.38129 + 3.49396i 0.342121 + 0.272832i
\(165\) 0.948394 4.15519i 0.0738324 0.323481i
\(166\) −1.93284 0.441157i −0.150017 0.0342404i
\(167\) 0.496648 + 0.622776i 0.0384317 + 0.0481919i 0.800676 0.599098i \(-0.204474\pi\)
−0.762244 + 0.647290i \(0.775902\pi\)
\(168\) 0.678448 + 0.326723i 0.0523434 + 0.0252073i
\(169\) −17.0770 + 8.22386i −1.31362 + 0.632605i
\(170\) −0.862937 + 1.08209i −0.0661842 + 0.0829924i
\(171\) −2.66277 + 2.12349i −0.203627 + 0.162387i
\(172\) −2.66277 5.52930i −0.203034 0.421605i
\(173\) 9.15346 0.695924 0.347962 0.937509i \(-0.386874\pi\)
0.347962 + 0.937509i \(0.386874\pi\)
\(174\) 0 0
\(175\) −1.61356 −0.121974
\(176\) 6.10925 + 12.6860i 0.460502 + 0.956242i
\(177\) 12.1807 9.71379i 0.915558 0.730133i
\(178\) −1.57606 + 1.97632i −0.118131 + 0.148132i
\(179\) 3.06853 1.47773i 0.229353 0.110450i −0.315678 0.948866i \(-0.602232\pi\)
0.545031 + 0.838416i \(0.316518\pi\)
\(180\) 1.62349 + 0.781831i 0.121008 + 0.0582743i
\(181\) 7.90246 + 9.90937i 0.587385 + 0.736558i 0.983353 0.181707i \(-0.0581621\pi\)
−0.395967 + 0.918265i \(0.629591\pi\)
\(182\) −0.875342 0.199791i −0.0648847 0.0148095i
\(183\) 0.455927 1.99755i 0.0337031 0.147663i
\(184\) 3.03719 + 2.42208i 0.223904 + 0.178558i
\(185\) 3.33220 0.760553i 0.244988 0.0559170i
\(186\) 3.71379i 0.272308i
\(187\) 4.93900 + 21.6392i 0.361176 + 1.58241i
\(188\) −5.03894 + 10.4635i −0.367502 + 0.763126i
\(189\) 0.858322 1.78232i 0.0624337 0.129645i
\(190\) −0.161522 0.707674i −0.0117180 0.0513401i
\(191\) 10.6703i 0.772072i 0.922484 + 0.386036i \(0.126156\pi\)
−0.922484 + 0.386036i \(0.873844\pi\)
\(192\) 4.41429 1.00753i 0.318574 0.0727124i
\(193\) −17.7701 14.1712i −1.27912 1.02007i −0.998178 0.0603421i \(-0.980781\pi\)
−0.280945 0.959724i \(-0.590648\pi\)
\(194\) −0.0178854 + 0.0783611i −0.00128410 + 0.00562600i
\(195\) 4.75570 + 1.08546i 0.340563 + 0.0777312i
\(196\) −7.72132 9.68223i −0.551523 0.691588i
\(197\) 17.6211 + 8.48587i 1.25545 + 0.604593i 0.938968 0.344005i \(-0.111784\pi\)
0.316483 + 0.948598i \(0.397498\pi\)
\(198\) −2.86174 + 1.37814i −0.203375 + 0.0979402i
\(199\) −0.545565 + 0.684117i −0.0386741 + 0.0484958i −0.800792 0.598942i \(-0.795588\pi\)
0.762118 + 0.647438i \(0.224159\pi\)
\(200\) 5.98086 4.76958i 0.422911 0.337260i
\(201\) −1.25687 2.60992i −0.0886527 0.184089i
\(202\) 1.43727 0.101126
\(203\) 0 0
\(204\) 10.0978 0.706990
\(205\) 0.933774 + 1.93900i 0.0652176 + 0.135426i
\(206\) 4.75046 3.78836i 0.330980 0.263948i
\(207\) 2.06853 2.59386i 0.143773 0.180286i
\(208\) −14.5194 + 6.99216i −1.00674 + 0.484819i
\(209\) −10.4879 5.05072i −0.725464 0.349365i
\(210\) 0.0854576 + 0.107160i 0.00589713 + 0.00739477i
\(211\) 17.8107 + 4.06518i 1.22614 + 0.279858i 0.786088 0.618114i \(-0.212103\pi\)
0.440052 + 0.897972i \(0.354960\pi\)
\(212\) 1.88135 8.24275i 0.129212 0.566115i
\(213\) 7.15122 + 5.70291i 0.489993 + 0.390757i
\(214\) 7.04826 1.60872i 0.481809 0.109970i
\(215\) 2.35690i 0.160739i
\(216\) 2.08695 + 9.14352i 0.141999 + 0.622138i
\(217\) 1.03627 2.15183i 0.0703465 0.146076i
\(218\) −1.05562 + 2.19202i −0.0714957 + 0.148462i
\(219\) 1.56100 + 6.83918i 0.105483 + 0.462149i
\(220\) 6.15883i 0.415228i
\(221\) −24.7665 + 5.65279i −1.66598 + 0.380248i
\(222\) 2.14295 + 1.70895i 0.143826 + 0.114697i
\(223\) 0.404617 1.77274i 0.0270951 0.118712i −0.959572 0.281464i \(-0.909180\pi\)
0.986667 + 0.162752i \(0.0520372\pi\)
\(224\) −1.61893 0.369510i −0.108169 0.0246889i
\(225\) −4.07338 5.10785i −0.271558 0.340523i
\(226\) −4.28017 2.06122i −0.284713 0.137110i
\(227\) 12.4840 6.01199i 0.828594 0.399030i 0.0290066 0.999579i \(-0.490766\pi\)
0.799588 + 0.600549i \(0.205051\pi\)
\(228\) −3.30194 + 4.14050i −0.218676 + 0.274211i
\(229\) 9.98586 7.96346i 0.659884 0.526240i −0.235308 0.971921i \(-0.575610\pi\)
0.895192 + 0.445681i \(0.147038\pi\)
\(230\) 0.306794 + 0.637063i 0.0202294 + 0.0420067i
\(231\) 2.19806 0.144622
\(232\) 0 0
\(233\) −8.86592 −0.580826 −0.290413 0.956901i \(-0.593793\pi\)
−0.290413 + 0.956901i \(0.593793\pi\)
\(234\) −1.57731 3.27532i −0.103112 0.214115i
\(235\) −3.48705 + 2.78083i −0.227470 + 0.181401i
\(236\) −14.0368 + 17.6016i −0.913720 + 1.14577i
\(237\) 5.24094 2.52390i 0.340436 0.163945i
\(238\) −0.643104 0.309703i −0.0416862 0.0200750i
\(239\) −15.9393 19.9872i −1.03103 1.29287i −0.955268 0.295741i \(-0.904433\pi\)
−0.0757593 0.997126i \(-0.524138\pi\)
\(240\) 2.39843 + 0.547425i 0.154818 + 0.0353362i
\(241\) 2.16541 9.48727i 0.139486 0.611129i −0.856062 0.516873i \(-0.827096\pi\)
0.995548 0.0942554i \(-0.0300470\pi\)
\(242\) −4.66032 3.71648i −0.299577 0.238904i
\(243\) 13.0791 2.98523i 0.839028 0.191503i
\(244\) 2.96077i 0.189544i
\(245\) −1.05831 4.63676i −0.0676130 0.296232i
\(246\) −0.748828 + 1.55496i −0.0477436 + 0.0991405i
\(247\) 5.78065 12.0036i 0.367814 0.763774i
\(248\) 2.51961 + 11.0392i 0.159996 + 0.700987i
\(249\) 5.55496i 0.352031i
\(250\) 2.85878 0.652497i 0.180805 0.0412676i
\(251\) 7.63092 + 6.08546i 0.481660 + 0.384111i 0.834003 0.551760i \(-0.186044\pi\)
−0.352343 + 0.935871i \(0.614615\pi\)
\(252\) −0.206791 + 0.906013i −0.0130266 + 0.0570734i
\(253\) 11.0551 + 2.52326i 0.695030 + 0.158636i
\(254\) −0.287700 0.360765i −0.0180519 0.0226364i
\(255\) 3.49396 + 1.68260i 0.218800 + 0.105369i
\(256\) −2.16368 + 1.04197i −0.135230 + 0.0651233i
\(257\) 10.1984 12.7883i 0.636156 0.797714i −0.354360 0.935109i \(-0.615301\pi\)
0.990516 + 0.137394i \(0.0438728\pi\)
\(258\) 1.47773 1.17845i 0.0919993 0.0733670i
\(259\) 0.764811 + 1.58815i 0.0475230 + 0.0986826i
\(260\) −7.04892 −0.437155
\(261\) 0 0
\(262\) −3.57002 −0.220557
\(263\) 10.2932 + 21.3741i 0.634708 + 1.31798i 0.931743 + 0.363118i \(0.118288\pi\)
−0.297035 + 0.954867i \(0.595998\pi\)
\(264\) −8.14737 + 6.49731i −0.501436 + 0.399882i
\(265\) 2.02446 2.53859i 0.124362 0.155944i
\(266\) 0.337282 0.162426i 0.0206801 0.00995899i
\(267\) 6.38135 + 3.07310i 0.390533 + 0.188071i
\(268\) 2.60992 + 3.27273i 0.159426 + 0.199914i
\(269\) −24.7188 5.64191i −1.50713 0.343993i −0.612383 0.790561i \(-0.709789\pi\)
−0.894750 + 0.446568i \(0.852646\pi\)
\(270\) −0.379863 + 1.66429i −0.0231177 + 0.101285i
\(271\) −0.940887 0.750332i −0.0571548 0.0455794i 0.594496 0.804099i \(-0.297352\pi\)
−0.651651 + 0.758519i \(0.725923\pi\)
\(272\) −12.4904 + 2.85086i −0.757342 + 0.172858i
\(273\) 2.51573i 0.152259i
\(274\) −1.70655 7.47690i −0.103097 0.451696i
\(275\) 9.68851 20.1184i 0.584239 1.21319i
\(276\) 2.23833 4.64795i 0.134732 0.279774i
\(277\) −2.37316 10.3975i −0.142589 0.624724i −0.994828 0.101572i \(-0.967613\pi\)
0.852239 0.523153i \(-0.175244\pi\)
\(278\) 7.41789i 0.444896i
\(279\) 9.42780 2.15183i 0.564427 0.128827i
\(280\) −0.326723 0.260553i −0.0195255 0.0155710i
\(281\) 3.62253 15.8713i 0.216102 0.946805i −0.744225 0.667929i \(-0.767181\pi\)
0.960327 0.278876i \(-0.0899618\pi\)
\(282\) −3.48705 0.795897i −0.207651 0.0473950i
\(283\) 3.27144 + 4.10225i 0.194467 + 0.243854i 0.869499 0.493935i \(-0.164442\pi\)
−0.675032 + 0.737788i \(0.735870\pi\)
\(284\) −11.9085 5.73483i −0.706640 0.340300i
\(285\) −1.83244 + 0.882455i −0.108544 + 0.0522721i
\(286\) 7.74698 9.71441i 0.458089 0.574425i
\(287\) −0.867767 + 0.692021i −0.0512227 + 0.0408487i
\(288\) −2.91721 6.05765i −0.171898 0.356950i
\(289\) −3.19567 −0.187981
\(290\) 0 0
\(291\) 0.225209 0.0132020
\(292\) −4.39831 9.13318i −0.257391 0.534479i
\(293\) 5.28813 4.21714i 0.308936 0.246368i −0.456732 0.889604i \(-0.650980\pi\)
0.765668 + 0.643236i \(0.222409\pi\)
\(294\) 2.37800 2.98192i 0.138688 0.173909i
\(295\) −7.78986 + 3.75140i −0.453543 + 0.218415i
\(296\) −7.52930 3.62592i −0.437632 0.210752i
\(297\) 17.0688 + 21.4036i 0.990434 + 1.24196i
\(298\) 8.07321 + 1.84266i 0.467669 + 0.106742i
\(299\) −2.88793 + 12.6528i −0.167013 + 0.731733i
\(300\) −7.94250 6.33393i −0.458560 0.365690i
\(301\) 1.18505 0.270479i 0.0683049 0.0155901i
\(302\) 3.35019i 0.192782i
\(303\) −0.896125 3.92618i −0.0514810 0.225553i
\(304\) 2.91534 6.05376i 0.167206 0.347207i
\(305\) −0.493353 + 1.02446i −0.0282493 + 0.0586603i
\(306\) −0.643104 2.81762i −0.0367638 0.161073i
\(307\) 4.51812i 0.257863i −0.991654 0.128931i \(-0.958845\pi\)
0.991654 0.128931i \(-0.0411547\pi\)
\(308\) −3.09666 + 0.706791i −0.176448 + 0.0402732i
\(309\) −13.3105 10.6148i −0.757207 0.603853i
\(310\) −0.458615 + 2.00933i −0.0260476 + 0.114122i
\(311\) −12.3002 2.80745i −0.697482 0.159196i −0.140944 0.990018i \(-0.545014\pi\)
−0.556538 + 0.830822i \(0.687871\pi\)
\(312\) −7.43631 9.32484i −0.420998 0.527915i
\(313\) −17.3349 8.34804i −0.979826 0.471859i −0.125781 0.992058i \(-0.540144\pi\)
−0.854045 + 0.520199i \(0.825858\pi\)
\(314\) −7.31336 + 3.52193i −0.412717 + 0.198754i
\(315\) −0.222521 + 0.279032i −0.0125376 + 0.0157217i
\(316\) −6.57193 + 5.24094i −0.369700 + 0.294826i
\(317\) −1.24451 2.58426i −0.0698989 0.145147i 0.863092 0.505047i \(-0.168525\pi\)
−0.932991 + 0.359901i \(0.882811\pi\)
\(318\) 2.60388 0.146018
\(319\) 0 0
\(320\) −2.51275 −0.140467
\(321\) −8.78904 18.2506i −0.490556 1.01865i
\(322\) −0.285107 + 0.227365i −0.0158884 + 0.0126706i
\(323\) 6.60388 8.28100i 0.367449 0.460767i
\(324\) 4.18329 2.01457i 0.232405 0.111920i
\(325\) 23.0260 + 11.0887i 1.27725 + 0.615091i
\(326\) −3.50753 4.39831i −0.194264 0.243600i
\(327\) 6.64609 + 1.51693i 0.367529 + 0.0838862i
\(328\) 1.17092 5.13011i 0.0646530 0.283263i
\(329\) −1.79838 1.43416i −0.0991477 0.0790676i
\(330\) −1.84923 + 0.422075i −0.101797 + 0.0232345i
\(331\) 3.13408i 0.172265i 0.996284 + 0.0861323i \(0.0274508\pi\)
−0.996284 + 0.0861323i \(0.972549\pi\)
\(332\) −1.78621 7.82589i −0.0980309 0.429501i
\(333\) −3.09666 + 6.43027i −0.169696 + 0.352377i
\(334\) 0.153813 0.319396i 0.00841628 0.0174766i
\(335\) 0.357724 + 1.56729i 0.0195445 + 0.0856302i
\(336\) 1.26875i 0.0692160i
\(337\) 4.85762 1.10872i 0.264611 0.0603958i −0.0881567 0.996107i \(-0.528098\pi\)
0.352768 + 0.935711i \(0.385240\pi\)
\(338\) 6.59502 + 5.25936i 0.358722 + 0.286071i
\(339\) −2.96197 + 12.9772i −0.160872 + 0.704826i
\(340\) −5.46337 1.24698i −0.296293 0.0676270i
\(341\) 20.6075 + 25.8410i 1.11596 + 1.39937i
\(342\) 1.36563 + 0.657650i 0.0738445 + 0.0355617i
\(343\) 4.46077 2.14819i 0.240859 0.115992i
\(344\) −3.59299 + 4.50547i −0.193721 + 0.242919i
\(345\) 1.54898 1.23527i 0.0833940 0.0665045i
\(346\) −1.76750 3.67025i −0.0950214 0.197314i
\(347\) −20.1172 −1.07995 −0.539974 0.841682i \(-0.681566\pi\)
−0.539974 + 0.841682i \(0.681566\pi\)
\(348\) 0 0
\(349\) 20.4892 1.09676 0.548380 0.836229i \(-0.315245\pi\)
0.548380 + 0.836229i \(0.315245\pi\)
\(350\) 0.311573 + 0.646989i 0.0166543 + 0.0345830i
\(351\) −24.4969 + 19.5356i −1.30755 + 1.04274i
\(352\) 14.3279 17.9666i 0.763679 0.957623i
\(353\) 16.2153 7.80887i 0.863052 0.415624i 0.0506467 0.998717i \(-0.483872\pi\)
0.812406 + 0.583092i \(0.198157\pi\)
\(354\) −6.24698 3.00839i −0.332023 0.159894i
\(355\) −3.16487 3.96863i −0.167974 0.210633i
\(356\) −9.97829 2.27748i −0.528848 0.120706i
\(357\) −0.445042 + 1.94986i −0.0235541 + 0.103197i
\(358\) −1.18505 0.945042i −0.0626316 0.0499470i
\(359\) −23.0362 + 5.25786i −1.21580 + 0.277499i −0.781868 0.623444i \(-0.785733\pi\)
−0.433937 + 0.900943i \(0.642876\pi\)
\(360\) 1.69202i 0.0891774i
\(361\) −2.99180 13.1079i −0.157463 0.689892i
\(362\) 2.44741 5.08211i 0.128633 0.267110i
\(363\) −7.24660 + 15.0477i −0.380348 + 0.789801i
\(364\) −0.808938 3.54419i −0.0423999 0.185766i
\(365\) 3.89307i 0.203772i
\(366\) −0.888992 + 0.202907i −0.0464684 + 0.0106061i
\(367\) 23.1759 + 18.4822i 1.20977 + 0.964762i 0.999916 0.0129705i \(-0.00412876\pi\)
0.209857 + 0.977732i \(0.432700\pi\)
\(368\) −1.45646 + 6.38117i −0.0759232 + 0.332641i
\(369\) −4.38129 1.00000i −0.228081 0.0520579i
\(370\) −0.948394 1.18925i −0.0493047 0.0618261i
\(371\) 1.50873 + 0.726566i 0.0783293 + 0.0377214i
\(372\) 13.5477 6.52424i 0.702417 0.338266i
\(373\) −15.7044 + 19.6927i −0.813143 + 1.01965i 0.186167 + 0.982518i \(0.440393\pi\)
−0.999310 + 0.0371310i \(0.988178\pi\)
\(374\) 7.72293 6.15883i 0.399343 0.318466i
\(375\) −3.56484 7.40246i −0.184087 0.382261i
\(376\) 10.9051 0.562390
\(377\) 0 0
\(378\) −0.880395 −0.0452826
\(379\) −11.6745 24.2424i −0.599681 1.24525i −0.951057 0.309016i \(-0.900000\pi\)
0.351376 0.936234i \(-0.385714\pi\)
\(380\) 2.29780 1.83244i 0.117875 0.0940020i
\(381\) −0.806118 + 1.01084i −0.0412987 + 0.0517869i
\(382\) 4.27844 2.06039i 0.218904 0.105419i
\(383\) −17.7213 8.53414i −0.905517 0.436074i −0.0776388 0.996982i \(-0.524738\pi\)
−0.827879 + 0.560907i \(0.810452\pi\)
\(384\) −8.49127 10.6477i −0.433318 0.543364i
\(385\) −1.18925 0.271438i −0.0606097 0.0138338i
\(386\) −2.25086 + 9.86168i −0.114566 + 0.501946i
\(387\) 3.84782 + 3.06853i 0.195596 + 0.155982i
\(388\) −0.317278 + 0.0724165i −0.0161073 + 0.00367639i
\(389\) 24.8552i 1.26021i 0.776511 + 0.630103i \(0.216988\pi\)
−0.776511 + 0.630103i \(0.783012\pi\)
\(390\) −0.483074 2.11649i −0.0244614 0.107172i
\(391\) −4.47667 + 9.29590i −0.226395 + 0.470114i
\(392\) −5.04547 + 10.4770i −0.254835 + 0.529170i
\(393\) 2.22587 + 9.75219i 0.112280 + 0.491933i
\(394\) 8.70410i 0.438506i
\(395\) −3.14726 + 0.718341i −0.158356 + 0.0361436i
\(396\) −10.0548 8.01842i −0.505272 0.402941i
\(397\) 0.888887 3.89447i 0.0446120 0.195458i −0.947711 0.319129i \(-0.896610\pi\)
0.992323 + 0.123671i \(0.0394668\pi\)
\(398\) 0.379656 + 0.0866540i 0.0190304 + 0.00434357i
\(399\) −0.653989 0.820077i −0.0327404 0.0410552i
\(400\) 11.6126 + 5.59234i 0.580630 + 0.279617i
\(401\) 22.4405 10.8068i 1.12062 0.539664i 0.220539 0.975378i \(-0.429218\pi\)
0.900085 + 0.435714i \(0.143504\pi\)
\(402\) −0.803798 + 1.00793i −0.0400898 + 0.0502710i
\(403\) −29.5756 + 23.5858i −1.47327 + 1.17489i
\(404\) 2.52494 + 5.24309i 0.125621 + 0.260854i
\(405\) 1.78315 0.0886055
\(406\) 0 0
\(407\) −24.3937 −1.20915
\(408\) −4.11403 8.54288i −0.203675 0.422935i
\(409\) 0.221434 0.176587i 0.0109492 0.00873169i −0.618000 0.786178i \(-0.712057\pi\)
0.628949 + 0.777446i \(0.283485\pi\)
\(410\) 0.597171 0.748828i 0.0294922 0.0369820i
\(411\) −19.3605 + 9.32355i −0.954985 + 0.459897i
\(412\) 22.1652 + 10.6742i 1.09200 + 0.525879i
\(413\) −2.78017 3.48622i −0.136803 0.171546i
\(414\) −1.43948 0.328552i −0.0707467 0.0161475i
\(415\) 0.685981 3.00548i 0.0336735 0.147533i
\(416\) 20.5632 + 16.3986i 1.00819 + 0.804006i
\(417\) −20.2634 + 4.62498i −0.992301 + 0.226486i
\(418\) 5.18060i 0.253392i
\(419\) −5.89426 25.8245i −0.287954 1.26161i −0.887328 0.461139i \(-0.847441\pi\)
0.599374 0.800469i \(-0.295416\pi\)
\(420\) −0.240787 + 0.500000i −0.0117492 + 0.0243975i
\(421\) −7.62859 + 15.8409i −0.371795 + 0.772040i −0.999982 0.00602261i \(-0.998083\pi\)
0.628187 + 0.778062i \(0.283797\pi\)
\(422\) −1.80917 7.92651i −0.0880693 0.385857i
\(423\) 9.31336i 0.452831i
\(424\) −7.73995 + 1.76659i −0.375885 + 0.0857934i
\(425\) 15.8850 + 12.6679i 0.770535 + 0.614481i
\(426\) 0.905813 3.96863i 0.0438868 0.192281i
\(427\) −0.571714 0.130490i −0.0276672 0.00631486i
\(428\) 18.2506 + 22.8856i 0.882177 + 1.10622i
\(429\) −31.3669 15.1055i −1.51441 0.729300i
\(430\) −0.945042 + 0.455108i −0.0455740 + 0.0219473i
\(431\) −17.3300 + 21.7312i −0.834759 + 1.04675i 0.163428 + 0.986555i \(0.447745\pi\)
−0.998186 + 0.0601992i \(0.980826\pi\)
\(432\) −12.3545 + 9.85235i −0.594404 + 0.474021i
\(433\) −2.54933 5.29374i −0.122513 0.254401i 0.830688 0.556738i \(-0.187947\pi\)
−0.953201 + 0.302337i \(0.902233\pi\)
\(434\) −1.06292 −0.0510217
\(435\) 0 0
\(436\) −9.85086 −0.471770
\(437\) −2.34783 4.87531i −0.112312 0.233218i
\(438\) 2.44088 1.94653i 0.116630 0.0930090i
\(439\) 9.81431 12.3068i 0.468412 0.587370i −0.490370 0.871515i \(-0.663138\pi\)
0.958781 + 0.284145i \(0.0917097\pi\)
\(440\) 5.21044 2.50922i 0.248398 0.119622i
\(441\) 8.94773 + 4.30900i 0.426082 + 0.205190i
\(442\) 7.04892 + 8.83906i 0.335283 + 0.420431i
\(443\) −6.56960 1.49947i −0.312131 0.0712419i 0.0635859 0.997976i \(-0.479746\pi\)
−0.375717 + 0.926735i \(0.622603\pi\)
\(444\) −2.46950 + 10.8196i −0.117197 + 0.513475i
\(445\) −3.07310 2.45071i −0.145679 0.116175i
\(446\) −0.788944 + 0.180071i −0.0373576 + 0.00852663i
\(447\) 23.2024i 1.09743i
\(448\) −0.288364 1.26341i −0.0136239 0.0596903i
\(449\) −5.34547 + 11.1000i −0.252269 + 0.523841i −0.988191 0.153224i \(-0.951034\pi\)
0.735923 + 0.677065i \(0.236749\pi\)
\(450\) −1.26154 + 2.61960i −0.0594693 + 0.123489i
\(451\) −3.41789 14.9748i −0.160942 0.705135i
\(452\) 19.2349i 0.904733i
\(453\) 9.15167 2.08881i 0.429983 0.0981409i
\(454\) −4.82124 3.84481i −0.226272 0.180446i
\(455\) 0.310667 1.36112i 0.0145643 0.0638103i
\(456\) 4.84817 + 1.10656i 0.227037 + 0.0518196i
\(457\) −8.51842 10.6818i −0.398475 0.499672i 0.541602 0.840635i \(-0.317818\pi\)
−0.940076 + 0.340964i \(0.889247\pi\)
\(458\) −5.12133 2.46630i −0.239304 0.115243i
\(459\) −22.4426 + 10.8078i −1.04753 + 0.504465i
\(460\) −1.78501 + 2.23833i −0.0832266 + 0.104363i
\(461\) −9.07565 + 7.23759i −0.422695 + 0.337088i −0.811624 0.584180i \(-0.801416\pi\)
0.388929 + 0.921268i \(0.372845\pi\)
\(462\) −0.424438 0.881355i −0.0197466 0.0410043i
\(463\) 7.24267 0.336595 0.168298 0.985736i \(-0.446173\pi\)
0.168298 + 0.985736i \(0.446173\pi\)
\(464\) 0 0
\(465\) 5.77479 0.267800
\(466\) 1.71198 + 3.55496i 0.0793058 + 0.164680i
\(467\) −1.61322 + 1.28650i −0.0746511 + 0.0595323i −0.660104 0.751174i \(-0.729488\pi\)
0.585453 + 0.810706i \(0.300917\pi\)
\(468\) 9.17725 11.5079i 0.424219 0.531953i
\(469\) −0.746980 + 0.359726i −0.0344923 + 0.0166106i
\(470\) 1.78836 + 0.861231i 0.0824911 + 0.0397256i
\(471\) 14.1806 + 17.7819i 0.653408 + 0.819347i
\(472\) 20.6100 + 4.70410i 0.948653 + 0.216524i
\(473\) −3.74309 + 16.3996i −0.172108 + 0.754053i
\(474\) −2.02401 1.61410i −0.0929660 0.0741379i
\(475\) −10.3886 + 2.37113i −0.476662 + 0.108795i
\(476\) 2.89008i 0.132467i
\(477\) 1.50873 + 6.61017i 0.0690800 + 0.302659i
\(478\) −4.93644 + 10.2506i −0.225788 + 0.468853i
\(479\) −1.68738 + 3.50388i −0.0770985 + 0.160097i −0.935955 0.352120i \(-0.885461\pi\)
0.858857 + 0.512216i \(0.171175\pi\)
\(480\) −0.893436 3.91440i −0.0407796 0.178667i
\(481\) 27.9191i 1.27300i
\(482\) −4.22223 + 0.963697i −0.192317 + 0.0438952i
\(483\) 0.798852 + 0.637063i 0.0363490 + 0.0289874i
\(484\) 5.37047 23.5296i 0.244112 1.06953i
\(485\) −0.121848 0.0278111i −0.00553284 0.00126284i
\(486\) −3.72252 4.66789i −0.168857 0.211740i
\(487\) −8.87047 4.27179i −0.401959 0.193573i 0.221971 0.975053i \(-0.428751\pi\)
−0.623931 + 0.781480i \(0.714465\pi\)
\(488\) 2.50484 1.20627i 0.113389 0.0546053i
\(489\) −9.82789 + 12.3238i −0.444432 + 0.557301i
\(490\) −1.65484 + 1.31969i −0.0747581 + 0.0596176i
\(491\) −3.38047 7.01961i −0.152558 0.316791i 0.810657 0.585521i \(-0.199110\pi\)
−0.963215 + 0.268731i \(0.913396\pi\)
\(492\) −6.98792 −0.315040
\(493\) 0 0
\(494\) −5.92931 −0.266772
\(495\) −2.14295 4.44989i −0.0963185 0.200008i
\(496\) −14.9158 + 11.8949i −0.669738 + 0.534098i
\(497\) 1.63222 2.04674i 0.0732150 0.0918087i
\(498\) 2.22737 1.07264i 0.0998106 0.0480663i
\(499\) −18.5286 8.92292i −0.829456 0.399445i −0.0295448 0.999563i \(-0.509406\pi\)
−0.799911 + 0.600119i \(0.795120\pi\)
\(500\) 7.40246 + 9.28239i 0.331048 + 0.415121i
\(501\) −0.968391 0.221029i −0.0432645 0.00987485i
\(502\) 0.966575 4.23484i 0.0431404 0.189010i
\(503\) 6.43830 + 5.13437i 0.287070 + 0.228930i 0.756427 0.654078i \(-0.226943\pi\)
−0.469358 + 0.883008i \(0.655514\pi\)
\(504\) 0.850747 0.194177i 0.0378953 0.00864935i
\(505\) 2.23490i 0.0994517i
\(506\) −1.12296 4.92000i −0.0499215 0.218721i
\(507\) 10.2550 21.2947i 0.455440 0.945731i
\(508\) 0.810631 1.68329i 0.0359659 0.0746840i
\(509\) −1.76151 7.71769i −0.0780777 0.342081i 0.920768 0.390110i \(-0.127563\pi\)
−0.998846 + 0.0480294i \(0.984706\pi\)
\(510\) 1.72587i 0.0764230i
\(511\) 1.95743 0.446771i 0.0865916 0.0197640i
\(512\) 17.9132 + 14.2853i 0.791659 + 0.631327i
\(513\) 2.90701 12.7364i 0.128348 0.562328i
\(514\) −7.09699 1.61984i −0.313035 0.0714482i
\(515\) 5.89075 + 7.38676i 0.259577 + 0.325500i
\(516\) 6.89493 + 3.32042i 0.303532 + 0.146173i
\(517\) 28.6797 13.8114i 1.26133 0.607425i
\(518\) 0.489115 0.613331i 0.0214905 0.0269482i
\(519\) −8.92396 + 7.11662i −0.391718 + 0.312385i
\(520\) 2.87185 + 5.96346i 0.125939 + 0.261515i
\(521\) 3.52542 0.154451 0.0772257 0.997014i \(-0.475394\pi\)
0.0772257 + 0.997014i \(0.475394\pi\)
\(522\) 0 0
\(523\) 10.0301 0.438587 0.219294 0.975659i \(-0.429625\pi\)
0.219294 + 0.975659i \(0.429625\pi\)
\(524\) −6.27167 13.0233i −0.273979 0.568924i
\(525\) 1.57311 1.25451i 0.0686561 0.0547514i
\(526\) 6.58277 8.25453i 0.287022 0.359915i
\(527\) −27.0954 + 13.0485i −1.18030 + 0.568401i
\(528\) −15.8192 7.61811i −0.688441 0.331535i
\(529\) −11.0538 13.8610i −0.480598 0.602651i
\(530\) −1.40881 0.321552i −0.0611949 0.0139673i
\(531\) 4.01746 17.6016i 0.174343 0.763846i
\(532\) 1.18505 + 0.945042i 0.0513782 + 0.0409728i
\(533\) 17.1390 3.91185i 0.742370 0.169441i
\(534\) 3.15213i 0.136406i
\(535\) 2.50149 + 10.9598i 0.108149 + 0.473831i
\(536\) 1.70544 3.54138i 0.0736638 0.152965i
\(537\) −1.84270 + 3.82640i −0.0795182 + 0.165121i
\(538\) 2.51089 + 11.0009i 0.108252 + 0.474283i
\(539\) 33.9439i 1.46207i
\(540\) −6.73856 + 1.53803i −0.289981 + 0.0661864i
\(541\) −6.42990 5.12767i −0.276443 0.220456i 0.475447 0.879744i \(-0.342286\pi\)
−0.751890 + 0.659288i \(0.770858\pi\)
\(542\) −0.119178 + 0.522153i −0.00511913 + 0.0224284i
\(543\) −15.4087 3.51693i −0.661249 0.150926i
\(544\) 13.0368 + 16.3477i 0.558950 + 0.700901i
\(545\) −3.40850 1.64145i −0.146004 0.0703119i
\(546\) 1.00873 0.485778i 0.0431696 0.0207894i
\(547\) 16.1253 20.2205i 0.689467 0.864564i −0.306721 0.951800i \(-0.599232\pi\)
0.996188 + 0.0872352i \(0.0278032\pi\)
\(548\) 24.2774 19.3605i 1.03708 0.827041i
\(549\) −1.03019 2.13922i −0.0439676 0.0912997i
\(550\) −9.93767 −0.423744
\(551\) 0 0
\(552\) −4.84415 −0.206181
\(553\) −0.722362 1.50000i −0.0307180 0.0637865i
\(554\) −3.71082 + 2.95928i −0.157658 + 0.125728i
\(555\) −2.65734 + 3.33220i −0.112798 + 0.141444i
\(556\) 27.0601 13.0315i 1.14760 0.552657i
\(557\) 20.7310 + 9.98353i 0.878401 + 0.423016i 0.818040 0.575161i \(-0.195061\pi\)
0.0603609 + 0.998177i \(0.480775\pi\)
\(558\) −2.68329 3.36474i −0.113593 0.142441i
\(559\) −18.7697 4.28405i −0.793872 0.181196i
\(560\) 0.156678 0.686450i 0.00662084 0.0290078i
\(561\) −21.6392 17.2567i −0.913607 0.728577i
\(562\) −7.06341 + 1.61218i −0.297952 + 0.0680056i
\(563\) 43.1159i 1.81712i 0.417757 + 0.908559i \(0.362816\pi\)
−0.417757 + 0.908559i \(0.637184\pi\)
\(564\) −3.22252 14.1188i −0.135693 0.594508i
\(565\) 3.20511 6.65548i 0.134840 0.279998i
\(566\) 1.01317 2.10388i 0.0425868 0.0884325i
\(567\) 0.204636 + 0.896567i 0.00859388 + 0.0376523i
\(568\) 12.4112i 0.520762i
\(569\) −23.7027 + 5.40999i −0.993670 + 0.226799i −0.688293 0.725433i \(-0.741640\pi\)
−0.305377 + 0.952231i \(0.598783\pi\)
\(570\) 0.707674 + 0.564351i 0.0296412 + 0.0236381i
\(571\) −4.11410 + 18.0250i −0.172170 + 0.754324i 0.812933 + 0.582357i \(0.197869\pi\)
−0.985103 + 0.171967i \(0.944988\pi\)
\(572\) 49.0472 + 11.1947i 2.05077 + 0.468074i
\(573\) −8.29590 10.4027i −0.346566 0.434580i
\(574\) 0.445042 + 0.214321i 0.0185757 + 0.00894558i
\(575\) 9.35205 4.50371i 0.390008 0.187818i
\(576\) 3.27144 4.10225i 0.136310 0.170927i
\(577\) 29.5987 23.6042i 1.23221 0.982654i 0.232260 0.972654i \(-0.425388\pi\)
0.999950 0.0100007i \(-0.00318338\pi\)
\(578\) 0.617072 + 1.28136i 0.0256668 + 0.0532977i
\(579\) 28.3424 1.17787
\(580\) 0 0
\(581\) 1.58987 0.0659591
\(582\) −0.0434871 0.0903019i −0.00180260 0.00374314i
\(583\) −18.1181 + 14.4487i −0.750374 + 0.598404i
\(584\) −5.93482 + 7.44203i −0.245585 + 0.307953i
\(585\) 5.09299 2.45265i 0.210569 0.101405i
\(586\) −2.71206 1.30606i −0.112034 0.0539529i
\(587\) −9.00030 11.2860i −0.371482 0.465824i 0.560592 0.828092i \(-0.310574\pi\)
−0.932074 + 0.362269i \(0.882002\pi\)
\(588\) 15.0555 + 3.43631i 0.620877 + 0.141711i
\(589\) 3.50969 15.3770i 0.144614 0.633596i
\(590\) 3.00839 + 2.39911i 0.123853 + 0.0987697i
\(591\) −23.7769 + 5.42692i −0.978050 + 0.223234i
\(592\) 14.0804i 0.578700i
\(593\) −2.89320 12.6759i −0.118809 0.520538i −0.998950 0.0458241i \(-0.985409\pi\)
0.880140 0.474714i \(-0.157449\pi\)
\(594\) 5.28626 10.9770i 0.216898 0.450393i
\(595\) 0.481575 1.00000i 0.0197426 0.0409960i
\(596\) 7.46077 + 32.6878i 0.305605 + 1.33894i
\(597\) 1.09113i 0.0446570i
\(598\) 5.63104 1.28525i 0.230270 0.0525577i
\(599\) −9.45510 7.54019i −0.386325 0.308084i 0.410999 0.911636i \(-0.365180\pi\)
−0.797323 + 0.603552i \(0.793751\pi\)
\(600\) −2.12266 + 9.29999i −0.0866573 + 0.379670i
\(601\) −21.7869 4.97272i −0.888707 0.202842i −0.246289 0.969196i \(-0.579211\pi\)
−0.642418 + 0.766355i \(0.722068\pi\)
\(602\) −0.337282 0.422938i −0.0137466 0.0172377i
\(603\) −3.02446 1.45650i −0.123165 0.0593134i
\(604\) −12.2213 + 5.88548i −0.497279 + 0.239477i
\(605\) 5.77897 7.24660i 0.234949 0.294616i
\(606\) −1.40124 + 1.11745i −0.0569214 + 0.0453933i
\(607\) −17.9926 37.3620i −0.730297 1.51648i −0.851789 0.523886i \(-0.824482\pi\)
0.121491 0.992593i \(-0.461232\pi\)
\(608\) −10.9661 −0.444736
\(609\) 0 0
\(610\) 0.506041 0.0204890
\(611\) 15.8075 + 32.8245i 0.639502 + 1.32794i
\(612\) 9.14877 7.29590i 0.369817 0.294919i
\(613\) −16.0764 + 20.1591i −0.649318 + 0.814219i −0.992134 0.125184i \(-0.960048\pi\)
0.342816 + 0.939403i \(0.388619\pi\)
\(614\) −1.81163 + 0.872433i −0.0731113 + 0.0352085i
\(615\) −2.41789 1.16440i −0.0974989 0.0469530i
\(616\) 1.85958 + 2.33184i 0.0749248 + 0.0939527i
\(617\) −8.64306 1.97272i −0.347956 0.0794188i 0.0449710 0.998988i \(-0.485680\pi\)
−0.392927 + 0.919570i \(0.628538\pi\)
\(618\) −1.68598 + 7.38676i −0.0678201 + 0.297139i
\(619\) 23.0259 + 18.3626i 0.925490 + 0.738054i 0.965297 0.261153i \(-0.0841029\pi\)
−0.0398069 + 0.999207i \(0.512674\pi\)
\(620\) −8.13559 + 1.85690i −0.326733 + 0.0745747i
\(621\) 12.7259i 0.510672i
\(622\) 1.24943 + 5.47412i 0.0500976 + 0.219492i
\(623\) 0.879546 1.82640i 0.0352383 0.0731730i
\(624\) 8.71909 18.1054i 0.349043 0.724795i
\(625\) −4.01560 17.5935i −0.160624 0.703739i
\(626\) 8.56273i 0.342235i
\(627\) 14.1518 3.23005i 0.565168 0.128996i
\(628\) −25.6956 20.4916i −1.02537 0.817703i
\(629\) 4.93900 21.6392i 0.196931 0.862811i
\(630\) 0.154851 + 0.0353438i 0.00616942 + 0.00140813i
\(631\) −14.8210 18.5850i −0.590015 0.739856i 0.393769 0.919209i \(-0.371171\pi\)
−0.983785 + 0.179353i \(0.942599\pi\)
\(632\) 7.11141 + 3.42467i 0.282877 + 0.136226i
\(633\) −20.5248 + 9.88420i −0.815786 + 0.392862i
\(634\) −0.795897 + 0.998023i −0.0316091 + 0.0396366i
\(635\) 0.560974 0.447362i 0.0222616 0.0177530i
\(636\) 4.57438 + 9.49880i 0.181386 + 0.376652i
\(637\) −38.8495 −1.53927
\(638\) 0 0
\(639\) 10.5996 0.419312
\(640\) 3.27927 + 6.80947i 0.129624 + 0.269168i
\(641\) 22.2552 17.7479i 0.879028 0.701001i −0.0761300 0.997098i \(-0.524256\pi\)
0.955158 + 0.296096i \(0.0956850\pi\)
\(642\) −5.62080 + 7.04826i −0.221835 + 0.278173i
\(643\) −17.4308 + 8.39423i −0.687404 + 0.331036i −0.744774 0.667317i \(-0.767443\pi\)
0.0573702 + 0.998353i \(0.481728\pi\)
\(644\) −1.33028 0.640630i −0.0524204 0.0252443i
\(645\) 1.83244 + 2.29780i 0.0721521 + 0.0904759i
\(646\) −4.59561 1.04892i −0.180812 0.0412691i
\(647\) 5.05443 22.1449i 0.198710 0.870605i −0.772996 0.634411i \(-0.781243\pi\)
0.971706 0.236194i \(-0.0759002\pi\)
\(648\) −3.40869 2.71834i −0.133906 0.106787i
\(649\) 60.1605 13.7313i 2.36151 0.538999i
\(650\) 11.3739i 0.446120i
\(651\) 0.662718 + 2.90356i 0.0259740 + 0.113799i
\(652\) 9.88291 20.5221i 0.387044 0.803706i
\(653\) 9.94949 20.6603i 0.389354 0.808501i −0.610510 0.792008i \(-0.709036\pi\)
0.999864 0.0164928i \(-0.00525006\pi\)
\(654\) −0.675096 2.95779i −0.0263983 0.115659i
\(655\) 5.55124i 0.216905i
\(656\) 8.64363 1.97285i 0.337477 0.0770270i
\(657\) 6.35574 + 5.06853i 0.247961 + 0.197742i
\(658\) −0.227792 + 0.998023i −0.00888027 + 0.0389070i
\(659\) −18.6974 4.26755i −0.728346 0.166240i −0.157759 0.987478i \(-0.550427\pi\)
−0.570587 + 0.821237i \(0.693284\pi\)
\(660\) −4.78836 6.00442i −0.186387 0.233722i
\(661\) 3.05107 + 1.46932i 0.118673 + 0.0571499i 0.492278 0.870438i \(-0.336164\pi\)
−0.373605 + 0.927588i \(0.621879\pi\)
\(662\) 1.25667 0.605180i 0.0488418 0.0235210i
\(663\) 19.7506 24.7665i 0.767051 0.961851i
\(664\) −5.89305 + 4.69955i −0.228695 + 0.182378i
\(665\) 0.252566 + 0.524459i 0.00979409 + 0.0203376i
\(666\) 3.17629 0.123079
\(667\) 0 0
\(668\) 1.43535 0.0555355
\(669\) 0.983797 + 2.04288i 0.0380358 + 0.0789822i
\(670\) 0.559360 0.446074i 0.0216099 0.0172334i
\(671\) 5.05980 6.34479i 0.195332 0.244938i
\(672\) 1.86563 0.898438i 0.0719680 0.0346580i
\(673\) 4.29805 + 2.06983i 0.165678 + 0.0797862i 0.514885 0.857259i \(-0.327835\pi\)
−0.349207 + 0.937046i \(0.613549\pi\)
\(674\) −1.38255 1.73366i −0.0532539 0.0667782i
\(675\) 24.4316 + 5.57636i 0.940374 + 0.214634i
\(676\) −7.59999 + 33.2977i −0.292307 + 1.28068i
\(677\) −33.6892 26.8662i −1.29478 1.03255i −0.996959 0.0779309i \(-0.975169\pi\)
−0.297821 0.954622i \(-0.596260\pi\)
\(678\) 5.77541 1.31820i 0.221803 0.0506252i
\(679\) 0.0644568i 0.00247362i
\(680\) 1.17092 + 5.13011i 0.0449025 + 0.196731i
\(681\) −7.49683 + 15.5673i −0.287279 + 0.596542i
\(682\) 6.38220 13.2528i 0.244387 0.507475i
\(683\) −5.21432 22.8454i −0.199521 0.874157i −0.971223 0.238173i \(-0.923452\pi\)
0.771702 0.635984i \(-0.219406\pi\)
\(684\) 6.13706i 0.234656i
\(685\) 11.6263 2.65362i 0.444217 0.101390i
\(686\) −1.72272 1.37382i −0.0657737 0.0524528i
\(687\) −3.54407 + 15.5276i −0.135215 + 0.592415i
\(688\) −9.46604 2.16056i −0.360890 0.0823707i
\(689\) −16.5368 20.7365i −0.630003 0.789999i
\(690\) −0.794405 0.382565i −0.0302425 0.0145640i
\(691\) −38.8657 + 18.7167i −1.47852 + 0.712018i −0.987278 0.159005i \(-0.949171\pi\)
−0.491243 + 0.871023i \(0.663457\pi\)
\(692\) 10.2838 12.8955i 0.390932 0.490213i
\(693\) 1.99147 1.58815i 0.0756498 0.0603287i
\(694\) 3.88456 + 8.06638i 0.147456 + 0.306195i
\(695\) 11.5345 0.437529
\(696\) 0 0
\(697\) 13.9758 0.529373
\(698\) −3.95639 8.21552i −0.149751 0.310962i
\(699\) 8.64363 6.89307i 0.326932 0.260720i
\(700\) −1.81282 + 2.27321i −0.0685183 + 0.0859192i
\(701\) 3.81186 1.83570i 0.143972 0.0693333i −0.360511 0.932755i \(-0.617398\pi\)
0.504483 + 0.863422i \(0.331683\pi\)
\(702\) 12.5635 + 6.05024i 0.474177 + 0.228352i
\(703\) 7.25786 + 9.10107i 0.273736 + 0.343254i
\(704\) 17.4840 + 3.99061i 0.658953 + 0.150402i
\(705\) 1.23759 5.42222i 0.0466102 0.204213i
\(706\) −6.26223 4.99396i −0.235682 0.187950i
\(707\) −1.12370 + 0.256478i −0.0422613 + 0.00964586i
\(708\) 28.0737i 1.05507i
\(709\) 3.18287 + 13.9450i 0.119535 + 0.523717i 0.998871 + 0.0475144i \(0.0151300\pi\)
−0.879336 + 0.476203i \(0.842013\pi\)
\(710\) −0.980170 + 2.03534i −0.0367851 + 0.0763851i
\(711\) 2.92478 6.07338i 0.109688 0.227769i
\(712\) 2.13856 + 9.36962i 0.0801457 + 0.351141i
\(713\) 15.3642i 0.575393i
\(714\) 0.867767 0.198062i 0.0324754 0.00741229i
\(715\) 15.1055 + 12.0462i 0.564913 + 0.450503i
\(716\) 1.36563 5.98319i 0.0510358 0.223602i
\(717\) 31.0793 + 7.09365i 1.16068 + 0.264917i
\(718\) 6.55645 + 8.22153i 0.244685 + 0.306825i
\(719\) 21.1194 + 10.1706i 0.787620 + 0.379298i 0.784051 0.620696i \(-0.213150\pi\)
0.00356825 + 0.999994i \(0.498864\pi\)
\(720\) 2.56853 1.23694i 0.0957235 0.0460980i
\(721\) −3.03803 + 3.80957i −0.113142 + 0.141876i
\(722\) −4.67817 + 3.73072i −0.174104 + 0.138843i
\(723\) 5.26504 + 10.9330i 0.195809 + 0.406601i
\(724\) 22.8388 0.848796
\(725\) 0 0
\(726\) 7.43296 0.275863
\(727\) 22.5609 + 46.8482i 0.836738 + 1.73750i 0.657146 + 0.753763i \(0.271763\pi\)
0.179592 + 0.983741i \(0.442522\pi\)
\(728\) −2.66885 + 2.12833i −0.0989140 + 0.0788813i
\(729\) −15.2500 + 19.1228i −0.564813 + 0.708254i
\(730\) −1.56100 + 0.751737i −0.0577752 + 0.0278231i
\(731\) −13.7899 6.64084i −0.510036 0.245621i
\(732\) −2.30194 2.88654i −0.0850821 0.106690i
\(733\) −33.3331 7.60806i −1.23119 0.281010i −0.443041 0.896501i \(-0.646101\pi\)
−0.788144 + 0.615491i \(0.788958\pi\)
\(734\) 2.93559 12.8617i 0.108355 0.474733i
\(735\) 4.63676 + 3.69769i 0.171030 + 0.136391i
\(736\) 10.4145 2.37704i 0.383884 0.0876190i
\(737\) 11.4735i 0.422632i
\(738\) 0.445042 + 1.94986i 0.0163822 + 0.0717752i
\(739\) −17.2569 + 35.8342i −0.634804 + 1.31818i 0.296881 + 0.954915i \(0.404054\pi\)
−0.931684 + 0.363269i \(0.881661\pi\)
\(740\) 2.67222 5.54892i 0.0982327 0.203982i
\(741\) 3.69687 + 16.1970i 0.135808 + 0.595013i
\(742\) 0.745251i 0.0273590i
\(743\) 6.99824 1.59730i 0.256740 0.0585993i −0.0922133 0.995739i \(-0.529394\pi\)
0.348954 + 0.937140i \(0.386537\pi\)
\(744\) −11.0392 8.80343i −0.404715 0.322749i
\(745\) −2.86526 + 12.5535i −0.104975 + 0.459925i
\(746\) 10.9286 + 2.49439i 0.400125 + 0.0913260i
\(747\) 4.01357 + 5.03286i 0.146849 + 0.184143i
\(748\) 36.0344 + 17.3533i 1.31755 + 0.634499i
\(749\) −5.22348 + 2.51550i −0.190862 + 0.0919142i
\(750\) −2.27980 + 2.85878i −0.0832465 + 0.104388i
\(751\) 21.2412 16.9393i 0.775103 0.618124i −0.153947 0.988079i \(-0.549198\pi\)
0.929050 + 0.369955i \(0.120627\pi\)
\(752\) 7.97213 + 16.5543i 0.290714 + 0.603673i
\(753\) −12.1709 −0.443533
\(754\) 0 0
\(755\) −5.20941 −0.189590
\(756\) −1.54664 3.21164i −0.0562508 0.116806i
\(757\) 18.5236 14.7721i 0.673253 0.536901i −0.226111 0.974101i \(-0.572601\pi\)
0.899364 + 0.437200i \(0.144030\pi\)
\(758\) −7.46615 + 9.36225i −0.271183 + 0.340052i
\(759\) −12.7397 + 6.13514i −0.462423 + 0.222691i
\(760\) −2.48643 1.19740i −0.0901922 0.0434343i
\(761\) −8.88740 11.1444i −0.322168 0.403986i 0.594204 0.804315i \(-0.297467\pi\)
−0.916372 + 0.400329i \(0.868896\pi\)
\(762\) 0.560974 + 0.128039i 0.0203219 + 0.00463835i
\(763\) 0.434157 1.90216i 0.0157175 0.0688630i
\(764\) 15.0324 + 11.9879i 0.543852 + 0.433708i
\(765\) 4.38129 1.00000i 0.158406 0.0361551i
\(766\) 8.75361i 0.316281i
\(767\) 15.7157 + 68.8550i 0.567461 + 2.48621i
\(768\) 1.29932 2.69806i 0.0468851 0.0973579i
\(769\) −19.3975 + 40.2793i −0.699491 + 1.45251i 0.183453 + 0.983029i \(0.441273\pi\)
−0.882944 + 0.469479i \(0.844442\pi\)
\(770\) 0.120801 + 0.529265i 0.00435338 + 0.0190734i
\(771\) 20.3967i 0.734570i
\(772\) −39.9291 + 9.11356i −1.43708 + 0.328004i
\(773\) −17.9420 14.3083i −0.645329 0.514633i 0.245251 0.969460i \(-0.421130\pi\)
−0.890580 + 0.454827i \(0.849701\pi\)
\(774\) 0.487386 2.13538i 0.0175187 0.0767546i
\(775\) 29.4968 + 6.73245i 1.05956 + 0.241837i
\(776\) 0.190530 + 0.238916i 0.00683961 + 0.00857660i
\(777\) −1.98039 0.953703i −0.0710459 0.0342139i
\(778\) 9.96615 4.79944i 0.357304 0.172068i
\(779\) −4.57002 + 5.73063i −0.163738 + 0.205321i
\(780\) 6.87219 5.48039i 0.246064 0.196229i
\(781\) 15.7188 + 32.6405i 0.562464 + 1.16797i
\(782\) 4.59179 0.164202
\(783\) 0 0
\(784\) −19.5929 −0.699745
\(785\) −5.47645 11.3720i −0.195463 0.405883i
\(786\) 3.48052 2.77562i 0.124146 0.0990030i
\(787\) −8.93631 + 11.2058i −0.318545 + 0.399443i −0.915164 0.403082i \(-0.867939\pi\)
0.596619 + 0.802525i \(0.296510\pi\)
\(788\) 31.7521 15.2910i 1.13112 0.544720i
\(789\) −26.6531 12.8355i −0.948875 0.456954i
\(790\) 0.895756 + 1.12324i 0.0318696 + 0.0399632i
\(791\) 3.71419 + 0.847740i 0.132061 + 0.0301422i
\(792\) −2.68718 + 11.7733i −0.0954847 + 0.418346i
\(793\) 7.26175 + 5.79105i 0.257872 + 0.205646i
\(794\) −1.73320 + 0.395592i −0.0615090 + 0.0140390i
\(795\) 4.04892i 0.143600i
\(796\) 0.350855 + 1.53720i 0.0124357 + 0.0544845i
\(797\) −4.42270 + 9.18382i −0.156660 + 0.325308i −0.964495 0.264101i \(-0.914925\pi\)
0.807835 + 0.589409i \(0.200639\pi\)
\(798\) −0.202542 + 0.420583i −0.00716992 + 0.0148885i
\(799\) 6.44504 + 28.2376i 0.228009 + 0.998974i
\(800\) 21.0358i 0.743727i
\(801\) 8.00197 1.82640i 0.282736 0.0645325i
\(802\) −8.66636 6.91119i −0.306020 0.244043i
\(803\) −6.18276 + 27.0884i −0.218185 + 0.955930i
\(804\) −5.08896 1.16152i −0.179474 0.0409637i
\(805\) −0.353543 0.443330i −0.0124608 0.0156253i
\(806\) 15.1681 + 7.30457i 0.534273 + 0.257292i
\(807\) 28.4855 13.7179i 1.00274 0.482893i
\(808\) 3.40701 4.27225i 0.119858 0.150297i
\(809\) −7.01526 + 5.59448i −0.246643 + 0.196692i −0.739006 0.673698i \(-0.764705\pi\)
0.492363 + 0.870390i \(0.336133\pi\)
\(810\) −0.344320 0.714988i −0.0120982 0.0251221i
\(811\) 28.5628 1.00298 0.501489 0.865164i \(-0.332786\pi\)
0.501489 + 0.865164i \(0.332786\pi\)
\(812\) 0 0
\(813\) 1.50066 0.0526306
\(814\) 4.71034 + 9.78113i 0.165097 + 0.342828i
\(815\) 6.83918 5.45407i 0.239566 0.191048i
\(816\) 9.96077 12.4904i 0.348697 0.437252i
\(817\) 7.23221 3.48285i 0.253023 0.121849i
\(818\) −0.113564 0.0546896i −0.00397068 0.00191218i
\(819\) 1.81767 + 2.27928i 0.0635144 + 0.0796446i
\(820\) 3.78077 + 0.862937i 0.132030 + 0.0301351i
\(821\) 2.52230 11.0509i 0.0880290 0.385680i −0.911651 0.410965i \(-0.865192\pi\)
0.999680 + 0.0252844i \(0.00804914\pi\)
\(822\) 7.47690 + 5.96263i 0.260787 + 0.207971i
\(823\) −5.52996 + 1.26218i −0.192762 + 0.0439967i −0.317812 0.948154i \(-0.602948\pi\)
0.125050 + 0.992150i \(0.460091\pi\)
\(824\) 23.1008i 0.804755i
\(825\) 6.19604 + 27.1466i 0.215718 + 0.945124i
\(826\) −0.861025 + 1.78794i −0.0299589 + 0.0622103i
\(827\) −1.25966 + 2.61572i −0.0438028 + 0.0909575i −0.921722 0.387852i \(-0.873217\pi\)
0.877919 + 0.478809i \(0.158931\pi\)
\(828\) −1.33028 5.82834i −0.0462305 0.202549i
\(829\) 45.2137i 1.57034i 0.619282 + 0.785169i \(0.287424\pi\)
−0.619282 + 0.785169i \(0.712576\pi\)
\(830\) −1.33756 + 0.305290i −0.0464275 + 0.0105968i
\(831\) 10.3975 + 8.29172i 0.360685 + 0.287636i
\(832\) −4.56734 + 20.0108i −0.158344 + 0.693750i
\(833\) −30.1109 6.87263i −1.04328 0.238122i
\(834\) 5.76726 + 7.23191i 0.199704 + 0.250421i
\(835\) 0.496648 + 0.239173i 0.0171872 + 0.00827692i
\(836\) −18.8986 + 9.10107i −0.653621 + 0.314767i
\(837\) −23.1271 + 29.0005i −0.799391 + 1.00240i
\(838\) −9.21664 + 7.35003i −0.318384 + 0.253902i
\(839\) 19.7962 + 41.1073i 0.683442 + 1.41918i 0.896902 + 0.442229i \(0.145812\pi\)
−0.213460 + 0.976952i \(0.568473\pi\)
\(840\) 0.521106 0.0179799
\(841\) 0 0
\(842\) 7.82477 0.269659
\(843\) 8.80793 + 18.2899i 0.303361 + 0.629936i
\(844\) 25.7372 20.5248i 0.885912 0.706491i
\(845\) −8.17808 + 10.2550i −0.281334 + 0.352782i
\(846\) −3.73437 + 1.79838i −0.128390 + 0.0618294i
\(847\) 4.30678 + 2.07404i 0.147983 + 0.0712648i
\(848\) −8.33997 10.4580i −0.286396 0.359129i
\(849\) −6.37883 1.45593i −0.218921 0.0499673i
\(850\) 2.01208 8.81551i 0.0690138 0.302369i
\(851\) −8.86553 7.07002i −0.303906 0.242357i
\(852\) 16.0686 3.66756i 0.550503 0.125649i
\(853\) 36.9288i 1.26442i −0.774797 0.632210i \(-0.782148\pi\)
0.774797 0.632210i \(-0.217852\pi\)
\(854\) 0.0580735 + 0.254437i 0.00198724 + 0.00870665i
\(855\) −1.02262 + 2.12349i −0.0349728 + 0.0726218i
\(856\) 11.9258 24.7642i 0.407616 0.846423i
\(857\) −7.91066 34.6589i −0.270223 1.18392i −0.909750 0.415156i \(-0.863727\pi\)
0.639527 0.768768i \(-0.279130\pi\)
\(858\) 15.4940i 0.528955i
\(859\) 41.3186 9.43070i 1.40977 0.321771i 0.551161 0.834399i \(-0.314185\pi\)
0.858611 + 0.512628i \(0.171328\pi\)
\(860\) −3.32042 2.64795i −0.113225 0.0902943i
\(861\) 0.307979 1.34934i 0.0104959 0.0459855i
\(862\) 12.0599 + 2.75259i 0.410762 + 0.0937537i
\(863\) −31.0371 38.9193i −1.05652 1.32483i −0.943550 0.331231i \(-0.892536\pi\)
−0.112966 0.993599i \(-0.536035\pi\)
\(864\) 23.2359 + 11.1898i 0.790500 + 0.380685i
\(865\) 5.70709 2.74839i 0.194047 0.0934480i
\(866\) −1.63036 + 2.04440i −0.0554018 + 0.0694717i
\(867\) 3.11555 2.48457i 0.105810 0.0843803i
\(868\) −1.86729 3.87747i −0.0633800 0.131610i
\(869\) 23.0398 0.781572
\(870\) 0 0
\(871\) 13.1317 0.444950
\(872\) 4.01341 + 8.33393i 0.135911 + 0.282222i
\(873\) 0.204042 0.162718i 0.00690579 0.00550719i
\(874\) −1.50149 + 1.88281i −0.0507887 + 0.0636870i
\(875\) −2.11865 + 1.02029i −0.0716233 + 0.0344920i
\(876\) 11.3889 + 5.48460i 0.384795 + 0.185307i
\(877\) 13.6501 + 17.1167i 0.460931 + 0.577990i 0.956925 0.290337i \(-0.0937674\pi\)
−0.495993 + 0.868326i \(0.665196\pi\)
\(878\) −6.82974 1.55884i −0.230492 0.0526084i
\(879\) −1.87681 + 8.22282i −0.0633031 + 0.277349i
\(880\) 7.61811 + 6.07524i 0.256806 + 0.204796i
\(881\) 32.6901 7.46130i 1.10136 0.251378i 0.367055 0.930199i \(-0.380366\pi\)
0.734303 + 0.678822i \(0.237509\pi\)
\(882\) 4.41981i 0.148823i
\(883\) −3.58868 15.7230i −0.120769 0.529122i −0.998730 0.0503898i \(-0.983954\pi\)
0.877961 0.478732i \(-0.158904\pi\)
\(884\) −19.8612 + 41.2422i −0.668004 + 1.38713i
\(885\) 4.67792 9.71379i 0.157246 0.326526i
\(886\) 0.667326 + 2.92375i 0.0224192 + 0.0982252i
\(887\) 52.7391i 1.77081i −0.464823 0.885403i \(-0.653882\pi\)
0.464823 0.885403i \(-0.346118\pi\)
\(888\) 10.1596 2.31886i 0.340934 0.0778160i
\(889\) 0.289311 + 0.230718i 0.00970317 + 0.00773802i
\(890\) −0.389256 + 1.70544i −0.0130479 + 0.0571665i
\(891\) −12.4074 2.83190i −0.415663 0.0948724i
\(892\) −2.04288 2.56169i −0.0684006 0.0857716i
\(893\) −13.6860 6.59082i −0.457984 0.220553i
\(894\) −9.30343 + 4.48030i −0.311153 + 0.149844i
\(895\) 1.46950 1.84270i 0.0491200 0.0615945i
\(896\) −3.04746 + 2.43027i −0.101809 + 0.0811897i
\(897\) −7.02180 14.5809i −0.234451 0.486842i
\(898\) 5.48294 0.182968
\(899\) 0 0
\(900\) −11.7724 −0.392413
\(901\) −9.14877 18.9976i −0.304790 0.632902i
\(902\) −5.34444 + 4.26205i −0.177950 + 0.141911i
\(903\) −0.945042 + 1.18505i −0.0314490 + 0.0394358i
\(904\) −16.2729 + 7.83663i −0.541230 + 0.260642i
\(905\) 7.90246 + 3.80562i 0.262687 + 0.126503i
\(906\) −2.60470 3.26619i −0.0865355 0.108512i
\(907\) 29.0954 + 6.64084i 0.966098 + 0.220506i 0.676336 0.736593i \(-0.263567\pi\)
0.289762 + 0.957099i \(0.406424\pi\)
\(908\) 5.55592 24.3421i 0.184380 0.807820i
\(909\) −3.64865 2.90970i −0.121018 0.0965086i
\(910\) −0.605756 + 0.138260i −0.0200806 + 0.00458327i
\(911\) 9.34050i 0.309465i −0.987956 0.154732i \(-0.950548\pi\)
0.987956 0.154732i \(-0.0494515\pi\)
\(912\) 1.86443 + 8.16860i 0.0617374 + 0.270489i
\(913\) −9.54627 + 19.8230i −0.315936 + 0.656047i
\(914\) −2.63818 + 5.47823i −0.0872631 + 0.181204i
\(915\) −0.315511 1.38235i −0.0104305 0.0456989i
\(916\) 23.0151i 0.760439i
\(917\) 2.79116 0.637063i 0.0921721 0.0210377i
\(918\) 8.66719 + 6.91185i 0.286060 + 0.228125i
\(919\) 4.09903 17.9590i 0.135215 0.592414i −0.861234 0.508209i \(-0.830308\pi\)
0.996448 0.0842049i \(-0.0268350\pi\)
\(920\) 2.62090 + 0.598203i 0.0864085 + 0.0197222i
\(921\) 3.51275 + 4.40484i 0.115749 + 0.145145i
\(922\) 4.65452 + 2.24150i 0.153289 + 0.0738199i
\(923\) −37.3577 + 17.9905i −1.22964 + 0.592166i
\(924\) 2.46950 3.09666i 0.0812406 0.101872i
\(925\) −17.4581 + 13.9224i −0.574019 + 0.457765i
\(926\) −1.39853 2.90408i −0.0459587 0.0954341i
\(927\) −19.7289 −0.647981
\(928\) 0 0
\(929\) −4.84654 −0.159010 −0.0795050 0.996834i \(-0.525334\pi\)
−0.0795050 + 0.996834i \(0.525334\pi\)
\(930\) −1.11509 2.31551i −0.0365653 0.0759286i
\(931\) 12.6642 10.0993i 0.415051 0.330992i
\(932\) −9.96077 + 12.4904i −0.326276 + 0.409137i
\(933\) 14.1746 6.82611i 0.464054 0.223477i
\(934\) 0.827356 + 0.398434i 0.0270719 + 0.0130371i
\(935\) 9.57673 + 12.0088i 0.313193 + 0.392731i
\(936\) −13.4748 3.07553i −0.440437 0.100527i
\(937\) −9.94989 + 43.5933i −0.325049 + 1.42413i 0.503394 + 0.864057i \(0.332084\pi\)
−0.828443 + 0.560074i \(0.810773\pi\)
\(938\) 0.288478 + 0.230054i 0.00941915 + 0.00751152i
\(939\) 23.3907 5.33877i 0.763326 0.174224i
\(940\) 8.03684i 0.262133i
\(941\) 3.02297 + 13.2445i 0.0985459 + 0.431758i 0.999999 0.00111821i \(-0.000355936\pi\)
−0.901453 + 0.432876i \(0.857499\pi\)
\(942\) 4.39177 9.11960i 0.143092 0.297133i
\(943\) 3.09795 6.43296i 0.100883 0.209486i
\(944\) 7.92585 + 34.7254i 0.257965 + 1.13022i
\(945\) 1.36898i 0.0445328i
\(946\) 7.29850 1.66583i 0.237295 0.0541609i
\(947\) −11.7365 9.35958i −0.381387 0.304146i 0.413966 0.910292i \(-0.364143\pi\)
−0.795353 + 0.606147i \(0.792715\pi\)
\(948\) 2.33244 10.2191i 0.0757540 0.331900i
\(949\) −31.0033 7.07630i −1.00641 0.229706i
\(950\) 2.95675 + 3.70765i 0.0959298 + 0.120292i
\(951\) 3.22252 + 1.55188i 0.104497 + 0.0503233i
\(952\) −2.44504 + 1.17747i −0.0792443 + 0.0381620i
\(953\) 32.3247 40.5339i 1.04710 1.31302i 0.0989849 0.995089i \(-0.468440\pi\)
0.948114 0.317931i \(-0.102988\pi\)
\(954\) 2.35914 1.88135i 0.0763801 0.0609111i
\(955\) 3.20382 + 6.65279i 0.103673 + 0.215279i
\(956\) −46.0659 −1.48988
\(957\) 0 0
\(958\) 1.73078 0.0559188
\(959\) 2.66848 + 5.54115i 0.0861696 + 0.178933i
\(960\) 2.44975 1.95361i 0.0790652 0.0630524i
\(961\) −8.59365 + 10.7761i −0.277215 + 0.347616i
\(962\) −11.1947 + 5.39109i −0.360932 + 0.173816i
\(963\) −21.1494 10.1850i −0.681531 0.328208i
\(964\) −10.9330 13.7095i −0.352127 0.441553i
\(965\) −15.3345 3.50000i −0.493635 0.112669i
\(966\) 0.101187 0.443330i 0.00325564 0.0142639i
\(967\) −32.5437 25.9527i −1.04653 0.834583i −0.0600094 0.998198i \(-0.519113\pi\)
−0.986524 + 0.163615i \(0.947685\pi\)
\(968\) −22.0943 + 5.04288i −0.710137 + 0.162084i
\(969\) 13.2078i 0.424294i
\(970\) 0.0123771 + 0.0542276i 0.000397404 + 0.00174114i
\(971\) 24.1990 50.2497i 0.776583 1.61259i −0.0137446 0.999906i \(-0.504375\pi\)
0.790327 0.612685i \(-0.209911\pi\)
\(972\) 10.4887 21.7799i 0.336424 0.698592i
\(973\) 1.32371 + 5.79954i 0.0424361 + 0.185925i
\(974\) 4.38165i 0.140397i
\(975\) −31.0699 + 7.09150i −0.995033 + 0.227110i
\(976\) 3.66230 + 2.92058i 0.117227 + 0.0934856i
\(977\) −10.8943 + 47.7309i −0.348538 + 1.52705i 0.431962 + 0.901892i \(0.357821\pi\)
−0.780501 + 0.625155i \(0.785036\pi\)
\(978\) 6.83918 + 1.56100i 0.218693 + 0.0499152i
\(979\) 17.4909 + 21.9329i 0.559012 + 0.700978i
\(980\) −7.72132 3.71839i −0.246649 0.118780i
\(981\) 7.11745 3.42758i 0.227243 0.109434i
\(982\) −2.16189 + 2.71092i −0.0689887 + 0.0865091i
\(983\) −4.04466 + 3.22550i −0.129004 + 0.102878i −0.685867 0.727727i \(-0.740577\pi\)
0.556862 + 0.830605i \(0.312005\pi\)
\(984\) 2.84700 + 5.91185i 0.0907590 + 0.188463i
\(985\) 13.5345 0.431246
\(986\) 0 0
\(987\) 2.86831 0.0912994
\(988\) −10.4164 21.6298i −0.331389 0.688136i
\(989\) −6.11345 + 4.87531i −0.194396 + 0.155026i
\(990\) −1.37047 + 1.71851i −0.0435564 + 0.0546180i
\(991\) −15.1838 + 7.31214i −0.482330 + 0.232278i −0.659216 0.751953i \(-0.729112\pi\)
0.176886 + 0.984231i \(0.443398\pi\)
\(992\) 28.0531 + 13.5097i 0.890687 + 0.428932i
\(993\) −2.43668 3.05550i −0.0773257 0.0969634i
\(994\) −1.13585 0.259251i −0.0360271 0.00822295i
\(995\) −0.134743 + 0.590349i −0.00427165 + 0.0187153i
\(996\) 7.82589 + 6.24094i 0.247973 + 0.197752i
\(997\) −37.2517 + 8.50245i −1.17977 + 0.269275i −0.767054 0.641583i \(-0.778278\pi\)
−0.412719 + 0.910858i \(0.635421\pi\)
\(998\) 9.15239i 0.289714i
\(999\) −6.09179 26.6899i −0.192736 0.844431i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.2.e.d.270.1 12
29.2 odd 28 841.2.d.a.645.1 6
29.3 odd 28 841.2.d.c.574.1 6
29.4 even 14 841.2.b.c.840.3 6
29.5 even 14 841.2.e.b.196.1 12
29.6 even 14 841.2.e.c.63.2 12
29.7 even 7 841.2.e.c.267.2 12
29.8 odd 28 841.2.d.e.605.1 6
29.9 even 14 841.2.e.b.236.2 12
29.10 odd 28 841.2.a.e.1.2 3
29.11 odd 28 841.2.d.d.190.1 6
29.12 odd 4 29.2.d.a.20.1 yes 6
29.13 even 14 inner 841.2.e.d.651.1 12
29.14 odd 28 841.2.d.c.778.1 6
29.15 odd 28 841.2.d.b.778.1 6
29.16 even 7 inner 841.2.e.d.651.2 12
29.17 odd 4 841.2.d.d.571.1 6
29.18 odd 28 29.2.d.a.16.1 6
29.19 odd 28 841.2.a.f.1.2 3
29.20 even 7 841.2.e.b.236.1 12
29.21 odd 28 841.2.d.a.605.1 6
29.22 even 14 841.2.e.c.267.1 12
29.23 even 7 841.2.e.c.63.1 12
29.24 even 7 841.2.e.b.196.2 12
29.25 even 7 841.2.b.c.840.4 6
29.26 odd 28 841.2.d.b.574.1 6
29.27 odd 28 841.2.d.e.645.1 6
29.28 even 2 inner 841.2.e.d.270.2 12
87.41 even 4 261.2.k.a.136.1 6
87.47 even 28 261.2.k.a.190.1 6
87.68 even 28 7569.2.a.r.1.2 3
87.77 even 28 7569.2.a.p.1.2 3
116.47 even 28 464.2.u.f.161.1 6
116.99 even 4 464.2.u.f.49.1 6
145.12 even 4 725.2.r.b.49.2 12
145.18 even 28 725.2.r.b.74.2 12
145.47 even 28 725.2.r.b.74.1 12
145.99 odd 4 725.2.l.b.426.1 6
145.128 even 4 725.2.r.b.49.1 12
145.134 odd 28 725.2.l.b.451.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.d.a.16.1 6 29.18 odd 28
29.2.d.a.20.1 yes 6 29.12 odd 4
261.2.k.a.136.1 6 87.41 even 4
261.2.k.a.190.1 6 87.47 even 28
464.2.u.f.49.1 6 116.99 even 4
464.2.u.f.161.1 6 116.47 even 28
725.2.l.b.426.1 6 145.99 odd 4
725.2.l.b.451.1 6 145.134 odd 28
725.2.r.b.49.1 12 145.128 even 4
725.2.r.b.49.2 12 145.12 even 4
725.2.r.b.74.1 12 145.47 even 28
725.2.r.b.74.2 12 145.18 even 28
841.2.a.e.1.2 3 29.10 odd 28
841.2.a.f.1.2 3 29.19 odd 28
841.2.b.c.840.3 6 29.4 even 14
841.2.b.c.840.4 6 29.25 even 7
841.2.d.a.605.1 6 29.21 odd 28
841.2.d.a.645.1 6 29.2 odd 28
841.2.d.b.574.1 6 29.26 odd 28
841.2.d.b.778.1 6 29.15 odd 28
841.2.d.c.574.1 6 29.3 odd 28
841.2.d.c.778.1 6 29.14 odd 28
841.2.d.d.190.1 6 29.11 odd 28
841.2.d.d.571.1 6 29.17 odd 4
841.2.d.e.605.1 6 29.8 odd 28
841.2.d.e.645.1 6 29.27 odd 28
841.2.e.b.196.1 12 29.5 even 14
841.2.e.b.196.2 12 29.24 even 7
841.2.e.b.236.1 12 29.20 even 7
841.2.e.b.236.2 12 29.9 even 14
841.2.e.c.63.1 12 29.23 even 7
841.2.e.c.63.2 12 29.6 even 14
841.2.e.c.267.1 12 29.22 even 14
841.2.e.c.267.2 12 29.7 even 7
841.2.e.d.270.1 12 1.1 even 1 trivial
841.2.e.d.270.2 12 29.28 even 2 inner
841.2.e.d.651.1 12 29.13 even 14 inner
841.2.e.d.651.2 12 29.16 even 7 inner
7569.2.a.p.1.2 3 87.77 even 28
7569.2.a.r.1.2 3 87.68 even 28