Properties

Label 841.2.b.c
Level $841$
Weight $2$
Character orbit 841.b
Analytic conductor $6.715$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [841,2,Mod(840,841)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(841, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("841.840"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 5x^{4} + 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 29)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + \beta_{3} q^{3} + \beta_{2} q^{4} + ( - 2 \beta_{4} - \beta_{2} + 2) q^{5} + (\beta_{4} - 1) q^{6} + ( - \beta_{4} + \beta_{2} - 1) q^{7} + (\beta_{3} + \beta_1) q^{8} + (\beta_{4} + 1) q^{9}+ \cdots + ( - 5 \beta_{5} - \beta_{3} - 2 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{4} + 6 q^{5} - 4 q^{6} - 6 q^{7} + 8 q^{9} - 2 q^{13} - 10 q^{16} + 2 q^{20} + 22 q^{22} - 14 q^{23} - 14 q^{24} + 4 q^{25} + 12 q^{28} - 18 q^{30} + 20 q^{33} + 12 q^{34} + 8 q^{35} - 2 q^{36}+ \cdots - 26 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 5x^{4} + 6x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 3\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} + 3\nu^{2} + 1 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} + 4\nu^{3} + 3\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 3\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} - 3\beta_{2} + 5 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} - 4\beta_{3} + 9\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/841\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
840.1
1.80194i
1.24698i
0.445042i
0.445042i
1.24698i
1.80194i
1.80194i 0.445042i −1.24698 −0.356896 0.801938 −4.04892 1.35690i 2.80194 0.643104i
840.2 1.24698i 1.80194i 0.445042 4.04892 −2.24698 0.692021 3.04892i −0.246980 5.04892i
840.3 0.445042i 1.24698i 1.80194 −0.692021 −0.554958 0.356896 1.69202i 1.44504 0.307979i
840.4 0.445042i 1.24698i 1.80194 −0.692021 −0.554958 0.356896 1.69202i 1.44504 0.307979i
840.5 1.24698i 1.80194i 0.445042 4.04892 −2.24698 0.692021 3.04892i −0.246980 5.04892i
840.6 1.80194i 0.445042i −1.24698 −0.356896 0.801938 −4.04892 1.35690i 2.80194 0.643104i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 840.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 841.2.b.c 6
29.b even 2 1 inner 841.2.b.c 6
29.c odd 4 1 841.2.a.e 3
29.c odd 4 1 841.2.a.f 3
29.d even 7 2 841.2.e.b 12
29.d even 7 2 841.2.e.c 12
29.d even 7 2 841.2.e.d 12
29.e even 14 2 841.2.e.b 12
29.e even 14 2 841.2.e.c 12
29.e even 14 2 841.2.e.d 12
29.f odd 28 2 29.2.d.a 6
29.f odd 28 2 841.2.d.a 6
29.f odd 28 2 841.2.d.b 6
29.f odd 28 2 841.2.d.c 6
29.f odd 28 2 841.2.d.d 6
29.f odd 28 2 841.2.d.e 6
87.f even 4 1 7569.2.a.p 3
87.f even 4 1 7569.2.a.r 3
87.k even 28 2 261.2.k.a 6
116.l even 28 2 464.2.u.f 6
145.o even 28 2 725.2.r.b 12
145.s odd 28 2 725.2.l.b 6
145.t even 28 2 725.2.r.b 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
29.2.d.a 6 29.f odd 28 2
261.2.k.a 6 87.k even 28 2
464.2.u.f 6 116.l even 28 2
725.2.l.b 6 145.s odd 28 2
725.2.r.b 12 145.o even 28 2
725.2.r.b 12 145.t even 28 2
841.2.a.e 3 29.c odd 4 1
841.2.a.f 3 29.c odd 4 1
841.2.b.c 6 1.a even 1 1 trivial
841.2.b.c 6 29.b even 2 1 inner
841.2.d.a 6 29.f odd 28 2
841.2.d.b 6 29.f odd 28 2
841.2.d.c 6 29.f odd 28 2
841.2.d.d 6 29.f odd 28 2
841.2.d.e 6 29.f odd 28 2
841.2.e.b 12 29.d even 7 2
841.2.e.b 12 29.e even 14 2
841.2.e.c 12 29.d even 7 2
841.2.e.c 12 29.e even 14 2
841.2.e.d 12 29.d even 7 2
841.2.e.d 12 29.e even 14 2
7569.2.a.p 3 87.f even 4 1
7569.2.a.r 3 87.f even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} + 5T_{2}^{4} + 6T_{2}^{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(841, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 5 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{6} + 5 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( (T^{3} - 3 T^{2} - 4 T - 1)^{2} \) Copy content Toggle raw display
$7$ \( (T^{3} + 3 T^{2} - 4 T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{6} + 41 T^{4} + \cdots + 1681 \) Copy content Toggle raw display
$13$ \( (T^{3} + T^{2} - 30 T - 43)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} + 24 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$19$ \( T^{6} + 17 T^{4} + \cdots + 169 \) Copy content Toggle raw display
$23$ \( (T^{3} + 7 T^{2} - 49)^{2} \) Copy content Toggle raw display
$29$ \( T^{6} \) Copy content Toggle raw display
$31$ \( T^{6} + 89 T^{4} + \cdots + 6889 \) Copy content Toggle raw display
$37$ \( T^{6} + 41 T^{4} + \cdots + 1681 \) Copy content Toggle raw display
$41$ \( T^{6} + 52 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$43$ \( T^{6} + 45 T^{4} + \cdots + 169 \) Copy content Toggle raw display
$47$ \( T^{6} + 125 T^{4} + \cdots + 57121 \) Copy content Toggle raw display
$53$ \( (T^{3} + 9 T^{2} + 20 T - 1)^{2} \) Copy content Toggle raw display
$59$ \( (T^{3} + 28 T^{2} + \cdots + 728)^{2} \) Copy content Toggle raw display
$61$ \( T^{6} + 41 T^{4} + \cdots + 169 \) Copy content Toggle raw display
$67$ \( (T^{3} + 13 T^{2} + \cdots - 13)^{2} \) Copy content Toggle raw display
$71$ \( (T^{3} - 21 T^{2} + \cdots - 189)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + 181 T^{4} + \cdots + 175561 \) Copy content Toggle raw display
$79$ \( T^{6} + 117 T^{4} + \cdots + 729 \) Copy content Toggle raw display
$83$ \( (T^{3} + 9 T^{2} + \cdots - 169)^{2} \) Copy content Toggle raw display
$89$ \( T^{6} + 161 T^{4} + \cdots + 8281 \) Copy content Toggle raw display
$97$ \( T^{6} + 269 T^{4} + \cdots + 169 \) Copy content Toggle raw display
show more
show less