Properties

Label 841.2.b.c.840.3
Level $841$
Weight $2$
Character 841.840
Analytic conductor $6.715$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [841,2,Mod(840,841)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(841, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("841.840"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 5x^{4} + 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 29)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 840.3
Root \(-0.445042i\) of defining polynomial
Character \(\chi\) \(=\) 841.840
Dual form 841.2.b.c.840.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.445042i q^{2} -1.24698i q^{3} +1.80194 q^{4} -0.692021 q^{5} -0.554958 q^{6} +0.356896 q^{7} -1.69202i q^{8} +1.44504 q^{9} +0.307979i q^{10} +4.93900i q^{11} -2.24698i q^{12} +5.65279 q^{13} -0.158834i q^{14} +0.862937i q^{15} +2.85086 q^{16} +4.49396i q^{17} -0.643104i q^{18} -2.35690i q^{19} -1.24698 q^{20} -0.445042i q^{21} +2.19806 q^{22} +2.29590 q^{23} -2.10992 q^{24} -4.52111 q^{25} -2.51573i q^{26} -5.54288i q^{27} +0.643104 q^{28} +0.384043 q^{30} -6.69202i q^{31} -4.65279i q^{32} +6.15883 q^{33} +2.00000 q^{34} -0.246980 q^{35} +2.60388 q^{36} +4.93900i q^{37} -1.04892 q^{38} -7.04892i q^{39} +1.17092i q^{40} -3.10992i q^{41} -0.198062 q^{42} -3.40581i q^{43} +8.89977i q^{44} -1.00000 q^{45} -1.02177i q^{46} +6.44504i q^{47} -3.55496i q^{48} -6.87263 q^{49} +2.01208i q^{50} +5.60388 q^{51} +10.1860 q^{52} -4.69202 q^{53} -2.46681 q^{54} -3.41789i q^{55} -0.603875i q^{56} -2.93900 q^{57} -12.4940 q^{59} +1.55496i q^{60} -1.64310i q^{61} -2.97823 q^{62} +0.515729 q^{63} +3.63102 q^{64} -3.91185 q^{65} -2.74094i q^{66} +2.32304 q^{67} +8.09783i q^{68} -2.86294i q^{69} +0.109916i q^{70} +7.33513 q^{71} -2.44504i q^{72} -5.62565i q^{73} +2.19806 q^{74} +5.63773i q^{75} -4.24698i q^{76} +1.76271i q^{77} -3.13706 q^{78} -4.66487i q^{79} -1.97285 q^{80} -2.57673 q^{81} -1.38404 q^{82} +4.45473 q^{83} -0.801938i q^{84} -3.10992i q^{85} -1.51573 q^{86} +8.35690 q^{88} -5.67994i q^{89} +0.445042i q^{90} +2.01746 q^{91} +4.13706 q^{92} -8.34481 q^{93} +2.86831 q^{94} +1.63102i q^{95} -5.80194 q^{96} +0.180604i q^{97} +3.05861i q^{98} +7.13706i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{4} + 6 q^{5} - 4 q^{6} - 6 q^{7} + 8 q^{9} - 2 q^{13} - 10 q^{16} + 2 q^{20} + 22 q^{22} - 14 q^{23} - 14 q^{24} + 4 q^{25} + 12 q^{28} - 18 q^{30} + 20 q^{33} + 12 q^{34} + 8 q^{35} - 2 q^{36}+ \cdots - 26 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/841\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 0.445042i − 0.314692i −0.987544 0.157346i \(-0.949706\pi\)
0.987544 0.157346i \(-0.0502938\pi\)
\(3\) − 1.24698i − 0.719944i −0.932963 0.359972i \(-0.882786\pi\)
0.932963 0.359972i \(-0.117214\pi\)
\(4\) 1.80194 0.900969
\(5\) −0.692021 −0.309481 −0.154741 0.987955i \(-0.549454\pi\)
−0.154741 + 0.987955i \(0.549454\pi\)
\(6\) −0.554958 −0.226561
\(7\) 0.356896 0.134894 0.0674470 0.997723i \(-0.478515\pi\)
0.0674470 + 0.997723i \(0.478515\pi\)
\(8\) − 1.69202i − 0.598220i
\(9\) 1.44504 0.481681
\(10\) 0.307979i 0.0973914i
\(11\) 4.93900i 1.48916i 0.667531 + 0.744582i \(0.267351\pi\)
−0.667531 + 0.744582i \(0.732649\pi\)
\(12\) − 2.24698i − 0.648647i
\(13\) 5.65279 1.56780 0.783901 0.620885i \(-0.213227\pi\)
0.783901 + 0.620885i \(0.213227\pi\)
\(14\) − 0.158834i − 0.0424501i
\(15\) 0.862937i 0.222809i
\(16\) 2.85086 0.712714
\(17\) 4.49396i 1.08995i 0.838454 + 0.544973i \(0.183460\pi\)
−0.838454 + 0.544973i \(0.816540\pi\)
\(18\) − 0.643104i − 0.151581i
\(19\) − 2.35690i − 0.540709i −0.962761 0.270354i \(-0.912859\pi\)
0.962761 0.270354i \(-0.0871409\pi\)
\(20\) −1.24698 −0.278833
\(21\) − 0.445042i − 0.0971161i
\(22\) 2.19806 0.468628
\(23\) 2.29590 0.478728 0.239364 0.970930i \(-0.423061\pi\)
0.239364 + 0.970930i \(0.423061\pi\)
\(24\) −2.10992 −0.430685
\(25\) −4.52111 −0.904221
\(26\) − 2.51573i − 0.493375i
\(27\) − 5.54288i − 1.06673i
\(28\) 0.643104 0.121535
\(29\) 0 0
\(30\) 0.384043 0.0701163
\(31\) − 6.69202i − 1.20192i −0.799278 0.600961i \(-0.794785\pi\)
0.799278 0.600961i \(-0.205215\pi\)
\(32\) − 4.65279i − 0.822505i
\(33\) 6.15883 1.07212
\(34\) 2.00000 0.342997
\(35\) −0.246980 −0.0417472
\(36\) 2.60388 0.433979
\(37\) 4.93900i 0.811967i 0.913880 + 0.405983i \(0.133071\pi\)
−0.913880 + 0.405983i \(0.866929\pi\)
\(38\) −1.04892 −0.170157
\(39\) − 7.04892i − 1.12873i
\(40\) 1.17092i 0.185138i
\(41\) − 3.10992i − 0.485687i −0.970065 0.242844i \(-0.921920\pi\)
0.970065 0.242844i \(-0.0780802\pi\)
\(42\) −0.198062 −0.0305617
\(43\) − 3.40581i − 0.519382i −0.965692 0.259691i \(-0.916379\pi\)
0.965692 0.259691i \(-0.0836207\pi\)
\(44\) 8.89977i 1.34169i
\(45\) −1.00000 −0.149071
\(46\) − 1.02177i − 0.150652i
\(47\) 6.44504i 0.940106i 0.882638 + 0.470053i \(0.155765\pi\)
−0.882638 + 0.470053i \(0.844235\pi\)
\(48\) − 3.55496i − 0.513114i
\(49\) −6.87263 −0.981804
\(50\) 2.01208i 0.284551i
\(51\) 5.60388 0.784700
\(52\) 10.1860 1.41254
\(53\) −4.69202 −0.644499 −0.322249 0.946655i \(-0.604439\pi\)
−0.322249 + 0.946655i \(0.604439\pi\)
\(54\) −2.46681 −0.335691
\(55\) − 3.41789i − 0.460869i
\(56\) − 0.603875i − 0.0806963i
\(57\) −2.93900 −0.389280
\(58\) 0 0
\(59\) −12.4940 −1.62657 −0.813287 0.581862i \(-0.802324\pi\)
−0.813287 + 0.581862i \(0.802324\pi\)
\(60\) 1.55496i 0.200744i
\(61\) − 1.64310i − 0.210378i −0.994452 0.105189i \(-0.966455\pi\)
0.994452 0.105189i \(-0.0335447\pi\)
\(62\) −2.97823 −0.378236
\(63\) 0.515729 0.0649758
\(64\) 3.63102 0.453878
\(65\) −3.91185 −0.485206
\(66\) − 2.74094i − 0.337386i
\(67\) 2.32304 0.283805 0.141902 0.989881i \(-0.454678\pi\)
0.141902 + 0.989881i \(0.454678\pi\)
\(68\) 8.09783i 0.982007i
\(69\) − 2.86294i − 0.344657i
\(70\) 0.109916i 0.0131375i
\(71\) 7.33513 0.870519 0.435260 0.900305i \(-0.356657\pi\)
0.435260 + 0.900305i \(0.356657\pi\)
\(72\) − 2.44504i − 0.288151i
\(73\) − 5.62565i − 0.658432i −0.944255 0.329216i \(-0.893216\pi\)
0.944255 0.329216i \(-0.106784\pi\)
\(74\) 2.19806 0.255520
\(75\) 5.63773i 0.650989i
\(76\) − 4.24698i − 0.487162i
\(77\) 1.76271i 0.200879i
\(78\) −3.13706 −0.355202
\(79\) − 4.66487i − 0.524839i −0.964954 0.262420i \(-0.915480\pi\)
0.964954 0.262420i \(-0.0845205\pi\)
\(80\) −1.97285 −0.220572
\(81\) −2.57673 −0.286303
\(82\) −1.38404 −0.152842
\(83\) 4.45473 0.488970 0.244485 0.969653i \(-0.421381\pi\)
0.244485 + 0.969653i \(0.421381\pi\)
\(84\) − 0.801938i − 0.0874986i
\(85\) − 3.10992i − 0.337318i
\(86\) −1.51573 −0.163445
\(87\) 0 0
\(88\) 8.35690 0.890848
\(89\) − 5.67994i − 0.602072i −0.953613 0.301036i \(-0.902667\pi\)
0.953613 0.301036i \(-0.0973325\pi\)
\(90\) 0.445042i 0.0469115i
\(91\) 2.01746 0.211487
\(92\) 4.13706 0.431319
\(93\) −8.34481 −0.865317
\(94\) 2.86831 0.295844
\(95\) 1.63102i 0.167339i
\(96\) −5.80194 −0.592158
\(97\) 0.180604i 0.0183375i 0.999958 + 0.00916877i \(0.00291855\pi\)
−0.999958 + 0.00916877i \(0.997081\pi\)
\(98\) 3.05861i 0.308966i
\(99\) 7.13706i 0.717302i
\(100\) −8.14675 −0.814675
\(101\) 3.22952i 0.321349i 0.987007 + 0.160675i \(0.0513670\pi\)
−0.987007 + 0.160675i \(0.948633\pi\)
\(102\) − 2.49396i − 0.246939i
\(103\) −13.6528 −1.34525 −0.672625 0.739984i \(-0.734833\pi\)
−0.672625 + 0.739984i \(0.734833\pi\)
\(104\) − 9.56465i − 0.937891i
\(105\) 0.307979i 0.0300556i
\(106\) 2.08815i 0.202819i
\(107\) 16.2446 1.57042 0.785212 0.619227i \(-0.212554\pi\)
0.785212 + 0.619227i \(0.212554\pi\)
\(108\) − 9.98792i − 0.961088i
\(109\) −5.46681 −0.523626 −0.261813 0.965119i \(-0.584320\pi\)
−0.261813 + 0.965119i \(0.584320\pi\)
\(110\) −1.52111 −0.145032
\(111\) 6.15883 0.584571
\(112\) 1.01746 0.0961408
\(113\) 10.6746i 1.00418i 0.864816 + 0.502089i \(0.167435\pi\)
−0.864816 + 0.502089i \(0.832565\pi\)
\(114\) 1.30798i 0.122503i
\(115\) −1.58881 −0.148157
\(116\) 0 0
\(117\) 8.16852 0.755180
\(118\) 5.56033i 0.511870i
\(119\) 1.60388i 0.147027i
\(120\) 1.46011 0.133289
\(121\) −13.3937 −1.21761
\(122\) −0.731250 −0.0662043
\(123\) −3.87800 −0.349668
\(124\) − 12.0586i − 1.08289i
\(125\) 6.58881 0.589321
\(126\) − 0.229521i − 0.0204474i
\(127\) − 1.03684i − 0.0920043i −0.998941 0.0460021i \(-0.985352\pi\)
0.998941 0.0460021i \(-0.0146481\pi\)
\(128\) − 10.9215i − 0.965337i
\(129\) −4.24698 −0.373926
\(130\) 1.74094i 0.152690i
\(131\) − 8.02177i − 0.700865i −0.936588 0.350433i \(-0.886035\pi\)
0.936588 0.350433i \(-0.113965\pi\)
\(132\) 11.0978 0.965943
\(133\) − 0.841166i − 0.0729384i
\(134\) − 1.03385i − 0.0893112i
\(135\) 3.83579i 0.330132i
\(136\) 7.60388 0.652027
\(137\) 17.2325i 1.47227i 0.676834 + 0.736136i \(0.263352\pi\)
−0.676834 + 0.736136i \(0.736648\pi\)
\(138\) −1.27413 −0.108461
\(139\) −16.6679 −1.41375 −0.706875 0.707339i \(-0.749896\pi\)
−0.706875 + 0.707339i \(0.749896\pi\)
\(140\) −0.445042 −0.0376129
\(141\) 8.03684 0.676824
\(142\) − 3.26444i − 0.273946i
\(143\) 27.9191i 2.33472i
\(144\) 4.11960 0.343300
\(145\) 0 0
\(146\) −2.50365 −0.207203
\(147\) 8.57002i 0.706844i
\(148\) 8.89977i 0.731557i
\(149\) −18.6069 −1.52433 −0.762167 0.647381i \(-0.775864\pi\)
−0.762167 + 0.647381i \(0.775864\pi\)
\(150\) 2.50902 0.204861
\(151\) 7.52781 0.612605 0.306302 0.951934i \(-0.400908\pi\)
0.306302 + 0.951934i \(0.400908\pi\)
\(152\) −3.98792 −0.323463
\(153\) 6.49396i 0.525005i
\(154\) 0.784479 0.0632151
\(155\) 4.63102i 0.371973i
\(156\) − 12.7017i − 1.01695i
\(157\) 18.2392i 1.45565i 0.685764 + 0.727824i \(0.259468\pi\)
−0.685764 + 0.727824i \(0.740532\pi\)
\(158\) −2.07606 −0.165163
\(159\) 5.85086i 0.464003i
\(160\) 3.21983i 0.254550i
\(161\) 0.819396 0.0645775
\(162\) 1.14675i 0.0900973i
\(163\) − 12.6407i − 0.990097i −0.868865 0.495048i \(-0.835150\pi\)
0.868865 0.495048i \(-0.164850\pi\)
\(164\) − 5.60388i − 0.437589i
\(165\) −4.26205 −0.331800
\(166\) − 1.98254i − 0.153875i
\(167\) 0.796561 0.0616397 0.0308199 0.999525i \(-0.490188\pi\)
0.0308199 + 0.999525i \(0.490188\pi\)
\(168\) −0.753020 −0.0580968
\(169\) 18.9541 1.45801
\(170\) −1.38404 −0.106151
\(171\) − 3.40581i − 0.260449i
\(172\) − 6.13706i − 0.467947i
\(173\) 9.15346 0.695924 0.347962 0.937509i \(-0.386874\pi\)
0.347962 + 0.937509i \(0.386874\pi\)
\(174\) 0 0
\(175\) −1.61356 −0.121974
\(176\) 14.0804i 1.06135i
\(177\) 15.5797i 1.17104i
\(178\) −2.52781 −0.189467
\(179\) −3.40581 −0.254562 −0.127281 0.991867i \(-0.540625\pi\)
−0.127281 + 0.991867i \(0.540625\pi\)
\(180\) −1.80194 −0.134309
\(181\) 12.6746 0.942093 0.471046 0.882108i \(-0.343876\pi\)
0.471046 + 0.882108i \(0.343876\pi\)
\(182\) − 0.897853i − 0.0665533i
\(183\) −2.04892 −0.151460
\(184\) − 3.88471i − 0.286384i
\(185\) − 3.41789i − 0.251289i
\(186\) 3.71379i 0.272308i
\(187\) −22.1957 −1.62311
\(188\) 11.6136i 0.847006i
\(189\) − 1.97823i − 0.143895i
\(190\) 0.725873 0.0526604
\(191\) − 10.6703i − 0.772072i −0.922484 0.386036i \(-0.873844\pi\)
0.922484 0.386036i \(-0.126156\pi\)
\(192\) − 4.52781i − 0.326767i
\(193\) 22.7289i 1.63606i 0.575176 + 0.818029i \(0.304933\pi\)
−0.575176 + 0.818029i \(0.695067\pi\)
\(194\) 0.0803763 0.00577068
\(195\) 4.87800i 0.349321i
\(196\) −12.3840 −0.884574
\(197\) −19.5579 −1.39345 −0.696723 0.717340i \(-0.745359\pi\)
−0.696723 + 0.717340i \(0.745359\pi\)
\(198\) 3.17629 0.225729
\(199\) −0.875018 −0.0620284 −0.0310142 0.999519i \(-0.509874\pi\)
−0.0310142 + 0.999519i \(0.509874\pi\)
\(200\) 7.64981i 0.540923i
\(201\) − 2.89679i − 0.204324i
\(202\) 1.43727 0.101126
\(203\) 0 0
\(204\) 10.0978 0.706990
\(205\) 2.15213i 0.150311i
\(206\) 6.07606i 0.423339i
\(207\) 3.31767 0.230594
\(208\) 16.1153 1.11739
\(209\) 11.6407 0.805205
\(210\) 0.137063 0.00945827
\(211\) 18.2687i 1.25767i 0.777538 + 0.628836i \(0.216468\pi\)
−0.777538 + 0.628836i \(0.783532\pi\)
\(212\) −8.45473 −0.580673
\(213\) − 9.14675i − 0.626725i
\(214\) − 7.22952i − 0.494200i
\(215\) 2.35690i 0.160739i
\(216\) −9.37867 −0.638137
\(217\) − 2.38835i − 0.162132i
\(218\) 2.43296i 0.164781i
\(219\) −7.01507 −0.474034
\(220\) − 6.15883i − 0.415228i
\(221\) 25.4034i 1.70882i
\(222\) − 2.74094i − 0.183960i
\(223\) −1.81833 −0.121764 −0.0608822 0.998145i \(-0.519391\pi\)
−0.0608822 + 0.998145i \(0.519391\pi\)
\(224\) − 1.66056i − 0.110951i
\(225\) −6.53319 −0.435546
\(226\) 4.75063 0.316007
\(227\) −13.8562 −0.919670 −0.459835 0.888004i \(-0.652092\pi\)
−0.459835 + 0.888004i \(0.652092\pi\)
\(228\) −5.29590 −0.350729
\(229\) 12.7724i 0.844024i 0.906590 + 0.422012i \(0.138676\pi\)
−0.906590 + 0.422012i \(0.861324\pi\)
\(230\) 0.707087i 0.0466239i
\(231\) 2.19806 0.144622
\(232\) 0 0
\(233\) −8.86592 −0.580826 −0.290413 0.956901i \(-0.593793\pi\)
−0.290413 + 0.956901i \(0.593793\pi\)
\(234\) − 3.63533i − 0.237649i
\(235\) − 4.46011i − 0.290945i
\(236\) −22.5133 −1.46549
\(237\) −5.81700 −0.377855
\(238\) 0.713792 0.0462682
\(239\) −25.5646 −1.65364 −0.826820 0.562467i \(-0.809852\pi\)
−0.826820 + 0.562467i \(0.809852\pi\)
\(240\) 2.46011i 0.158799i
\(241\) −9.73125 −0.626845 −0.313422 0.949614i \(-0.601476\pi\)
−0.313422 + 0.949614i \(0.601476\pi\)
\(242\) 5.96077i 0.383173i
\(243\) − 13.4155i − 0.860605i
\(244\) − 2.96077i − 0.189544i
\(245\) 4.75600 0.303850
\(246\) 1.72587i 0.110038i
\(247\) − 13.3230i − 0.847725i
\(248\) −11.3230 −0.719014
\(249\) − 5.55496i − 0.352031i
\(250\) − 2.93230i − 0.185455i
\(251\) − 9.76032i − 0.616066i −0.951376 0.308033i \(-0.900329\pi\)
0.951376 0.308033i \(-0.0996707\pi\)
\(252\) 0.929312 0.0585412
\(253\) 11.3394i 0.712904i
\(254\) −0.461435 −0.0289530
\(255\) −3.87800 −0.242850
\(256\) 2.40150 0.150094
\(257\) 16.3569 1.02032 0.510158 0.860081i \(-0.329587\pi\)
0.510158 + 0.860081i \(0.329587\pi\)
\(258\) 1.89008i 0.117671i
\(259\) 1.76271i 0.109529i
\(260\) −7.04892 −0.437155
\(261\) 0 0
\(262\) −3.57002 −0.220557
\(263\) 23.7235i 1.46285i 0.681921 + 0.731426i \(0.261145\pi\)
−0.681921 + 0.731426i \(0.738855\pi\)
\(264\) − 10.4209i − 0.641361i
\(265\) 3.24698 0.199460
\(266\) −0.374354 −0.0229531
\(267\) −7.08277 −0.433458
\(268\) 4.18598 0.255699
\(269\) − 25.3545i − 1.54589i −0.634472 0.772946i \(-0.718783\pi\)
0.634472 0.772946i \(-0.281217\pi\)
\(270\) 1.70709 0.103890
\(271\) 1.20344i 0.0731037i 0.999332 + 0.0365519i \(0.0116374\pi\)
−0.999332 + 0.0365519i \(0.988363\pi\)
\(272\) 12.8116i 0.776819i
\(273\) − 2.51573i − 0.152259i
\(274\) 7.66919 0.463312
\(275\) − 22.3297i − 1.34653i
\(276\) − 5.15883i − 0.310525i
\(277\) 10.6649 0.640790 0.320395 0.947284i \(-0.396184\pi\)
0.320395 + 0.947284i \(0.396184\pi\)
\(278\) 7.41789i 0.444896i
\(279\) − 9.67025i − 0.578943i
\(280\) 0.417895i 0.0249740i
\(281\) −16.2795 −0.971154 −0.485577 0.874194i \(-0.661390\pi\)
−0.485577 + 0.874194i \(0.661390\pi\)
\(282\) − 3.57673i − 0.212991i
\(283\) 5.24698 0.311901 0.155950 0.987765i \(-0.450156\pi\)
0.155950 + 0.987765i \(0.450156\pi\)
\(284\) 13.2174 0.784311
\(285\) 2.03385 0.120475
\(286\) 12.4252 0.734717
\(287\) − 1.10992i − 0.0655163i
\(288\) − 6.72348i − 0.396185i
\(289\) −3.19567 −0.187981
\(290\) 0 0
\(291\) 0.225209 0.0132020
\(292\) − 10.1371i − 0.593227i
\(293\) 6.76377i 0.395144i 0.980288 + 0.197572i \(0.0633056\pi\)
−0.980288 + 0.197572i \(0.936694\pi\)
\(294\) 3.81402 0.222438
\(295\) 8.64609 0.503395
\(296\) 8.35690 0.485735
\(297\) 27.3763 1.58853
\(298\) 8.28083i 0.479696i
\(299\) 12.9782 0.750550
\(300\) 10.1588i 0.586521i
\(301\) − 1.21552i − 0.0700614i
\(302\) − 3.35019i − 0.192782i
\(303\) 4.02715 0.231354
\(304\) − 6.71917i − 0.385371i
\(305\) 1.13706i 0.0651081i
\(306\) 2.89008 0.165215
\(307\) 4.51812i 0.257863i 0.991654 + 0.128931i \(0.0411547\pi\)
−0.991654 + 0.128931i \(0.958845\pi\)
\(308\) 3.17629i 0.180986i
\(309\) 17.0248i 0.968504i
\(310\) 2.06100 0.117057
\(311\) − 12.6165i − 0.715419i −0.933833 0.357709i \(-0.883558\pi\)
0.933833 0.357709i \(-0.116442\pi\)
\(312\) −11.9269 −0.675229
\(313\) 19.2403 1.08752 0.543762 0.839239i \(-0.316999\pi\)
0.543762 + 0.839239i \(0.316999\pi\)
\(314\) 8.11721 0.458081
\(315\) −0.356896 −0.0201088
\(316\) − 8.40581i − 0.472864i
\(317\) − 2.86831i − 0.161101i −0.996751 0.0805503i \(-0.974332\pi\)
0.996751 0.0805503i \(-0.0256678\pi\)
\(318\) 2.60388 0.146018
\(319\) 0 0
\(320\) −2.51275 −0.140467
\(321\) − 20.2567i − 1.13062i
\(322\) − 0.364666i − 0.0203220i
\(323\) 10.5918 0.589343
\(324\) −4.64310 −0.257950
\(325\) −25.5569 −1.41764
\(326\) −5.62565 −0.311576
\(327\) 6.81700i 0.376981i
\(328\) −5.26205 −0.290548
\(329\) 2.30021i 0.126815i
\(330\) 1.89679i 0.104415i
\(331\) − 3.13408i − 0.172265i −0.996284 0.0861323i \(-0.972549\pi\)
0.996284 0.0861323i \(-0.0274508\pi\)
\(332\) 8.02715 0.440547
\(333\) 7.13706i 0.391109i
\(334\) − 0.354503i − 0.0193975i
\(335\) −1.60760 −0.0878324
\(336\) − 1.26875i − 0.0692160i
\(337\) − 4.98254i − 0.271416i −0.990749 0.135708i \(-0.956669\pi\)
0.990749 0.135708i \(-0.0433310\pi\)
\(338\) − 8.43535i − 0.458823i
\(339\) 13.3110 0.722952
\(340\) − 5.60388i − 0.303913i
\(341\) 33.0519 1.78986
\(342\) −1.51573 −0.0819613
\(343\) −4.95108 −0.267333
\(344\) −5.76271 −0.310704
\(345\) 1.98121i 0.106665i
\(346\) − 4.07367i − 0.219002i
\(347\) −20.1172 −1.07995 −0.539974 0.841682i \(-0.681566\pi\)
−0.539974 + 0.841682i \(0.681566\pi\)
\(348\) 0 0
\(349\) 20.4892 1.09676 0.548380 0.836229i \(-0.315245\pi\)
0.548380 + 0.836229i \(0.315245\pi\)
\(350\) 0.718104i 0.0383843i
\(351\) − 31.3327i − 1.67242i
\(352\) 22.9801 1.22485
\(353\) −17.9976 −0.957916 −0.478958 0.877838i \(-0.658985\pi\)
−0.478958 + 0.877838i \(0.658985\pi\)
\(354\) 6.93362 0.368518
\(355\) −5.07606 −0.269410
\(356\) − 10.2349i − 0.542449i
\(357\) 2.00000 0.105851
\(358\) 1.51573i 0.0801088i
\(359\) 23.6286i 1.24707i 0.781795 + 0.623536i \(0.214304\pi\)
−0.781795 + 0.623536i \(0.785696\pi\)
\(360\) 1.69202i 0.0891774i
\(361\) 13.4450 0.707634
\(362\) − 5.64071i − 0.296469i
\(363\) 16.7017i 0.876612i
\(364\) 3.63533 0.190543
\(365\) 3.89307i 0.203772i
\(366\) 0.911854i 0.0476634i
\(367\) − 29.6431i − 1.54736i −0.633578 0.773679i \(-0.718414\pi\)
0.633578 0.773679i \(-0.281586\pi\)
\(368\) 6.54527 0.341196
\(369\) − 4.49396i − 0.233946i
\(370\) −1.52111 −0.0790786
\(371\) −1.67456 −0.0869390
\(372\) −15.0368 −0.779624
\(373\) −25.1879 −1.30418 −0.652090 0.758142i \(-0.726108\pi\)
−0.652090 + 0.758142i \(0.726108\pi\)
\(374\) 9.87800i 0.510779i
\(375\) − 8.21611i − 0.424278i
\(376\) 10.9051 0.562390
\(377\) 0 0
\(378\) −0.880395 −0.0452826
\(379\) − 26.9071i − 1.38212i −0.722796 0.691062i \(-0.757143\pi\)
0.722796 0.691062i \(-0.242857\pi\)
\(380\) 2.93900i 0.150768i
\(381\) −1.29291 −0.0662379
\(382\) −4.74871 −0.242965
\(383\) 19.6692 1.00505 0.502524 0.864563i \(-0.332405\pi\)
0.502524 + 0.864563i \(0.332405\pi\)
\(384\) −13.6189 −0.694989
\(385\) − 1.21983i − 0.0621684i
\(386\) 10.1153 0.514855
\(387\) − 4.92154i − 0.250176i
\(388\) 0.325437i 0.0165216i
\(389\) − 24.8552i − 1.26021i −0.776511 0.630103i \(-0.783012\pi\)
0.776511 0.630103i \(-0.216988\pi\)
\(390\) 2.17092 0.109929
\(391\) 10.3177i 0.521787i
\(392\) 11.6286i 0.587334i
\(393\) −10.0030 −0.504584
\(394\) 8.70410i 0.438506i
\(395\) 3.22819i 0.162428i
\(396\) 12.8605i 0.646267i
\(397\) −3.99462 −0.200484 −0.100242 0.994963i \(-0.531962\pi\)
−0.100242 + 0.994963i \(0.531962\pi\)
\(398\) 0.389420i 0.0195198i
\(399\) −1.04892 −0.0525115
\(400\) −12.8890 −0.644451
\(401\) −24.9071 −1.24380 −0.621900 0.783097i \(-0.713639\pi\)
−0.621900 + 0.783097i \(0.713639\pi\)
\(402\) −1.28919 −0.0642991
\(403\) − 37.8286i − 1.88438i
\(404\) 5.81940i 0.289526i
\(405\) 1.78315 0.0886055
\(406\) 0 0
\(407\) −24.3937 −1.20915
\(408\) − 9.48188i − 0.469423i
\(409\) 0.283224i 0.0140045i 0.999975 + 0.00700227i \(0.00222891\pi\)
−0.999975 + 0.00700227i \(0.997771\pi\)
\(410\) 0.957787 0.0473017
\(411\) 21.4886 1.05995
\(412\) −24.6015 −1.21203
\(413\) −4.45904 −0.219415
\(414\) − 1.47650i − 0.0725661i
\(415\) −3.08277 −0.151327
\(416\) − 26.3013i − 1.28953i
\(417\) 20.7845i 1.01782i
\(418\) − 5.18060i − 0.253392i
\(419\) 26.4886 1.29405 0.647026 0.762468i \(-0.276013\pi\)
0.647026 + 0.762468i \(0.276013\pi\)
\(420\) 0.554958i 0.0270792i
\(421\) 17.5821i 0.856899i 0.903566 + 0.428450i \(0.140940\pi\)
−0.903566 + 0.428450i \(0.859060\pi\)
\(422\) 8.13036 0.395780
\(423\) 9.31336i 0.452831i
\(424\) 7.93900i 0.385552i
\(425\) − 20.3177i − 0.985552i
\(426\) −4.07069 −0.197225
\(427\) − 0.586417i − 0.0283787i
\(428\) 29.2717 1.41490
\(429\) 34.8146 1.68087
\(430\) 1.04892 0.0505833
\(431\) −27.7952 −1.33885 −0.669425 0.742880i \(-0.733459\pi\)
−0.669425 + 0.742880i \(0.733459\pi\)
\(432\) − 15.8019i − 0.760271i
\(433\) − 5.87561i − 0.282364i −0.989984 0.141182i \(-0.954910\pi\)
0.989984 0.141182i \(-0.0450902\pi\)
\(434\) −1.06292 −0.0510217
\(435\) 0 0
\(436\) −9.85086 −0.471770
\(437\) − 5.41119i − 0.258852i
\(438\) 3.12200i 0.149175i
\(439\) 15.7409 0.751274 0.375637 0.926767i \(-0.377424\pi\)
0.375637 + 0.926767i \(0.377424\pi\)
\(440\) −5.78315 −0.275701
\(441\) −9.93123 −0.472916
\(442\) 11.3056 0.537752
\(443\) − 6.73855i − 0.320158i −0.987104 0.160079i \(-0.948825\pi\)
0.987104 0.160079i \(-0.0511749\pi\)
\(444\) 11.0978 0.526680
\(445\) 3.93064i 0.186330i
\(446\) 0.809234i 0.0383183i
\(447\) 23.2024i 1.09743i
\(448\) 1.29590 0.0612254
\(449\) 12.3201i 0.581420i 0.956811 + 0.290710i \(0.0938914\pi\)
−0.956811 + 0.290710i \(0.906109\pi\)
\(450\) 2.90754i 0.137063i
\(451\) 15.3599 0.723268
\(452\) 19.2349i 0.904733i
\(453\) − 9.38703i − 0.441041i
\(454\) 6.16660i 0.289413i
\(455\) −1.39612 −0.0654513
\(456\) 4.97285i 0.232875i
\(457\) −13.6625 −0.639104 −0.319552 0.947569i \(-0.603532\pi\)
−0.319552 + 0.947569i \(0.603532\pi\)
\(458\) 5.68425 0.265608
\(459\) 24.9095 1.16267
\(460\) −2.86294 −0.133485
\(461\) − 11.6082i − 0.540647i −0.962770 0.270324i \(-0.912869\pi\)
0.962770 0.270324i \(-0.0871307\pi\)
\(462\) − 0.978230i − 0.0455114i
\(463\) 7.24267 0.336595 0.168298 0.985736i \(-0.446173\pi\)
0.168298 + 0.985736i \(0.446173\pi\)
\(464\) 0 0
\(465\) 5.77479 0.267800
\(466\) 3.94571i 0.182781i
\(467\) − 2.06339i − 0.0954824i −0.998860 0.0477412i \(-0.984798\pi\)
0.998860 0.0477412i \(-0.0152023\pi\)
\(468\) 14.7192 0.680394
\(469\) 0.829085 0.0382836
\(470\) −1.98493 −0.0915582
\(471\) 22.7439 1.04798
\(472\) 21.1400i 0.973050i
\(473\) 16.8213 0.773445
\(474\) 2.58881i 0.118908i
\(475\) 10.6558i 0.488921i
\(476\) 2.89008i 0.132467i
\(477\) −6.78017 −0.310443
\(478\) 11.3773i 0.520387i
\(479\) 3.88902i 0.177694i 0.996045 + 0.0888469i \(0.0283182\pi\)
−0.996045 + 0.0888469i \(0.971682\pi\)
\(480\) 4.01507 0.183262
\(481\) 27.9191i 1.27300i
\(482\) 4.33081i 0.197263i
\(483\) − 1.02177i − 0.0464922i
\(484\) −24.1347 −1.09703
\(485\) − 0.124982i − 0.00567513i
\(486\) −5.97046 −0.270826
\(487\) 9.84548 0.446141 0.223071 0.974802i \(-0.428392\pi\)
0.223071 + 0.974802i \(0.428392\pi\)
\(488\) −2.78017 −0.125852
\(489\) −15.7627 −0.712814
\(490\) − 2.11662i − 0.0956192i
\(491\) − 7.79118i − 0.351611i −0.984425 0.175806i \(-0.943747\pi\)
0.984425 0.175806i \(-0.0562530\pi\)
\(492\) −6.98792 −0.315040
\(493\) 0 0
\(494\) −5.92931 −0.266772
\(495\) − 4.93900i − 0.221992i
\(496\) − 19.0780i − 0.856627i
\(497\) 2.61788 0.117428
\(498\) −2.47219 −0.110781
\(499\) 20.5652 0.920626 0.460313 0.887757i \(-0.347737\pi\)
0.460313 + 0.887757i \(0.347737\pi\)
\(500\) 11.8726 0.530960
\(501\) − 0.993295i − 0.0443772i
\(502\) −4.34375 −0.193871
\(503\) − 8.23490i − 0.367176i −0.983003 0.183588i \(-0.941229\pi\)
0.983003 0.183588i \(-0.0587712\pi\)
\(504\) − 0.872625i − 0.0388698i
\(505\) − 2.23490i − 0.0994517i
\(506\) 5.04652 0.224345
\(507\) − 23.6353i − 1.04968i
\(508\) − 1.86831i − 0.0828930i
\(509\) 7.91617 0.350878 0.175439 0.984490i \(-0.443866\pi\)
0.175439 + 0.984490i \(0.443866\pi\)
\(510\) 1.72587i 0.0764230i
\(511\) − 2.00777i − 0.0888185i
\(512\) − 22.9119i − 1.01257i
\(513\) −13.0640 −0.576789
\(514\) − 7.27950i − 0.321085i
\(515\) 9.44803 0.416330
\(516\) −7.65279 −0.336895
\(517\) −31.8321 −1.39997
\(518\) 0.784479 0.0344680
\(519\) − 11.4142i − 0.501027i
\(520\) 6.61894i 0.290260i
\(521\) 3.52542 0.154451 0.0772257 0.997014i \(-0.475394\pi\)
0.0772257 + 0.997014i \(0.475394\pi\)
\(522\) 0 0
\(523\) 10.0301 0.438587 0.219294 0.975659i \(-0.429625\pi\)
0.219294 + 0.975659i \(0.429625\pi\)
\(524\) − 14.4547i − 0.631458i
\(525\) 2.01208i 0.0878144i
\(526\) 10.5579 0.460348
\(527\) 30.0737 1.31003
\(528\) 17.5579 0.764111
\(529\) −17.7289 −0.770820
\(530\) − 1.44504i − 0.0627686i
\(531\) −18.0543 −0.783490
\(532\) − 1.51573i − 0.0657152i
\(533\) − 17.5797i − 0.761462i
\(534\) 3.15213i 0.136406i
\(535\) −11.2416 −0.486017
\(536\) − 3.93064i − 0.169778i
\(537\) 4.24698i 0.183271i
\(538\) −11.2838 −0.486480
\(539\) − 33.9439i − 1.46207i
\(540\) 6.91185i 0.297439i
\(541\) 8.22414i 0.353584i 0.984248 + 0.176792i \(0.0565719\pi\)
−0.984248 + 0.176792i \(0.943428\pi\)
\(542\) 0.535581 0.0230052
\(543\) − 15.8049i − 0.678254i
\(544\) 20.9095 0.896486
\(545\) 3.78315 0.162052
\(546\) −1.11960 −0.0479147
\(547\) 25.8629 1.10582 0.552910 0.833241i \(-0.313517\pi\)
0.552910 + 0.833241i \(0.313517\pi\)
\(548\) 31.0519i 1.32647i
\(549\) − 2.37435i − 0.101335i
\(550\) −9.93767 −0.423744
\(551\) 0 0
\(552\) −4.84415 −0.206181
\(553\) − 1.66487i − 0.0707977i
\(554\) − 4.74632i − 0.201652i
\(555\) −4.26205 −0.180914
\(556\) −30.0344 −1.27374
\(557\) −23.0097 −0.974952 −0.487476 0.873136i \(-0.662082\pi\)
−0.487476 + 0.873136i \(0.662082\pi\)
\(558\) −4.30367 −0.182189
\(559\) − 19.2524i − 0.814288i
\(560\) −0.704103 −0.0297538
\(561\) 27.6775i 1.16855i
\(562\) 7.24506i 0.305614i
\(563\) − 43.1159i − 1.81712i −0.417757 0.908559i \(-0.637184\pi\)
0.417757 0.908559i \(-0.362816\pi\)
\(564\) 14.4819 0.609797
\(565\) − 7.38703i − 0.310775i
\(566\) − 2.33513i − 0.0981527i
\(567\) −0.919624 −0.0386206
\(568\) − 12.4112i − 0.520762i
\(569\) 24.3123i 1.01922i 0.860404 + 0.509612i \(0.170211\pi\)
−0.860404 + 0.509612i \(0.829789\pi\)
\(570\) − 0.905149i − 0.0379125i
\(571\) 18.4886 0.773723 0.386862 0.922138i \(-0.373559\pi\)
0.386862 + 0.922138i \(0.373559\pi\)
\(572\) 50.3086i 2.10351i
\(573\) −13.3056 −0.555849
\(574\) −0.493959 −0.0206175
\(575\) −10.3800 −0.432876
\(576\) 5.24698 0.218624
\(577\) 37.8582i 1.57606i 0.615640 + 0.788028i \(0.288898\pi\)
−0.615640 + 0.788028i \(0.711102\pi\)
\(578\) 1.42221i 0.0591560i
\(579\) 28.3424 1.17787
\(580\) 0 0
\(581\) 1.58987 0.0659591
\(582\) − 0.100228i − 0.00415457i
\(583\) − 23.1739i − 0.959765i
\(584\) −9.51871 −0.393887
\(585\) −5.65279 −0.233714
\(586\) 3.01016 0.124349
\(587\) −14.4354 −0.595811 −0.297905 0.954595i \(-0.596288\pi\)
−0.297905 + 0.954595i \(0.596288\pi\)
\(588\) 15.4426i 0.636844i
\(589\) −15.7724 −0.649890
\(590\) − 3.84787i − 0.158414i
\(591\) 24.3884i 1.00320i
\(592\) 14.0804i 0.578700i
\(593\) 13.0019 0.533925 0.266962 0.963707i \(-0.413980\pi\)
0.266962 + 0.963707i \(0.413980\pi\)
\(594\) − 12.1836i − 0.499899i
\(595\) − 1.10992i − 0.0455021i
\(596\) −33.5284 −1.37338
\(597\) 1.09113i 0.0446570i
\(598\) − 5.77586i − 0.236192i
\(599\) 12.0935i 0.494128i 0.968999 + 0.247064i \(0.0794658\pi\)
−0.968999 + 0.247064i \(0.920534\pi\)
\(600\) 9.53916 0.389434
\(601\) − 22.3472i − 0.911562i −0.890092 0.455781i \(-0.849360\pi\)
0.890092 0.455781i \(-0.150640\pi\)
\(602\) −0.540958 −0.0220478
\(603\) 3.35690 0.136703
\(604\) 13.5646 0.551938
\(605\) 9.26875 0.376828
\(606\) − 1.79225i − 0.0728051i
\(607\) − 41.4687i − 1.68316i −0.540129 0.841582i \(-0.681625\pi\)
0.540129 0.841582i \(-0.318375\pi\)
\(608\) −10.9661 −0.444736
\(609\) 0 0
\(610\) 0.506041 0.0204890
\(611\) 36.4325i 1.47390i
\(612\) 11.7017i 0.473014i
\(613\) −25.7845 −1.04143 −0.520713 0.853732i \(-0.674334\pi\)
−0.520713 + 0.853732i \(0.674334\pi\)
\(614\) 2.01075 0.0811474
\(615\) 2.68366 0.108216
\(616\) 2.98254 0.120170
\(617\) − 8.86533i − 0.356905i −0.983949 0.178452i \(-0.942891\pi\)
0.983949 0.178452i \(-0.0571090\pi\)
\(618\) 7.57673 0.304781
\(619\) − 29.4513i − 1.18375i −0.806031 0.591873i \(-0.798389\pi\)
0.806031 0.591873i \(-0.201611\pi\)
\(620\) 8.34481i 0.335136i
\(621\) − 12.7259i − 0.510672i
\(622\) −5.61489 −0.225137
\(623\) − 2.02715i − 0.0812159i
\(624\) − 20.0954i − 0.804461i
\(625\) 18.0459 0.721837
\(626\) − 8.56273i − 0.342235i
\(627\) − 14.5157i − 0.579702i
\(628\) 32.8659i 1.31149i
\(629\) −22.1957 −0.884999
\(630\) 0.158834i 0.00632808i
\(631\) −23.7711 −0.946311 −0.473156 0.880979i \(-0.656885\pi\)
−0.473156 + 0.880979i \(0.656885\pi\)
\(632\) −7.89307 −0.313969
\(633\) 22.7808 0.905454
\(634\) −1.27652 −0.0506971
\(635\) 0.717513i 0.0284736i
\(636\) 10.5429i 0.418052i
\(637\) −38.8495 −1.53927
\(638\) 0 0
\(639\) 10.5996 0.419312
\(640\) 7.55794i 0.298754i
\(641\) 28.4655i 1.12432i 0.827029 + 0.562160i \(0.190029\pi\)
−0.827029 + 0.562160i \(0.809971\pi\)
\(642\) −9.01507 −0.355796
\(643\) 19.3467 0.762961 0.381480 0.924377i \(-0.375414\pi\)
0.381480 + 0.924377i \(0.375414\pi\)
\(644\) 1.47650 0.0581823
\(645\) 2.93900 0.115723
\(646\) − 4.71379i − 0.185462i
\(647\) −22.7144 −0.892995 −0.446497 0.894785i \(-0.647329\pi\)
−0.446497 + 0.894785i \(0.647329\pi\)
\(648\) 4.35988i 0.171272i
\(649\) − 61.7077i − 2.42224i
\(650\) 11.3739i 0.446120i
\(651\) −2.97823 −0.116726
\(652\) − 22.7778i − 0.892046i
\(653\) − 22.9312i − 0.897368i −0.893690 0.448684i \(-0.851893\pi\)
0.893690 0.448684i \(-0.148107\pi\)
\(654\) 3.03385 0.118633
\(655\) 5.55124i 0.216905i
\(656\) − 8.86592i − 0.346156i
\(657\) − 8.12929i − 0.317154i
\(658\) 1.02369 0.0399076
\(659\) − 19.1782i − 0.747077i −0.927615 0.373539i \(-0.878144\pi\)
0.927615 0.373539i \(-0.121856\pi\)
\(660\) −7.67994 −0.298941
\(661\) −3.38644 −0.131717 −0.0658585 0.997829i \(-0.520979\pi\)
−0.0658585 + 0.997829i \(0.520979\pi\)
\(662\) −1.39480 −0.0542103
\(663\) 31.6775 1.23025
\(664\) − 7.53750i − 0.292512i
\(665\) 0.582105i 0.0225731i
\(666\) 3.17629 0.123079
\(667\) 0 0
\(668\) 1.43535 0.0555355
\(669\) 2.26742i 0.0876636i
\(670\) 0.715448i 0.0276402i
\(671\) 8.11529 0.313287
\(672\) −2.07069 −0.0798785
\(673\) −4.77048 −0.183888 −0.0919442 0.995764i \(-0.529308\pi\)
−0.0919442 + 0.995764i \(0.529308\pi\)
\(674\) −2.21744 −0.0854126
\(675\) 25.0599i 0.964557i
\(676\) 34.1540 1.31362
\(677\) 43.0901i 1.65609i 0.560665 + 0.828043i \(0.310546\pi\)
−0.560665 + 0.828043i \(0.689454\pi\)
\(678\) − 5.92394i − 0.227507i
\(679\) 0.0644568i 0.00247362i
\(680\) −5.26205 −0.201790
\(681\) 17.2784i 0.662111i
\(682\) − 14.7095i − 0.563255i
\(683\) 23.4330 0.896637 0.448319 0.893874i \(-0.352023\pi\)
0.448319 + 0.893874i \(0.352023\pi\)
\(684\) − 6.13706i − 0.234656i
\(685\) − 11.9253i − 0.455641i
\(686\) 2.20344i 0.0841277i
\(687\) 15.9269 0.607650
\(688\) − 9.70948i − 0.370170i
\(689\) −26.5230 −1.01045
\(690\) 0.881723 0.0335666
\(691\) 43.1377 1.64103 0.820517 0.571622i \(-0.193686\pi\)
0.820517 + 0.571622i \(0.193686\pi\)
\(692\) 16.4940 0.627006
\(693\) 2.54719i 0.0967597i
\(694\) 8.95300i 0.339851i
\(695\) 11.5345 0.437529
\(696\) 0 0
\(697\) 13.9758 0.529373
\(698\) − 9.11854i − 0.345142i
\(699\) 11.0556i 0.418162i
\(700\) −2.90754 −0.109895
\(701\) −4.23085 −0.159797 −0.0798985 0.996803i \(-0.525460\pi\)
−0.0798985 + 0.996803i \(0.525460\pi\)
\(702\) −13.9444 −0.526297
\(703\) 11.6407 0.439038
\(704\) 17.9336i 0.675899i
\(705\) −5.56166 −0.209464
\(706\) 8.00969i 0.301449i
\(707\) 1.15260i 0.0433481i
\(708\) 28.0737i 1.05507i
\(709\) −14.3037 −0.537185 −0.268593 0.963254i \(-0.586559\pi\)
−0.268593 + 0.963254i \(0.586559\pi\)
\(710\) 2.25906i 0.0847811i
\(711\) − 6.74094i − 0.252805i
\(712\) −9.61058 −0.360172
\(713\) − 15.3642i − 0.575393i
\(714\) − 0.890084i − 0.0333105i
\(715\) − 19.3207i − 0.722551i
\(716\) −6.13706 −0.229353
\(717\) 31.8786i 1.19053i
\(718\) 10.5157 0.392444
\(719\) −23.4407 −0.874192 −0.437096 0.899415i \(-0.643993\pi\)
−0.437096 + 0.899415i \(0.643993\pi\)
\(720\) −2.85086 −0.106245
\(721\) −4.87263 −0.181466
\(722\) − 5.98361i − 0.222687i
\(723\) 12.1347i 0.451293i
\(724\) 22.8388 0.848796
\(725\) 0 0
\(726\) 7.43296 0.275863
\(727\) 51.9976i 1.92848i 0.265022 + 0.964242i \(0.414621\pi\)
−0.265022 + 0.964242i \(0.585379\pi\)
\(728\) − 3.41358i − 0.126516i
\(729\) −24.4590 −0.905890
\(730\) 1.73258 0.0641256
\(731\) 15.3056 0.566098
\(732\) −3.69202 −0.136461
\(733\) − 34.1903i − 1.26285i −0.775438 0.631424i \(-0.782471\pi\)
0.775438 0.631424i \(-0.217529\pi\)
\(734\) −13.1924 −0.486941
\(735\) − 5.93064i − 0.218755i
\(736\) − 10.6823i − 0.393756i
\(737\) 11.4735i 0.422632i
\(738\) −2.00000 −0.0736210
\(739\) 39.7730i 1.46307i 0.681802 + 0.731537i \(0.261196\pi\)
−0.681802 + 0.731537i \(0.738804\pi\)
\(740\) − 6.15883i − 0.226403i
\(741\) −16.6136 −0.610315
\(742\) 0.745251i 0.0273590i
\(743\) − 7.17821i − 0.263343i −0.991293 0.131672i \(-0.957966\pi\)
0.991293 0.131672i \(-0.0420344\pi\)
\(744\) 14.1196i 0.517650i
\(745\) 12.8763 0.471753
\(746\) 11.2097i 0.410415i
\(747\) 6.43727 0.235527
\(748\) −39.9952 −1.46237
\(749\) 5.79763 0.211841
\(750\) −3.65651 −0.133517
\(751\) 27.1685i 0.991393i 0.868496 + 0.495697i \(0.165087\pi\)
−0.868496 + 0.495697i \(0.834913\pi\)
\(752\) 18.3739i 0.670026i
\(753\) −12.1709 −0.443533
\(754\) 0 0
\(755\) −5.20941 −0.189590
\(756\) − 3.56465i − 0.129645i
\(757\) 23.6926i 0.861123i 0.902561 + 0.430561i \(0.141684\pi\)
−0.902561 + 0.430561i \(0.858316\pi\)
\(758\) −11.9748 −0.434943
\(759\) 14.1400 0.513251
\(760\) 2.75973 0.100106
\(761\) −14.2543 −0.516717 −0.258359 0.966049i \(-0.583182\pi\)
−0.258359 + 0.966049i \(0.583182\pi\)
\(762\) 0.575400i 0.0208446i
\(763\) −1.95108 −0.0706339
\(764\) − 19.2271i − 0.695613i
\(765\) − 4.49396i − 0.162479i
\(766\) − 8.75361i − 0.316281i
\(767\) −70.6258 −2.55015
\(768\) − 2.99462i − 0.108059i
\(769\) 44.7066i 1.61216i 0.591805 + 0.806081i \(0.298415\pi\)
−0.591805 + 0.806081i \(0.701585\pi\)
\(770\) −0.542877 −0.0195639
\(771\) − 20.3967i − 0.734570i
\(772\) 40.9560i 1.47404i
\(773\) 22.9487i 0.825407i 0.910865 + 0.412704i \(0.135415\pi\)
−0.910865 + 0.412704i \(0.864585\pi\)
\(774\) −2.19029 −0.0787284
\(775\) 30.2553i 1.08680i
\(776\) 0.305586 0.0109699
\(777\) 2.19806 0.0788550
\(778\) −11.0616 −0.396577
\(779\) −7.32975 −0.262616
\(780\) 8.78986i 0.314727i
\(781\) 36.2282i 1.29635i
\(782\) 4.59179 0.164202
\(783\) 0 0
\(784\) −19.5929 −0.699745
\(785\) − 12.6219i − 0.450496i
\(786\) 4.45175i 0.158789i
\(787\) −14.3327 −0.510907 −0.255453 0.966821i \(-0.582225\pi\)
−0.255453 + 0.966821i \(0.582225\pi\)
\(788\) −35.2422 −1.25545
\(789\) 29.5827 1.05317
\(790\) 1.43668 0.0511148
\(791\) 3.80971i 0.135458i
\(792\) 12.0761 0.429104
\(793\) − 9.28813i − 0.329831i
\(794\) 1.77777i 0.0630909i
\(795\) − 4.04892i − 0.143600i
\(796\) −1.57673 −0.0558857
\(797\) 10.1933i 0.361064i 0.983569 + 0.180532i \(0.0577820\pi\)
−0.983569 + 0.180532i \(0.942218\pi\)
\(798\) 0.466812i 0.0165250i
\(799\) −28.9638 −1.02466
\(800\) 21.0358i 0.743727i
\(801\) − 8.20775i − 0.290007i
\(802\) 11.0847i 0.391414i
\(803\) 27.7851 0.980514
\(804\) − 5.21983i − 0.184089i
\(805\) −0.567040 −0.0199855
\(806\) −16.8353 −0.592999
\(807\) −31.6165 −1.11296
\(808\) 5.46442 0.192238
\(809\) − 8.97285i − 0.315469i −0.987482 0.157734i \(-0.949581\pi\)
0.987482 0.157734i \(-0.0504190\pi\)
\(810\) − 0.793577i − 0.0278835i
\(811\) 28.5628 1.00298 0.501489 0.865164i \(-0.332786\pi\)
0.501489 + 0.865164i \(0.332786\pi\)
\(812\) 0 0
\(813\) 1.50066 0.0526306
\(814\) 10.8562i 0.380511i
\(815\) 8.74764i 0.306417i
\(816\) 15.9758 0.559266
\(817\) −8.02715 −0.280834
\(818\) 0.126047 0.00440712
\(819\) 2.91531 0.101869
\(820\) 3.87800i 0.135426i
\(821\) −11.3351 −0.395599 −0.197799 0.980243i \(-0.563379\pi\)
−0.197799 + 0.980243i \(0.563379\pi\)
\(822\) − 9.56332i − 0.333559i
\(823\) 5.67217i 0.197719i 0.995101 + 0.0988597i \(0.0315195\pi\)
−0.995101 + 0.0988597i \(0.968480\pi\)
\(824\) 23.1008i 0.804755i
\(825\) −27.8447 −0.969429
\(826\) 1.98446i 0.0690482i
\(827\) 2.90323i 0.100955i 0.998725 + 0.0504776i \(0.0160744\pi\)
−0.998725 + 0.0504776i \(0.983926\pi\)
\(828\) 5.97823 0.207758
\(829\) − 45.2137i − 1.57034i −0.619282 0.785169i \(-0.712576\pi\)
0.619282 0.785169i \(-0.287424\pi\)
\(830\) 1.37196i 0.0476215i
\(831\) − 13.2989i − 0.461333i
\(832\) 20.5254 0.711591
\(833\) − 30.8853i − 1.07011i
\(834\) 9.24996 0.320300
\(835\) −0.551237 −0.0190764
\(836\) 20.9758 0.725464
\(837\) −37.0930 −1.28212
\(838\) − 11.7885i − 0.407228i
\(839\) 45.6256i 1.57517i 0.616205 + 0.787586i \(0.288669\pi\)
−0.616205 + 0.787586i \(0.711331\pi\)
\(840\) 0.521106 0.0179799
\(841\) 0 0
\(842\) 7.82477 0.269659
\(843\) 20.3002i 0.699176i
\(844\) 32.9191i 1.13312i
\(845\) −13.1166 −0.451225
\(846\) 4.14483 0.142502
\(847\) −4.78017 −0.164248
\(848\) −13.3763 −0.459343
\(849\) − 6.54288i − 0.224551i
\(850\) −9.04221 −0.310145
\(851\) 11.3394i 0.388711i
\(852\) − 16.4819i − 0.564660i
\(853\) 36.9288i 1.26442i 0.774797 + 0.632210i \(0.217852\pi\)
−0.774797 + 0.632210i \(0.782148\pi\)
\(854\) −0.260980 −0.00893056
\(855\) 2.35690i 0.0806041i
\(856\) − 27.4862i − 0.939459i
\(857\) 35.5502 1.21437 0.607185 0.794560i \(-0.292299\pi\)
0.607185 + 0.794560i \(0.292299\pi\)
\(858\) − 15.4940i − 0.528955i
\(859\) − 42.3812i − 1.44603i −0.690834 0.723014i \(-0.742756\pi\)
0.690834 0.723014i \(-0.257244\pi\)
\(860\) 4.24698i 0.144821i
\(861\) −1.38404 −0.0471681
\(862\) 12.3700i 0.421325i
\(863\) −49.7797 −1.69452 −0.847260 0.531178i \(-0.821750\pi\)
−0.847260 + 0.531178i \(0.821750\pi\)
\(864\) −25.7899 −0.877389
\(865\) −6.33439 −0.215376
\(866\) −2.61489 −0.0888577
\(867\) 3.98493i 0.135335i
\(868\) − 4.30367i − 0.146076i
\(869\) 23.0398 0.781572
\(870\) 0 0
\(871\) 13.1317 0.444950
\(872\) 9.24996i 0.313243i
\(873\) 0.260980i 0.00883284i
\(874\) −2.40821 −0.0814588
\(875\) 2.35152 0.0794959
\(876\) −12.6407 −0.427090
\(877\) 21.8931 0.739276 0.369638 0.929176i \(-0.379482\pi\)
0.369638 + 0.929176i \(0.379482\pi\)
\(878\) − 7.00538i − 0.236420i
\(879\) 8.43429 0.284481
\(880\) − 9.74392i − 0.328468i
\(881\) − 33.5308i − 1.12968i −0.825200 0.564841i \(-0.808938\pi\)
0.825200 0.564841i \(-0.191062\pi\)
\(882\) 4.41981i 0.148823i
\(883\) 16.1274 0.542729 0.271365 0.962477i \(-0.412525\pi\)
0.271365 + 0.962477i \(0.412525\pi\)
\(884\) 45.7754i 1.53959i
\(885\) − 10.7815i − 0.362416i
\(886\) −2.99894 −0.100751
\(887\) 52.7391i 1.77081i 0.464823 + 0.885403i \(0.346118\pi\)
−0.464823 + 0.885403i \(0.653882\pi\)
\(888\) − 10.4209i − 0.349702i
\(889\) − 0.370042i − 0.0124108i
\(890\) 1.74930 0.0586367
\(891\) − 12.7265i − 0.426353i
\(892\) −3.27652 −0.109706
\(893\) 15.1903 0.508324
\(894\) 10.3260 0.345354
\(895\) 2.35690 0.0787823
\(896\) − 3.89785i − 0.130218i
\(897\) − 16.1836i − 0.540354i
\(898\) 5.48294 0.182968
\(899\) 0 0
\(900\) −11.7724 −0.392413
\(901\) − 21.0858i − 0.702468i
\(902\) − 6.83579i − 0.227607i
\(903\) −1.51573 −0.0504403
\(904\) 18.0616 0.600720
\(905\) −8.77107 −0.291560
\(906\) −4.17762 −0.138792
\(907\) 29.8437i 0.990943i 0.868624 + 0.495472i \(0.165005\pi\)
−0.868624 + 0.495472i \(0.834995\pi\)
\(908\) −24.9681 −0.828594
\(909\) 4.66679i 0.154788i
\(910\) 0.621334i 0.0205970i
\(911\) 9.34050i 0.309465i 0.987956 + 0.154732i \(0.0494515\pi\)
−0.987956 + 0.154732i \(0.950548\pi\)
\(912\) −8.37867 −0.277445
\(913\) 22.0019i 0.728157i
\(914\) 6.08038i 0.201121i
\(915\) 1.41789 0.0468742
\(916\) 23.0151i 0.760439i
\(917\) − 2.86294i − 0.0945425i
\(918\) − 11.0858i − 0.365884i
\(919\) −18.4209 −0.607649 −0.303824 0.952728i \(-0.598264\pi\)
−0.303824 + 0.952728i \(0.598264\pi\)
\(920\) 2.68830i 0.0886306i
\(921\) 5.63401 0.185647
\(922\) −5.16613 −0.170137
\(923\) 41.4639 1.36480
\(924\) 3.96077 0.130300
\(925\) − 22.3297i − 0.734198i
\(926\) − 3.22329i − 0.105924i
\(927\) −19.7289 −0.647981
\(928\) 0 0
\(929\) −4.84654 −0.159010 −0.0795050 0.996834i \(-0.525334\pi\)
−0.0795050 + 0.996834i \(0.525334\pi\)
\(930\) − 2.57002i − 0.0842744i
\(931\) 16.1981i 0.530870i
\(932\) −15.9758 −0.523306
\(933\) −15.7326 −0.515061
\(934\) −0.918296 −0.0300476
\(935\) 15.3599 0.502322
\(936\) − 13.8213i − 0.451764i
\(937\) 44.7144 1.46076 0.730378 0.683044i \(-0.239344\pi\)
0.730378 + 0.683044i \(0.239344\pi\)
\(938\) − 0.368977i − 0.0120475i
\(939\) − 23.9922i − 0.782957i
\(940\) − 8.03684i − 0.262133i
\(941\) −13.5851 −0.442861 −0.221431 0.975176i \(-0.571073\pi\)
−0.221431 + 0.975176i \(0.571073\pi\)
\(942\) − 10.1220i − 0.329793i
\(943\) − 7.14005i − 0.232512i
\(944\) −35.6185 −1.15928
\(945\) 1.36898i 0.0445328i
\(946\) − 7.48619i − 0.243397i
\(947\) 15.0116i 0.487812i 0.969799 + 0.243906i \(0.0784288\pi\)
−0.969799 + 0.243906i \(0.921571\pi\)
\(948\) −10.4819 −0.340436
\(949\) − 31.8006i − 1.03229i
\(950\) 4.74227 0.153859
\(951\) −3.57673 −0.115983
\(952\) 2.71379 0.0879545
\(953\) 51.8447 1.67942 0.839708 0.543038i \(-0.182726\pi\)
0.839708 + 0.543038i \(0.182726\pi\)
\(954\) 3.01746i 0.0976938i
\(955\) 7.38404i 0.238942i
\(956\) −46.0659 −1.48988
\(957\) 0 0
\(958\) 1.73078 0.0559188
\(959\) 6.15021i 0.198601i
\(960\) 3.13334i 0.101128i
\(961\) −13.7832 −0.444618
\(962\) 12.4252 0.400604
\(963\) 23.4741 0.756443
\(964\) −17.5351 −0.564768
\(965\) − 15.7289i − 0.506330i
\(966\) −0.454731 −0.0146307
\(967\) 41.6249i 1.33857i 0.743007 + 0.669283i \(0.233399\pi\)
−0.743007 + 0.669283i \(0.766601\pi\)
\(968\) 22.6625i 0.728400i
\(969\) − 13.2078i − 0.424294i
\(970\) −0.0556221 −0.00178592
\(971\) − 55.7730i − 1.78984i −0.446226 0.894920i \(-0.647232\pi\)
0.446226 0.894920i \(-0.352768\pi\)
\(972\) − 24.1739i − 0.775378i
\(973\) −5.94869 −0.190706
\(974\) − 4.38165i − 0.140397i
\(975\) 31.8689i 1.02062i
\(976\) − 4.68425i − 0.149939i
\(977\) 48.9584 1.56632 0.783159 0.621822i \(-0.213607\pi\)
0.783159 + 0.621822i \(0.213607\pi\)
\(978\) 7.01507i 0.224317i
\(979\) 28.0532 0.896585
\(980\) 8.57002 0.273759
\(981\) −7.89977 −0.252220
\(982\) −3.46740 −0.110649
\(983\) − 5.17331i − 0.165003i −0.996591 0.0825015i \(-0.973709\pi\)
0.996591 0.0825015i \(-0.0262909\pi\)
\(984\) 6.56166i 0.209178i
\(985\) 13.5345 0.431246
\(986\) 0 0
\(987\) 2.86831 0.0912994
\(988\) − 24.0073i − 0.763774i
\(989\) − 7.81940i − 0.248642i
\(990\) −2.19806 −0.0698590
\(991\) 16.8528 0.535346 0.267673 0.963510i \(-0.413745\pi\)
0.267673 + 0.963510i \(0.413745\pi\)
\(992\) −31.1366 −0.988588
\(993\) −3.90813 −0.124021
\(994\) − 1.16506i − 0.0369536i
\(995\) 0.605531 0.0191966
\(996\) − 10.0097i − 0.317169i
\(997\) 38.2097i 1.21011i 0.796183 + 0.605056i \(0.206849\pi\)
−0.796183 + 0.605056i \(0.793151\pi\)
\(998\) − 9.15239i − 0.289714i
\(999\) 27.3763 0.866147
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.2.b.c.840.3 6
29.2 odd 28 841.2.d.e.605.1 6
29.3 odd 28 29.2.d.a.20.1 yes 6
29.4 even 14 841.2.e.d.651.2 12
29.5 even 14 841.2.e.b.236.1 12
29.6 even 14 841.2.e.b.196.2 12
29.7 even 7 841.2.e.d.270.2 12
29.8 odd 28 841.2.d.c.574.1 6
29.9 even 14 841.2.e.c.267.2 12
29.10 odd 28 841.2.d.d.190.1 6
29.11 odd 28 841.2.d.b.778.1 6
29.12 odd 4 841.2.a.f.1.2 3
29.13 even 14 841.2.e.c.63.1 12
29.14 odd 28 841.2.d.e.645.1 6
29.15 odd 28 841.2.d.a.645.1 6
29.16 even 7 841.2.e.c.63.2 12
29.17 odd 4 841.2.a.e.1.2 3
29.18 odd 28 841.2.d.c.778.1 6
29.19 odd 28 29.2.d.a.16.1 6
29.20 even 7 841.2.e.c.267.1 12
29.21 odd 28 841.2.d.b.574.1 6
29.22 even 14 841.2.e.d.270.1 12
29.23 even 7 841.2.e.b.196.1 12
29.24 even 7 841.2.e.b.236.2 12
29.25 even 7 841.2.e.d.651.1 12
29.26 odd 28 841.2.d.d.571.1 6
29.27 odd 28 841.2.d.a.605.1 6
29.28 even 2 inner 841.2.b.c.840.4 6
87.17 even 4 7569.2.a.r.1.2 3
87.32 even 28 261.2.k.a.136.1 6
87.41 even 4 7569.2.a.p.1.2 3
87.77 even 28 261.2.k.a.190.1 6
116.3 even 28 464.2.u.f.49.1 6
116.19 even 28 464.2.u.f.161.1 6
145.3 even 28 725.2.r.b.49.1 12
145.19 odd 28 725.2.l.b.451.1 6
145.32 even 28 725.2.r.b.49.2 12
145.48 even 28 725.2.r.b.74.2 12
145.77 even 28 725.2.r.b.74.1 12
145.119 odd 28 725.2.l.b.426.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.d.a.16.1 6 29.19 odd 28
29.2.d.a.20.1 yes 6 29.3 odd 28
261.2.k.a.136.1 6 87.32 even 28
261.2.k.a.190.1 6 87.77 even 28
464.2.u.f.49.1 6 116.3 even 28
464.2.u.f.161.1 6 116.19 even 28
725.2.l.b.426.1 6 145.119 odd 28
725.2.l.b.451.1 6 145.19 odd 28
725.2.r.b.49.1 12 145.3 even 28
725.2.r.b.49.2 12 145.32 even 28
725.2.r.b.74.1 12 145.77 even 28
725.2.r.b.74.2 12 145.48 even 28
841.2.a.e.1.2 3 29.17 odd 4
841.2.a.f.1.2 3 29.12 odd 4
841.2.b.c.840.3 6 1.1 even 1 trivial
841.2.b.c.840.4 6 29.28 even 2 inner
841.2.d.a.605.1 6 29.27 odd 28
841.2.d.a.645.1 6 29.15 odd 28
841.2.d.b.574.1 6 29.21 odd 28
841.2.d.b.778.1 6 29.11 odd 28
841.2.d.c.574.1 6 29.8 odd 28
841.2.d.c.778.1 6 29.18 odd 28
841.2.d.d.190.1 6 29.10 odd 28
841.2.d.d.571.1 6 29.26 odd 28
841.2.d.e.605.1 6 29.2 odd 28
841.2.d.e.645.1 6 29.14 odd 28
841.2.e.b.196.1 12 29.23 even 7
841.2.e.b.196.2 12 29.6 even 14
841.2.e.b.236.1 12 29.5 even 14
841.2.e.b.236.2 12 29.24 even 7
841.2.e.c.63.1 12 29.13 even 14
841.2.e.c.63.2 12 29.16 even 7
841.2.e.c.267.1 12 29.20 even 7
841.2.e.c.267.2 12 29.9 even 14
841.2.e.d.270.1 12 29.22 even 14
841.2.e.d.270.2 12 29.7 even 7
841.2.e.d.651.1 12 29.25 even 7
841.2.e.d.651.2 12 29.4 even 14
7569.2.a.p.1.2 3 87.41 even 4
7569.2.a.r.1.2 3 87.17 even 4