Properties

Label 725.2.l.b.451.1
Level $725$
Weight $2$
Character 725.451
Analytic conductor $5.789$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [725,2,Mod(226,725)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(725, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([0, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("725.226"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.l (of order \(7\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 29)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 451.1
Root \(-0.623490 - 0.781831i\) of defining polynomial
Character \(\chi\) \(=\) 725.451
Dual form 725.2.l.b.426.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.400969 - 0.193096i) q^{2} +(0.777479 - 0.974928i) q^{3} +(-1.12349 - 1.40881i) q^{4} +(-0.500000 + 0.240787i) q^{6} +(-0.222521 + 0.279032i) q^{7} +(0.376510 + 1.64960i) q^{8} +(0.321552 + 1.40881i) q^{9} +(-1.09903 + 4.81517i) q^{11} -2.24698 q^{12} +(-1.25786 + 5.51107i) q^{13} +(0.143104 - 0.0689153i) q^{14} +(-0.634375 + 2.77938i) q^{16} -4.49396 q^{17} +(0.143104 - 0.626980i) q^{18} +(-1.46950 - 1.84270i) q^{19} +(0.0990311 + 0.433884i) q^{21} +(1.37047 - 1.71851i) q^{22} +(2.06853 - 0.996152i) q^{23} +(1.90097 + 0.915458i) q^{24} +(1.56853 - 1.96688i) q^{26} +(4.99396 + 2.40496i) q^{27} +0.643104 q^{28} +(-5.09783 - 1.73553i) q^{29} +(6.02930 + 2.90356i) q^{31} +(2.90097 - 3.63770i) q^{32} +(3.83997 + 4.81517i) q^{33} +(1.80194 + 0.867767i) q^{34} +(1.62349 - 2.03579i) q^{36} +(-1.09903 - 4.81517i) q^{37} +(0.233406 + 1.02262i) q^{38} +(4.39493 + 5.51107i) q^{39} +3.10992 q^{41} +(0.0440730 - 0.193096i) q^{42} +(-3.06853 + 1.47773i) q^{43} +(8.01842 - 3.86147i) q^{44} -1.02177 q^{46} +(-1.43416 + 6.28345i) q^{47} +(2.21648 + 2.77938i) q^{48} +(1.52930 + 6.70031i) q^{49} +(-3.49396 + 4.38129i) q^{51} +(9.17725 - 4.41953i) q^{52} +(-4.22737 - 2.03579i) q^{53} +(-1.53803 - 1.92863i) q^{54} +(-0.544073 - 0.262012i) q^{56} -2.93900 q^{57} +(1.70895 + 1.68027i) q^{58} -12.4940 q^{59} +(-1.02446 + 1.28463i) q^{61} +(-1.85690 - 2.32847i) q^{62} +(-0.464656 - 0.223767i) q^{63} +(3.27144 - 1.57544i) q^{64} +(-0.609916 - 2.67222i) q^{66} +(-0.516926 - 2.26480i) q^{67} +(5.04892 + 6.33114i) q^{68} +(0.637063 - 2.79116i) q^{69} +(1.63222 - 7.15122i) q^{71} +(-2.20291 + 1.06086i) q^{72} +(5.06853 - 2.44088i) q^{73} +(-0.489115 + 2.14295i) q^{74} +(-0.945042 + 4.14050i) q^{76} +(-1.09903 - 1.37814i) q^{77} +(-0.698062 - 3.05841i) q^{78} +(1.03803 + 4.54792i) q^{79} +(2.32155 - 1.11800i) q^{81} +(-1.24698 - 0.600514i) q^{82} +(-2.77748 - 3.48285i) q^{83} +(0.500000 - 0.626980i) q^{84} +1.51573 q^{86} +(-5.65548 + 3.62068i) q^{87} -8.35690 q^{88} +(5.11745 + 2.46443i) q^{89} +(-1.25786 - 1.57731i) q^{91} +(-3.72737 - 1.79500i) q^{92} +(7.51842 - 3.62068i) q^{93} +(1.78836 - 2.24254i) q^{94} +(-1.29105 - 5.65647i) q^{96} +(0.112605 + 0.141202i) q^{97} +(0.680604 - 2.98192i) q^{98} -7.13706 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + 5 q^{3} - 2 q^{4} - 3 q^{6} - q^{7} + 7 q^{8} + 6 q^{9} - 11 q^{11} - 4 q^{12} + 5 q^{13} + 9 q^{14} + 4 q^{16} - 8 q^{17} + 9 q^{18} + q^{19} + 5 q^{21} - 6 q^{22} + 7 q^{23} + 7 q^{24}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/725\mathbb{Z}\right)^\times\).

\(n\) \(176\) \(552\)
\(\chi(n)\) \(e\left(\frac{1}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.400969 0.193096i −0.283528 0.136540i 0.286715 0.958016i \(-0.407437\pi\)
−0.570243 + 0.821476i \(0.693151\pi\)
\(3\) 0.777479 0.974928i 0.448878 0.562875i −0.504981 0.863130i \(-0.668501\pi\)
0.953859 + 0.300256i \(0.0970720\pi\)
\(4\) −1.12349 1.40881i −0.561745 0.704406i
\(5\) 0 0
\(6\) −0.500000 + 0.240787i −0.204124 + 0.0983010i
\(7\) −0.222521 + 0.279032i −0.0841050 + 0.105464i −0.822104 0.569338i \(-0.807200\pi\)
0.737999 + 0.674802i \(0.235771\pi\)
\(8\) 0.376510 + 1.64960i 0.133116 + 0.583221i
\(9\) 0.321552 + 1.40881i 0.107184 + 0.469604i
\(10\) 0 0
\(11\) −1.09903 + 4.81517i −0.331370 + 1.45183i 0.485109 + 0.874454i \(0.338780\pi\)
−0.816479 + 0.577375i \(0.804077\pi\)
\(12\) −2.24698 −0.648647
\(13\) −1.25786 + 5.51107i −0.348869 + 1.52849i 0.430884 + 0.902407i \(0.358202\pi\)
−0.779753 + 0.626087i \(0.784655\pi\)
\(14\) 0.143104 0.0689153i 0.0382462 0.0184184i
\(15\) 0 0
\(16\) −0.634375 + 2.77938i −0.158594 + 0.694845i
\(17\) −4.49396 −1.08995 −0.544973 0.838454i \(-0.683460\pi\)
−0.544973 + 0.838454i \(0.683460\pi\)
\(18\) 0.143104 0.626980i 0.0337300 0.147781i
\(19\) −1.46950 1.84270i −0.337127 0.422743i 0.584153 0.811643i \(-0.301427\pi\)
−0.921280 + 0.388900i \(0.872855\pi\)
\(20\) 0 0
\(21\) 0.0990311 + 0.433884i 0.0216104 + 0.0946812i
\(22\) 1.37047 1.71851i 0.292185 0.366388i
\(23\) 2.06853 0.996152i 0.431319 0.207712i −0.205611 0.978634i \(-0.565918\pi\)
0.636930 + 0.770922i \(0.280204\pi\)
\(24\) 1.90097 + 0.915458i 0.388034 + 0.186867i
\(25\) 0 0
\(26\) 1.56853 1.96688i 0.307614 0.385736i
\(27\) 4.99396 + 2.40496i 0.961088 + 0.462836i
\(28\) 0.643104 0.121535
\(29\) −5.09783 1.73553i −0.946644 0.322281i
\(30\) 0 0
\(31\) 6.02930 + 2.90356i 1.08289 + 0.521495i 0.888241 0.459377i \(-0.151927\pi\)
0.194654 + 0.980872i \(0.437642\pi\)
\(32\) 2.90097 3.63770i 0.512824 0.643061i
\(33\) 3.83997 + 4.81517i 0.668453 + 0.838214i
\(34\) 1.80194 + 0.867767i 0.309030 + 0.148821i
\(35\) 0 0
\(36\) 1.62349 2.03579i 0.270582 0.339299i
\(37\) −1.09903 4.81517i −0.180680 0.791609i −0.981307 0.192447i \(-0.938358\pi\)
0.800628 0.599162i \(-0.204499\pi\)
\(38\) 0.233406 + 1.02262i 0.0378635 + 0.165891i
\(39\) 4.39493 + 5.51107i 0.703752 + 0.882477i
\(40\) 0 0
\(41\) 3.10992 0.485687 0.242844 0.970065i \(-0.421920\pi\)
0.242844 + 0.970065i \(0.421920\pi\)
\(42\) 0.0440730 0.193096i 0.00680061 0.0297954i
\(43\) −3.06853 + 1.47773i −0.467947 + 0.225351i −0.652971 0.757383i \(-0.726478\pi\)
0.185025 + 0.982734i \(0.440764\pi\)
\(44\) 8.01842 3.86147i 1.20882 0.582138i
\(45\) 0 0
\(46\) −1.02177 −0.150652
\(47\) −1.43416 + 6.28345i −0.209193 + 0.916536i 0.755912 + 0.654673i \(0.227194\pi\)
−0.965105 + 0.261862i \(0.915663\pi\)
\(48\) 2.21648 + 2.77938i 0.319921 + 0.401169i
\(49\) 1.52930 + 6.70031i 0.218472 + 0.957188i
\(50\) 0 0
\(51\) −3.49396 + 4.38129i −0.489252 + 0.613503i
\(52\) 9.17725 4.41953i 1.27266 0.612879i
\(53\) −4.22737 2.03579i −0.580673 0.279638i 0.120401 0.992725i \(-0.461582\pi\)
−0.701075 + 0.713088i \(0.747296\pi\)
\(54\) −1.53803 1.92863i −0.209300 0.262453i
\(55\) 0 0
\(56\) −0.544073 0.262012i −0.0727048 0.0350128i
\(57\) −2.93900 −0.389280
\(58\) 1.70895 + 1.68027i 0.224396 + 0.220630i
\(59\) −12.4940 −1.62657 −0.813287 0.581862i \(-0.802324\pi\)
−0.813287 + 0.581862i \(0.802324\pi\)
\(60\) 0 0
\(61\) −1.02446 + 1.28463i −0.131168 + 0.164480i −0.843078 0.537791i \(-0.819259\pi\)
0.711910 + 0.702271i \(0.247830\pi\)
\(62\) −1.85690 2.32847i −0.235826 0.295716i
\(63\) −0.464656 0.223767i −0.0585412 0.0281919i
\(64\) 3.27144 1.57544i 0.408930 0.196930i
\(65\) 0 0
\(66\) −0.609916 2.67222i −0.0750755 0.328927i
\(67\) −0.516926 2.26480i −0.0631526 0.276689i 0.933486 0.358614i \(-0.116751\pi\)
−0.996639 + 0.0819245i \(0.973893\pi\)
\(68\) 5.04892 + 6.33114i 0.612271 + 0.767764i
\(69\) 0.637063 2.79116i 0.0766934 0.336016i
\(70\) 0 0
\(71\) 1.63222 7.15122i 0.193709 0.848694i −0.780878 0.624683i \(-0.785228\pi\)
0.974587 0.224010i \(-0.0719148\pi\)
\(72\) −2.20291 + 1.06086i −0.259615 + 0.125024i
\(73\) 5.06853 2.44088i 0.593227 0.285683i −0.113083 0.993586i \(-0.536073\pi\)
0.706310 + 0.707903i \(0.250358\pi\)
\(74\) −0.489115 + 2.14295i −0.0568584 + 0.249113i
\(75\) 0 0
\(76\) −0.945042 + 4.14050i −0.108404 + 0.474948i
\(77\) −1.09903 1.37814i −0.125246 0.157054i
\(78\) −0.698062 3.05841i −0.0790400 0.346297i
\(79\) 1.03803 + 4.54792i 0.116788 + 0.511681i 0.999154 + 0.0411178i \(0.0130919\pi\)
−0.882367 + 0.470563i \(0.844051\pi\)
\(80\) 0 0
\(81\) 2.32155 1.11800i 0.257950 0.124222i
\(82\) −1.24698 0.600514i −0.137706 0.0663156i
\(83\) −2.77748 3.48285i −0.304868 0.382292i 0.605671 0.795715i \(-0.292905\pi\)
−0.910539 + 0.413423i \(0.864333\pi\)
\(84\) 0.500000 0.626980i 0.0545545 0.0684091i
\(85\) 0 0
\(86\) 1.51573 0.163445
\(87\) −5.65548 + 3.62068i −0.606331 + 0.388178i
\(88\) −8.35690 −0.890848
\(89\) 5.11745 + 2.46443i 0.542449 + 0.261229i 0.684981 0.728561i \(-0.259810\pi\)
−0.142533 + 0.989790i \(0.545525\pi\)
\(90\) 0 0
\(91\) −1.25786 1.57731i −0.131860 0.165347i
\(92\) −3.72737 1.79500i −0.388605 0.187142i
\(93\) 7.51842 3.62068i 0.779624 0.375447i
\(94\) 1.78836 2.24254i 0.184456 0.231300i
\(95\) 0 0
\(96\) −1.29105 5.65647i −0.131768 0.577311i
\(97\) 0.112605 + 0.141202i 0.0114333 + 0.0143369i 0.787515 0.616295i \(-0.211367\pi\)
−0.776082 + 0.630632i \(0.782796\pi\)
\(98\) 0.680604 2.98192i 0.0687514 0.301219i
\(99\) −7.13706 −0.717302
\(100\) 0 0
\(101\) −2.90970 + 1.40124i −0.289526 + 0.139428i −0.573009 0.819549i \(-0.694224\pi\)
0.283484 + 0.958977i \(0.408510\pi\)
\(102\) 2.24698 1.08209i 0.222484 0.107143i
\(103\) −3.03803 + 13.3105i −0.299346 + 1.31152i 0.571758 + 0.820423i \(0.306262\pi\)
−0.871104 + 0.491099i \(0.836595\pi\)
\(104\) −9.56465 −0.937891
\(105\) 0 0
\(106\) 1.30194 + 1.63258i 0.126455 + 0.158570i
\(107\) 3.61476 + 15.8373i 0.349452 + 1.53105i 0.778428 + 0.627734i \(0.216017\pi\)
−0.428976 + 0.903316i \(0.641126\pi\)
\(108\) −2.22252 9.73750i −0.213862 0.936991i
\(109\) 3.40850 4.27413i 0.326475 0.409387i −0.591323 0.806435i \(-0.701394\pi\)
0.917798 + 0.397048i \(0.129965\pi\)
\(110\) 0 0
\(111\) −5.54892 2.67222i −0.526680 0.253636i
\(112\) −0.634375 0.795481i −0.0599428 0.0751659i
\(113\) 6.65548 8.34571i 0.626095 0.785098i −0.363093 0.931753i \(-0.618279\pi\)
0.989188 + 0.146655i \(0.0468506\pi\)
\(114\) 1.17845 + 0.567511i 0.110372 + 0.0531522i
\(115\) 0 0
\(116\) 3.28232 + 9.13174i 0.304756 + 0.847861i
\(117\) −8.16852 −0.755180
\(118\) 5.00969 + 2.41254i 0.461179 + 0.222092i
\(119\) 1.00000 1.25396i 0.0916698 0.114950i
\(120\) 0 0
\(121\) −12.0673 5.81132i −1.09703 0.528302i
\(122\) 0.658834 0.317278i 0.0596480 0.0287250i
\(123\) 2.41789 3.03194i 0.218014 0.273381i
\(124\) −2.68329 11.7563i −0.240967 1.05574i
\(125\) 0 0
\(126\) 0.143104 + 0.179447i 0.0127487 + 0.0159864i
\(127\) −0.230718 + 1.01084i −0.0204729 + 0.0896976i −0.984132 0.177437i \(-0.943220\pi\)
0.963659 + 0.267134i \(0.0860767\pi\)
\(128\) −10.9215 −0.965337
\(129\) −0.945042 + 4.14050i −0.0832063 + 0.364551i
\(130\) 0 0
\(131\) −7.22737 + 3.48052i −0.631458 + 0.304094i −0.722099 0.691790i \(-0.756823\pi\)
0.0906414 + 0.995884i \(0.471108\pi\)
\(132\) 2.46950 10.8196i 0.214942 0.941724i
\(133\) 0.841166 0.0729384
\(134\) −0.230054 + 1.00793i −0.0198736 + 0.0870720i
\(135\) 0 0
\(136\) −1.69202 7.41323i −0.145090 0.635679i
\(137\) 3.83459 + 16.8005i 0.327611 + 1.43536i 0.823670 + 0.567070i \(0.191923\pi\)
−0.496058 + 0.868289i \(0.665220\pi\)
\(138\) −0.794405 + 0.996152i −0.0676242 + 0.0847981i
\(139\) 15.0172 7.23191i 1.27374 0.613403i 0.329969 0.943992i \(-0.392962\pi\)
0.943775 + 0.330589i \(0.107247\pi\)
\(140\) 0 0
\(141\) 5.01089 + 6.28345i 0.421993 + 0.529162i
\(142\) −2.03534 + 2.55224i −0.170802 + 0.214179i
\(143\) −25.1543 12.1137i −2.10351 1.01300i
\(144\) −4.11960 −0.343300
\(145\) 0 0
\(146\) −2.50365 −0.207203
\(147\) 7.72132 + 3.71839i 0.636844 + 0.306688i
\(148\) −5.54892 + 6.95812i −0.456118 + 0.571954i
\(149\) 11.6012 + 14.5474i 0.950406 + 1.19177i 0.981346 + 0.192251i \(0.0615786\pi\)
−0.0309396 + 0.999521i \(0.509850\pi\)
\(150\) 0 0
\(151\) 6.78232 3.26619i 0.551938 0.265799i −0.137060 0.990563i \(-0.543765\pi\)
0.688998 + 0.724764i \(0.258051\pi\)
\(152\) 2.48643 3.11788i 0.201676 0.252893i
\(153\) −1.44504 6.33114i −0.116825 0.511843i
\(154\) 0.174563 + 0.764811i 0.0140667 + 0.0616302i
\(155\) 0 0
\(156\) 2.82640 12.3833i 0.226293 0.991454i
\(157\) 18.2392 1.45565 0.727824 0.685764i \(-0.240532\pi\)
0.727824 + 0.685764i \(0.240532\pi\)
\(158\) 0.461968 2.02401i 0.0367522 0.161022i
\(159\) −5.27144 + 2.53859i −0.418052 + 0.201323i
\(160\) 0 0
\(161\) −0.182333 + 0.798852i −0.0143698 + 0.0629584i
\(162\) −1.14675 −0.0900973
\(163\) 2.81282 12.3238i 0.220317 0.965273i −0.736922 0.675977i \(-0.763722\pi\)
0.957240 0.289296i \(-0.0934211\pi\)
\(164\) −3.49396 4.38129i −0.272832 0.342121i
\(165\) 0 0
\(166\) 0.441157 + 1.93284i 0.0342404 + 0.150017i
\(167\) 0.496648 0.622776i 0.0384317 0.0481919i −0.762244 0.647290i \(-0.775902\pi\)
0.800676 + 0.599098i \(0.204474\pi\)
\(168\) −0.678448 + 0.326723i −0.0523434 + 0.0252073i
\(169\) −17.0770 8.22386i −1.31362 0.632605i
\(170\) 0 0
\(171\) 2.12349 2.66277i 0.162387 0.203627i
\(172\) 5.52930 + 2.66277i 0.421605 + 0.203034i
\(173\) 9.15346 0.695924 0.347962 0.937509i \(-0.386874\pi\)
0.347962 + 0.937509i \(0.386874\pi\)
\(174\) 2.96681 0.359726i 0.224913 0.0272708i
\(175\) 0 0
\(176\) −12.6860 6.10925i −0.956242 0.460502i
\(177\) −9.71379 + 12.1807i −0.730133 + 0.915558i
\(178\) −1.57606 1.97632i −0.118131 0.148132i
\(179\) −3.06853 1.47773i −0.229353 0.110450i 0.315678 0.948866i \(-0.397768\pi\)
−0.545031 + 0.838416i \(0.683482\pi\)
\(180\) 0 0
\(181\) 7.90246 9.90937i 0.587385 0.736558i −0.395967 0.918265i \(-0.629591\pi\)
0.983353 + 0.181707i \(0.0581621\pi\)
\(182\) 0.199791 + 0.875342i 0.0148095 + 0.0648847i
\(183\) 0.455927 + 1.99755i 0.0337031 + 0.147663i
\(184\) 2.42208 + 3.03719i 0.178558 + 0.223904i
\(185\) 0 0
\(186\) −3.71379 −0.272308
\(187\) 4.93900 21.6392i 0.361176 1.58241i
\(188\) 10.4635 5.03894i 0.763126 0.367502i
\(189\) −1.78232 + 0.858322i −0.129645 + 0.0624337i
\(190\) 0 0
\(191\) −10.6703 −0.772072 −0.386036 0.922484i \(-0.626156\pi\)
−0.386036 + 0.922484i \(0.626156\pi\)
\(192\) 1.00753 4.41429i 0.0727124 0.318574i
\(193\) −14.1712 17.7701i −1.02007 1.27912i −0.959724 0.280945i \(-0.909352\pi\)
−0.0603421 0.998178i \(-0.519219\pi\)
\(194\) −0.0178854 0.0783611i −0.00128410 0.00562600i
\(195\) 0 0
\(196\) 7.72132 9.68223i 0.551523 0.691588i
\(197\) −17.6211 + 8.48587i −1.25545 + 0.604593i −0.938968 0.344005i \(-0.888216\pi\)
−0.316483 + 0.948598i \(0.602502\pi\)
\(198\) 2.86174 + 1.37814i 0.203375 + 0.0979402i
\(199\) −0.545565 0.684117i −0.0386741 0.0484958i 0.762118 0.647438i \(-0.224159\pi\)
−0.800792 + 0.598942i \(0.795588\pi\)
\(200\) 0 0
\(201\) −2.60992 1.25687i −0.184089 0.0886527i
\(202\) 1.43727 0.101126
\(203\) 1.61865 1.03627i 0.113607 0.0727318i
\(204\) 10.0978 0.706990
\(205\) 0 0
\(206\) 3.78836 4.75046i 0.263948 0.330980i
\(207\) 2.06853 + 2.59386i 0.143773 + 0.180286i
\(208\) −14.5194 6.99216i −1.00674 0.484819i
\(209\) 10.4879 5.05072i 0.725464 0.349365i
\(210\) 0 0
\(211\) 4.06518 + 17.8107i 0.279858 + 1.22614i 0.897972 + 0.440052i \(0.145040\pi\)
−0.618114 + 0.786088i \(0.712103\pi\)
\(212\) 1.88135 + 8.24275i 0.129212 + 0.566115i
\(213\) −5.70291 7.15122i −0.390757 0.489993i
\(214\) 1.60872 7.04826i 0.109970 0.481809i
\(215\) 0 0
\(216\) −2.08695 + 9.14352i −0.141999 + 0.622138i
\(217\) −2.15183 + 1.03627i −0.146076 + 0.0703465i
\(218\) −2.19202 + 1.05562i −0.148462 + 0.0714957i
\(219\) 1.56100 6.83918i 0.105483 0.462149i
\(220\) 0 0
\(221\) 5.65279 24.7665i 0.380248 1.66598i
\(222\) 1.70895 + 2.14295i 0.114697 + 0.143826i
\(223\) −0.404617 1.77274i −0.0270951 0.118712i 0.959572 0.281464i \(-0.0908200\pi\)
−0.986667 + 0.162752i \(0.947963\pi\)
\(224\) 0.369510 + 1.61893i 0.0246889 + 0.108169i
\(225\) 0 0
\(226\) −4.28017 + 2.06122i −0.284713 + 0.137110i
\(227\) −12.4840 6.01199i −0.828594 0.399030i −0.0290066 0.999579i \(-0.509234\pi\)
−0.799588 + 0.600549i \(0.794949\pi\)
\(228\) 3.30194 + 4.14050i 0.218676 + 0.274211i
\(229\) −7.96346 + 9.98586i −0.526240 + 0.659884i −0.971921 0.235308i \(-0.924390\pi\)
0.445681 + 0.895192i \(0.352962\pi\)
\(230\) 0 0
\(231\) −2.19806 −0.144622
\(232\) 0.943550 9.06283i 0.0619471 0.595004i
\(233\) 8.86592 0.580826 0.290413 0.956901i \(-0.406207\pi\)
0.290413 + 0.956901i \(0.406207\pi\)
\(234\) 3.27532 + 1.57731i 0.214115 + 0.103112i
\(235\) 0 0
\(236\) 14.0368 + 17.6016i 0.913720 + 1.14577i
\(237\) 5.24094 + 2.52390i 0.340436 + 0.163945i
\(238\) −0.643104 + 0.309703i −0.0416862 + 0.0200750i
\(239\) −15.9393 + 19.9872i −1.03103 + 1.29287i −0.0757593 + 0.997126i \(0.524138\pi\)
−0.955268 + 0.295741i \(0.904433\pi\)
\(240\) 0 0
\(241\) −2.16541 9.48727i −0.139486 0.611129i −0.995548 0.0942554i \(-0.969953\pi\)
0.856062 0.516873i \(-0.172904\pi\)
\(242\) 3.71648 + 4.66032i 0.238904 + 0.299577i
\(243\) −2.98523 + 13.0791i −0.191503 + 0.839028i
\(244\) 2.96077 0.189544
\(245\) 0 0
\(246\) −1.55496 + 0.748828i −0.0991405 + 0.0477436i
\(247\) 12.0036 5.78065i 0.763774 0.367814i
\(248\) −2.51961 + 11.0392i −0.159996 + 0.700987i
\(249\) −5.55496 −0.352031
\(250\) 0 0
\(251\) −6.08546 7.63092i −0.384111 0.481660i 0.551760 0.834003i \(-0.313956\pi\)
−0.935871 + 0.352343i \(0.885385\pi\)
\(252\) 0.206791 + 0.906013i 0.0130266 + 0.0570734i
\(253\) 2.52326 + 11.0551i 0.158636 + 0.695030i
\(254\) 0.287700 0.360765i 0.0180519 0.0226364i
\(255\) 0 0
\(256\) −2.16368 1.04197i −0.135230 0.0651233i
\(257\) −10.1984 12.7883i −0.636156 0.797714i 0.354360 0.935109i \(-0.384699\pi\)
−0.990516 + 0.137394i \(0.956127\pi\)
\(258\) 1.17845 1.47773i 0.0733670 0.0919993i
\(259\) 1.58815 + 0.764811i 0.0986826 + 0.0475230i
\(260\) 0 0
\(261\) 0.805823 7.73995i 0.0498792 0.479091i
\(262\) 3.57002 0.220557
\(263\) 21.3741 + 10.2932i 1.31798 + 0.634708i 0.954867 0.297035i \(-0.0959979\pi\)
0.363118 + 0.931743i \(0.381712\pi\)
\(264\) −6.49731 + 8.14737i −0.399882 + 0.501436i
\(265\) 0 0
\(266\) −0.337282 0.162426i −0.0206801 0.00995899i
\(267\) 6.38135 3.07310i 0.390533 0.188071i
\(268\) −2.60992 + 3.27273i −0.159426 + 0.199914i
\(269\) −5.64191 24.7188i −0.343993 1.50713i −0.790561 0.612383i \(-0.790211\pi\)
0.446568 0.894750i \(-0.352646\pi\)
\(270\) 0 0
\(271\) −0.750332 0.940887i −0.0455794 0.0571548i 0.758519 0.651651i \(-0.225923\pi\)
−0.804099 + 0.594496i \(0.797352\pi\)
\(272\) 2.85086 12.4904i 0.172858 0.757342i
\(273\) −2.51573 −0.152259
\(274\) 1.70655 7.47690i 0.103097 0.451696i
\(275\) 0 0
\(276\) −4.64795 + 2.23833i −0.279774 + 0.134732i
\(277\) 2.37316 10.3975i 0.142589 0.624724i −0.852239 0.523153i \(-0.824756\pi\)
0.994828 0.101572i \(-0.0323871\pi\)
\(278\) −7.41789 −0.444896
\(279\) −2.15183 + 9.42780i −0.128827 + 0.564427i
\(280\) 0 0
\(281\) 3.62253 + 15.8713i 0.216102 + 0.946805i 0.960327 + 0.278876i \(0.0899618\pi\)
−0.744225 + 0.667929i \(0.767181\pi\)
\(282\) −0.795897 3.48705i −0.0473950 0.207651i
\(283\) 3.27144 4.10225i 0.194467 0.243854i −0.675032 0.737788i \(-0.735870\pi\)
0.869499 + 0.493935i \(0.164442\pi\)
\(284\) −11.9085 + 5.73483i −0.706640 + 0.340300i
\(285\) 0 0
\(286\) 7.74698 + 9.71441i 0.458089 + 0.574425i
\(287\) −0.692021 + 0.867767i −0.0408487 + 0.0512227i
\(288\) 6.05765 + 2.91721i 0.356950 + 0.171898i
\(289\) 3.19567 0.187981
\(290\) 0 0
\(291\) 0.225209 0.0132020
\(292\) −9.13318 4.39831i −0.534479 0.257391i
\(293\) −4.21714 + 5.28813i −0.246368 + 0.308936i −0.889604 0.456732i \(-0.849020\pi\)
0.643236 + 0.765668i \(0.277591\pi\)
\(294\) −2.37800 2.98192i −0.138688 0.173909i
\(295\) 0 0
\(296\) 7.52930 3.62592i 0.437632 0.210752i
\(297\) −17.0688 + 21.4036i −0.990434 + 1.24196i
\(298\) −1.84266 8.07321i −0.106742 0.467669i
\(299\) 2.88793 + 12.6528i 0.167013 + 0.731733i
\(300\) 0 0
\(301\) 0.270479 1.18505i 0.0155901 0.0683049i
\(302\) −3.35019 −0.192782
\(303\) −0.896125 + 3.92618i −0.0514810 + 0.225553i
\(304\) 6.05376 2.91534i 0.347207 0.167206i
\(305\) 0 0
\(306\) −0.643104 + 2.81762i −0.0367638 + 0.161073i
\(307\) −4.51812 −0.257863 −0.128931 0.991654i \(-0.541155\pi\)
−0.128931 + 0.991654i \(0.541155\pi\)
\(308\) −0.706791 + 3.09666i −0.0402732 + 0.176448i
\(309\) 10.6148 + 13.3105i 0.603853 + 0.757207i
\(310\) 0 0
\(311\) 2.80745 + 12.3002i 0.159196 + 0.697482i 0.990018 + 0.140944i \(0.0450136\pi\)
−0.830822 + 0.556538i \(0.812129\pi\)
\(312\) −7.43631 + 9.32484i −0.420998 + 0.527915i
\(313\) 17.3349 8.34804i 0.979826 0.471859i 0.125781 0.992058i \(-0.459856\pi\)
0.854045 + 0.520199i \(0.174142\pi\)
\(314\) −7.31336 3.52193i −0.412717 0.198754i
\(315\) 0 0
\(316\) 5.24094 6.57193i 0.294826 0.369700i
\(317\) 2.58426 + 1.24451i 0.145147 + 0.0698989i 0.505047 0.863092i \(-0.331475\pi\)
−0.359901 + 0.932991i \(0.617189\pi\)
\(318\) 2.60388 0.146018
\(319\) 13.9596 22.6395i 0.781586 1.26757i
\(320\) 0 0
\(321\) 18.2506 + 8.78904i 1.01865 + 0.490556i
\(322\) 0.227365 0.285107i 0.0126706 0.0158884i
\(323\) 6.60388 + 8.28100i 0.367449 + 0.460767i
\(324\) −4.18329 2.01457i −0.232405 0.111920i
\(325\) 0 0
\(326\) −3.50753 + 4.39831i −0.194264 + 0.243600i
\(327\) −1.51693 6.64609i −0.0838862 0.367529i
\(328\) 1.17092 + 5.13011i 0.0646530 + 0.283263i
\(329\) −1.43416 1.79838i −0.0790676 0.0991477i
\(330\) 0 0
\(331\) 3.13408 0.172265 0.0861323 0.996284i \(-0.472549\pi\)
0.0861323 + 0.996284i \(0.472549\pi\)
\(332\) −1.78621 + 7.82589i −0.0980309 + 0.429501i
\(333\) 6.43027 3.09666i 0.352377 0.169696i
\(334\) −0.319396 + 0.153813i −0.0174766 + 0.00841628i
\(335\) 0 0
\(336\) −1.26875 −0.0692160
\(337\) 1.10872 4.85762i 0.0603958 0.264611i −0.935711 0.352768i \(-0.885240\pi\)
0.996107 + 0.0881567i \(0.0280976\pi\)
\(338\) 5.25936 + 6.59502i 0.286071 + 0.358722i
\(339\) −2.96197 12.9772i −0.160872 0.704826i
\(340\) 0 0
\(341\) −20.6075 + 25.8410i −1.11596 + 1.39937i
\(342\) −1.36563 + 0.657650i −0.0738445 + 0.0355617i
\(343\) −4.46077 2.14819i −0.240859 0.115992i
\(344\) −3.59299 4.50547i −0.193721 0.242919i
\(345\) 0 0
\(346\) −3.67025 1.76750i −0.197314 0.0950214i
\(347\) −20.1172 −1.07995 −0.539974 0.841682i \(-0.681566\pi\)
−0.539974 + 0.841682i \(0.681566\pi\)
\(348\) 11.4547 + 3.89971i 0.614038 + 0.209046i
\(349\) 20.4892 1.09676 0.548380 0.836229i \(-0.315245\pi\)
0.548380 + 0.836229i \(0.315245\pi\)
\(350\) 0 0
\(351\) −19.5356 + 24.4969i −1.04274 + 1.30755i
\(352\) 14.3279 + 17.9666i 0.763679 + 0.957623i
\(353\) 16.2153 + 7.80887i 0.863052 + 0.415624i 0.812406 0.583092i \(-0.198157\pi\)
0.0506467 + 0.998717i \(0.483872\pi\)
\(354\) 6.24698 3.00839i 0.332023 0.159894i
\(355\) 0 0
\(356\) −2.27748 9.97829i −0.120706 0.528848i
\(357\) −0.445042 1.94986i −0.0235541 0.103197i
\(358\) 0.945042 + 1.18505i 0.0499470 + 0.0626316i
\(359\) −5.25786 + 23.0362i −0.277499 + 1.21580i 0.623444 + 0.781868i \(0.285733\pi\)
−0.900943 + 0.433937i \(0.857124\pi\)
\(360\) 0 0
\(361\) 2.99180 13.1079i 0.157463 0.689892i
\(362\) −5.08211 + 2.44741i −0.267110 + 0.128633i
\(363\) −15.0477 + 7.24660i −0.789801 + 0.380348i
\(364\) −0.808938 + 3.54419i −0.0423999 + 0.185766i
\(365\) 0 0
\(366\) 0.202907 0.888992i 0.0106061 0.0464684i
\(367\) 18.4822 + 23.1759i 0.964762 + 1.20977i 0.977732 + 0.209857i \(0.0672998\pi\)
−0.0129705 + 0.999916i \(0.504129\pi\)
\(368\) 1.45646 + 6.38117i 0.0759232 + 0.332641i
\(369\) 1.00000 + 4.38129i 0.0520579 + 0.228081i
\(370\) 0 0
\(371\) 1.50873 0.726566i 0.0783293 0.0377214i
\(372\) −13.5477 6.52424i −0.702417 0.338266i
\(373\) 15.7044 + 19.6927i 0.813143 + 1.01965i 0.999310 + 0.0371310i \(0.0118219\pi\)
−0.186167 + 0.982518i \(0.559607\pi\)
\(374\) −6.15883 + 7.72293i −0.318466 + 0.399343i
\(375\) 0 0
\(376\) −10.9051 −0.562390
\(377\) 15.9770 25.9114i 0.822859 1.33451i
\(378\) 0.880395 0.0452826
\(379\) 24.2424 + 11.6745i 1.24525 + 0.599681i 0.936234 0.351376i \(-0.114286\pi\)
0.309016 + 0.951057i \(0.400000\pi\)
\(380\) 0 0
\(381\) 0.806118 + 1.01084i 0.0412987 + 0.0517869i
\(382\) 4.27844 + 2.06039i 0.218904 + 0.105419i
\(383\) −17.7213 + 8.53414i −0.905517 + 0.436074i −0.827879 0.560907i \(-0.810452\pi\)
−0.0776388 + 0.996982i \(0.524738\pi\)
\(384\) −8.49127 + 10.6477i −0.433318 + 0.543364i
\(385\) 0 0
\(386\) 2.25086 + 9.86168i 0.114566 + 0.501946i
\(387\) −3.06853 3.84782i −0.155982 0.195596i
\(388\) 0.0724165 0.317278i 0.00367639 0.0161073i
\(389\) 24.8552 1.26021 0.630103 0.776511i \(-0.283012\pi\)
0.630103 + 0.776511i \(0.283012\pi\)
\(390\) 0 0
\(391\) −9.29590 + 4.47667i −0.470114 + 0.226395i
\(392\) −10.4770 + 5.04547i −0.529170 + 0.254835i
\(393\) −2.22587 + 9.75219i −0.112280 + 0.491933i
\(394\) 8.70410 0.438506
\(395\) 0 0
\(396\) 8.01842 + 10.0548i 0.402941 + 0.505272i
\(397\) −0.888887 3.89447i −0.0446120 0.195458i 0.947711 0.319129i \(-0.103390\pi\)
−0.992323 + 0.123671i \(0.960533\pi\)
\(398\) 0.0866540 + 0.379656i 0.00434357 + 0.0190304i
\(399\) 0.653989 0.820077i 0.0327404 0.0410552i
\(400\) 0 0
\(401\) 22.4405 + 10.8068i 1.12062 + 0.539664i 0.900085 0.435714i \(-0.143504\pi\)
0.220539 + 0.975378i \(0.429218\pi\)
\(402\) 0.803798 + 1.00793i 0.0400898 + 0.0502710i
\(403\) −23.5858 + 29.5756i −1.17489 + 1.47327i
\(404\) 5.24309 + 2.52494i 0.260854 + 0.125621i
\(405\) 0 0
\(406\) −0.849126 + 0.102957i −0.0421414 + 0.00510965i
\(407\) 24.3937 1.20915
\(408\) −8.54288 4.11403i −0.422935 0.203675i
\(409\) 0.176587 0.221434i 0.00873169 0.0109492i −0.777446 0.628949i \(-0.783485\pi\)
0.786178 + 0.618000i \(0.212057\pi\)
\(410\) 0 0
\(411\) 19.3605 + 9.32355i 0.954985 + 0.459897i
\(412\) 22.1652 10.6742i 1.09200 0.525879i
\(413\) 2.78017 3.48622i 0.136803 0.171546i
\(414\) −0.328552 1.43948i −0.0161475 0.0707467i
\(415\) 0 0
\(416\) 16.3986 + 20.5632i 0.804006 + 1.00819i
\(417\) 4.62498 20.2634i 0.226486 0.992301i
\(418\) −5.18060 −0.253392
\(419\) 5.89426 25.8245i 0.287954 1.26161i −0.599374 0.800469i \(-0.704584\pi\)
0.887328 0.461139i \(-0.152559\pi\)
\(420\) 0 0
\(421\) 15.8409 7.62859i 0.772040 0.371795i −0.00602261 0.999982i \(-0.501917\pi\)
0.778062 + 0.628187i \(0.216203\pi\)
\(422\) 1.80917 7.92651i 0.0880693 0.385857i
\(423\) −9.31336 −0.452831
\(424\) 1.76659 7.73995i 0.0857934 0.375885i
\(425\) 0 0
\(426\) 0.905813 + 3.96863i 0.0438868 + 0.192281i
\(427\) −0.130490 0.571714i −0.00631486 0.0276672i
\(428\) 18.2506 22.8856i 0.882177 1.10622i
\(429\) −31.3669 + 15.1055i −1.51441 + 0.729300i
\(430\) 0 0
\(431\) −17.3300 21.7312i −0.834759 1.04675i −0.998186 0.0601992i \(-0.980826\pi\)
0.163428 0.986555i \(-0.447745\pi\)
\(432\) −9.85235 + 12.3545i −0.474021 + 0.594404i
\(433\) 5.29374 + 2.54933i 0.254401 + 0.122513i 0.556738 0.830688i \(-0.312053\pi\)
−0.302337 + 0.953201i \(0.597767\pi\)
\(434\) 1.06292 0.0510217
\(435\) 0 0
\(436\) −9.85086 −0.471770
\(437\) −4.87531 2.34783i −0.233218 0.112312i
\(438\) −1.94653 + 2.44088i −0.0930090 + 0.116630i
\(439\) −9.81431 12.3068i −0.468412 0.587370i 0.490370 0.871515i \(-0.336862\pi\)
−0.958781 + 0.284145i \(0.908290\pi\)
\(440\) 0 0
\(441\) −8.94773 + 4.30900i −0.426082 + 0.205190i
\(442\) −7.04892 + 8.83906i −0.335283 + 0.420431i
\(443\) 1.49947 + 6.56960i 0.0712419 + 0.312131i 0.997976 0.0635859i \(-0.0202537\pi\)
−0.926735 + 0.375717i \(0.877397\pi\)
\(444\) 2.46950 + 10.8196i 0.117197 + 0.513475i
\(445\) 0 0
\(446\) −0.180071 + 0.788944i −0.00852663 + 0.0373576i
\(447\) 23.2024 1.09743
\(448\) −0.288364 + 1.26341i −0.0136239 + 0.0596903i
\(449\) −11.1000 + 5.34547i −0.523841 + 0.252269i −0.677065 0.735923i \(-0.736749\pi\)
0.153224 + 0.988191i \(0.451034\pi\)
\(450\) 0 0
\(451\) −3.41789 + 14.9748i −0.160942 + 0.705135i
\(452\) −19.2349 −0.904733
\(453\) 2.08881 9.15167i 0.0981409 0.429983i
\(454\) 3.84481 + 4.82124i 0.180446 + 0.226272i
\(455\) 0 0
\(456\) −1.10656 4.84817i −0.0518196 0.227037i
\(457\) −8.51842 + 10.6818i −0.398475 + 0.499672i −0.940076 0.340964i \(-0.889247\pi\)
0.541602 + 0.840635i \(0.317818\pi\)
\(458\) 5.12133 2.46630i 0.239304 0.115243i
\(459\) −22.4426 10.8078i −1.04753 0.504465i
\(460\) 0 0
\(461\) 7.23759 9.07565i 0.337088 0.422695i −0.584180 0.811624i \(-0.698584\pi\)
0.921268 + 0.388929i \(0.127155\pi\)
\(462\) 0.881355 + 0.424438i 0.0410043 + 0.0197466i
\(463\) 7.24267 0.336595 0.168298 0.985736i \(-0.446173\pi\)
0.168298 + 0.985736i \(0.446173\pi\)
\(464\) 8.05765 13.0678i 0.374067 0.606659i
\(465\) 0 0
\(466\) −3.55496 1.71198i −0.164680 0.0793058i
\(467\) 1.28650 1.61322i 0.0595323 0.0746511i −0.751174 0.660104i \(-0.770512\pi\)
0.810706 + 0.585453i \(0.199083\pi\)
\(468\) 9.17725 + 11.5079i 0.424219 + 0.531953i
\(469\) 0.746980 + 0.359726i 0.0344923 + 0.0166106i
\(470\) 0 0
\(471\) 14.1806 17.7819i 0.653408 0.819347i
\(472\) −4.70410 20.6100i −0.216524 0.948653i
\(473\) −3.74309 16.3996i −0.172108 0.754053i
\(474\) −1.61410 2.02401i −0.0741379 0.0929660i
\(475\) 0 0
\(476\) −2.89008 −0.132467
\(477\) 1.50873 6.61017i 0.0690800 0.302659i
\(478\) 10.2506 4.93644i 0.468853 0.225788i
\(479\) 3.50388 1.68738i 0.160097 0.0770985i −0.352120 0.935955i \(-0.614539\pi\)
0.512216 + 0.858857i \(0.328825\pi\)
\(480\) 0 0
\(481\) 27.9191 1.27300
\(482\) −0.963697 + 4.22223i −0.0438952 + 0.192317i
\(483\) 0.637063 + 0.798852i 0.0289874 + 0.0363490i
\(484\) 5.37047 + 23.5296i 0.244112 + 1.06953i
\(485\) 0 0
\(486\) 3.72252 4.66789i 0.168857 0.211740i
\(487\) 8.87047 4.27179i 0.401959 0.193573i −0.221971 0.975053i \(-0.571249\pi\)
0.623931 + 0.781480i \(0.285535\pi\)
\(488\) −2.50484 1.20627i −0.113389 0.0546053i
\(489\) −9.82789 12.3238i −0.444432 0.557301i
\(490\) 0 0
\(491\) −7.01961 3.38047i −0.316791 0.152558i 0.268731 0.963215i \(-0.413396\pi\)
−0.585521 + 0.810657i \(0.699110\pi\)
\(492\) −6.98792 −0.315040
\(493\) 22.9095 + 7.79942i 1.03179 + 0.351268i
\(494\) −5.92931 −0.266772
\(495\) 0 0
\(496\) −11.8949 + 14.9158i −0.534098 + 0.669738i
\(497\) 1.63222 + 2.04674i 0.0732150 + 0.0918087i
\(498\) 2.22737 + 1.07264i 0.0998106 + 0.0480663i
\(499\) 18.5286 8.92292i 0.829456 0.399445i 0.0295448 0.999563i \(-0.490594\pi\)
0.799911 + 0.600119i \(0.204880\pi\)
\(500\) 0 0
\(501\) −0.221029 0.968391i −0.00987485 0.0432645i
\(502\) 0.966575 + 4.23484i 0.0431404 + 0.189010i
\(503\) −5.13437 6.43830i −0.228930 0.287070i 0.654078 0.756427i \(-0.273057\pi\)
−0.883008 + 0.469358i \(0.844486\pi\)
\(504\) 0.194177 0.850747i 0.00864935 0.0378953i
\(505\) 0 0
\(506\) 1.12296 4.92000i 0.0499215 0.218721i
\(507\) −21.2947 + 10.2550i −0.945731 + 0.455440i
\(508\) 1.68329 0.810631i 0.0746840 0.0359659i
\(509\) −1.76151 + 7.71769i −0.0780777 + 0.342081i −0.998846 0.0480294i \(-0.984706\pi\)
0.920768 + 0.390110i \(0.127563\pi\)
\(510\) 0 0
\(511\) −0.446771 + 1.95743i −0.0197640 + 0.0865916i
\(512\) 14.2853 + 17.9132i 0.631327 + 0.791659i
\(513\) −2.90701 12.7364i −0.128348 0.562328i
\(514\) 1.61984 + 7.09699i 0.0714482 + 0.313035i
\(515\) 0 0
\(516\) 6.89493 3.32042i 0.303532 0.146173i
\(517\) −28.6797 13.8114i −1.26133 0.607425i
\(518\) −0.489115 0.613331i −0.0214905 0.0269482i
\(519\) 7.11662 8.92396i 0.312385 0.391718i
\(520\) 0 0
\(521\) −3.52542 −0.154451 −0.0772257 0.997014i \(-0.524606\pi\)
−0.0772257 + 0.997014i \(0.524606\pi\)
\(522\) −1.81767 + 2.94788i −0.0795571 + 0.129025i
\(523\) −10.0301 −0.438587 −0.219294 0.975659i \(-0.570375\pi\)
−0.219294 + 0.975659i \(0.570375\pi\)
\(524\) 13.0233 + 6.27167i 0.568924 + 0.273979i
\(525\) 0 0
\(526\) −6.58277 8.25453i −0.287022 0.359915i
\(527\) −27.0954 13.0485i −1.18030 0.568401i
\(528\) −15.8192 + 7.61811i −0.688441 + 0.331535i
\(529\) −11.0538 + 13.8610i −0.480598 + 0.602651i
\(530\) 0 0
\(531\) −4.01746 17.6016i −0.174343 0.763846i
\(532\) −0.945042 1.18505i −0.0409728 0.0513782i
\(533\) −3.91185 + 17.1390i −0.169441 + 0.742370i
\(534\) −3.15213 −0.136406
\(535\) 0 0
\(536\) 3.54138 1.70544i 0.152965 0.0736638i
\(537\) −3.82640 + 1.84270i −0.165121 + 0.0795182i
\(538\) −2.51089 + 11.0009i −0.108252 + 0.474283i
\(539\) −33.9439 −1.46207
\(540\) 0 0
\(541\) 5.12767 + 6.42990i 0.220456 + 0.276443i 0.879744 0.475447i \(-0.157714\pi\)
−0.659288 + 0.751890i \(0.729142\pi\)
\(542\) 0.119178 + 0.522153i 0.00511913 + 0.0224284i
\(543\) −3.51693 15.4087i −0.150926 0.661249i
\(544\) −13.0368 + 16.3477i −0.558950 + 0.700901i
\(545\) 0 0
\(546\) 1.00873 + 0.485778i 0.0431696 + 0.0207894i
\(547\) −16.1253 20.2205i −0.689467 0.864564i 0.306721 0.951800i \(-0.400768\pi\)
−0.996188 + 0.0872352i \(0.972197\pi\)
\(548\) 19.3605 24.2774i 0.827041 1.03708i
\(549\) −2.13922 1.03019i −0.0912997 0.0439676i
\(550\) 0 0
\(551\) 4.29321 + 11.9441i 0.182897 + 0.508837i
\(552\) 4.84415 0.206181
\(553\) −1.50000 0.722362i −0.0637865 0.0307180i
\(554\) −2.95928 + 3.71082i −0.125728 + 0.157658i
\(555\) 0 0
\(556\) −27.0601 13.0315i −1.14760 0.552657i
\(557\) 20.7310 9.98353i 0.878401 0.423016i 0.0603609 0.998177i \(-0.480775\pi\)
0.818040 + 0.575161i \(0.195061\pi\)
\(558\) 2.68329 3.36474i 0.113593 0.142441i
\(559\) −4.28405 18.7697i −0.181196 0.793872i
\(560\) 0 0
\(561\) −17.2567 21.6392i −0.728577 0.913607i
\(562\) 1.61218 7.06341i 0.0680056 0.297952i
\(563\) −43.1159 −1.81712 −0.908559 0.417757i \(-0.862816\pi\)
−0.908559 + 0.417757i \(0.862816\pi\)
\(564\) 3.22252 14.1188i 0.135693 0.594508i
\(565\) 0 0
\(566\) −2.10388 + 1.01317i −0.0884325 + 0.0425868i
\(567\) −0.204636 + 0.896567i −0.00859388 + 0.0376523i
\(568\) 12.4112 0.520762
\(569\) 5.40999 23.7027i 0.226799 0.993670i −0.725433 0.688293i \(-0.758360\pi\)
0.952231 0.305377i \(-0.0987825\pi\)
\(570\) 0 0
\(571\) −4.11410 18.0250i −0.172170 0.754324i −0.985103 0.171967i \(-0.944988\pi\)
0.812933 0.582357i \(-0.197869\pi\)
\(572\) 11.1947 + 49.0472i 0.468074 + 2.05077i
\(573\) −8.29590 + 10.4027i −0.346566 + 0.434580i
\(574\) 0.445042 0.214321i 0.0185757 0.00894558i
\(575\) 0 0
\(576\) 3.27144 + 4.10225i 0.136310 + 0.170927i
\(577\) 23.6042 29.5987i 0.982654 1.23221i 0.0100007 0.999950i \(-0.496817\pi\)
0.972654 0.232260i \(-0.0746119\pi\)
\(578\) −1.28136 0.617072i −0.0532977 0.0256668i
\(579\) −28.3424 −1.17787
\(580\) 0 0
\(581\) 1.58987 0.0659591
\(582\) −0.0903019 0.0434871i −0.00374314 0.00180260i
\(583\) 14.4487 18.1181i 0.598404 0.750374i
\(584\) 5.93482 + 7.44203i 0.245585 + 0.307953i
\(585\) 0 0
\(586\) 2.71206 1.30606i 0.112034 0.0539529i
\(587\) 9.00030 11.2860i 0.371482 0.465824i −0.560592 0.828092i \(-0.689426\pi\)
0.932074 + 0.362269i \(0.117998\pi\)
\(588\) −3.43631 15.0555i −0.141711 0.620877i
\(589\) −3.50969 15.3770i −0.144614 0.633596i
\(590\) 0 0
\(591\) −5.42692 + 23.7769i −0.223234 + 0.978050i
\(592\) 14.0804 0.578700
\(593\) −2.89320 + 12.6759i −0.118809 + 0.520538i 0.880140 + 0.474714i \(0.157449\pi\)
−0.998950 + 0.0458241i \(0.985409\pi\)
\(594\) 10.9770 5.28626i 0.450393 0.216898i
\(595\) 0 0
\(596\) 7.46077 32.6878i 0.305605 1.33894i
\(597\) −1.09113 −0.0446570
\(598\) 1.28525 5.63104i 0.0525577 0.230270i
\(599\) 7.54019 + 9.45510i 0.308084 + 0.386325i 0.911636 0.410999i \(-0.134820\pi\)
−0.603552 + 0.797323i \(0.706249\pi\)
\(600\) 0 0
\(601\) 4.97272 + 21.7869i 0.202842 + 0.888707i 0.969196 + 0.246289i \(0.0792113\pi\)
−0.766355 + 0.642418i \(0.777932\pi\)
\(602\) −0.337282 + 0.422938i −0.0137466 + 0.0172377i
\(603\) 3.02446 1.45650i 0.123165 0.0593134i
\(604\) −12.2213 5.88548i −0.497279 0.239477i
\(605\) 0 0
\(606\) 1.11745 1.40124i 0.0453933 0.0569214i
\(607\) 37.3620 + 17.9926i 1.51648 + 0.730297i 0.992593 0.121491i \(-0.0387676\pi\)
0.523886 + 0.851789i \(0.324482\pi\)
\(608\) −10.9661 −0.444736
\(609\) 0.248176 2.38374i 0.0100566 0.0965940i
\(610\) 0 0
\(611\) −32.8245 15.8075i −1.32794 0.639502i
\(612\) −7.29590 + 9.14877i −0.294919 + 0.369817i
\(613\) −16.0764 20.1591i −0.649318 0.814219i 0.342816 0.939403i \(-0.388619\pi\)
−0.992134 + 0.125184i \(0.960048\pi\)
\(614\) 1.81163 + 0.872433i 0.0731113 + 0.0352085i
\(615\) 0 0
\(616\) 1.85958 2.33184i 0.0749248 0.0939527i
\(617\) 1.97272 + 8.64306i 0.0794188 + 0.347956i 0.998988 0.0449710i \(-0.0143195\pi\)
−0.919570 + 0.392927i \(0.871462\pi\)
\(618\) −1.68598 7.38676i −0.0678201 0.297139i
\(619\) 18.3626 + 23.0259i 0.738054 + 0.925490i 0.999207 0.0398069i \(-0.0126743\pi\)
−0.261153 + 0.965297i \(0.584103\pi\)
\(620\) 0 0
\(621\) 12.7259 0.510672
\(622\) 1.24943 5.47412i 0.0500976 0.219492i
\(623\) −1.82640 + 0.879546i −0.0731730 + 0.0352383i
\(624\) −18.1054 + 8.71909i −0.724795 + 0.349043i
\(625\) 0 0
\(626\) −8.56273 −0.342235
\(627\) 3.23005 14.1518i 0.128996 0.565168i
\(628\) −20.4916 25.6956i −0.817703 1.02537i
\(629\) 4.93900 + 21.6392i 0.196931 + 0.862811i
\(630\) 0 0
\(631\) 14.8210 18.5850i 0.590015 0.739856i −0.393769 0.919209i \(-0.628829\pi\)
0.983785 + 0.179353i \(0.0574005\pi\)
\(632\) −7.11141 + 3.42467i −0.282877 + 0.136226i
\(633\) 20.5248 + 9.88420i 0.815786 + 0.392862i
\(634\) −0.795897 0.998023i −0.0316091 0.0396366i
\(635\) 0 0
\(636\) 9.49880 + 4.57438i 0.376652 + 0.181386i
\(637\) −38.8495 −1.53927
\(638\) −9.96897 + 6.38220i −0.394675 + 0.252674i
\(639\) 10.5996 0.419312
\(640\) 0 0
\(641\) 17.7479 22.2552i 0.701001 0.879028i −0.296096 0.955158i \(-0.595685\pi\)
0.997098 + 0.0761300i \(0.0242564\pi\)
\(642\) −5.62080 7.04826i −0.221835 0.278173i
\(643\) −17.4308 8.39423i −0.687404 0.331036i 0.0573702 0.998353i \(-0.481728\pi\)
−0.744774 + 0.667317i \(0.767443\pi\)
\(644\) 1.33028 0.640630i 0.0524204 0.0252443i
\(645\) 0 0
\(646\) −1.04892 4.59561i −0.0412691 0.180812i
\(647\) 5.05443 + 22.1449i 0.198710 + 0.870605i 0.971706 + 0.236194i \(0.0759002\pi\)
−0.772996 + 0.634411i \(0.781243\pi\)
\(648\) 2.71834 + 3.40869i 0.106787 + 0.133906i
\(649\) 13.7313 60.1605i 0.538999 2.36151i
\(650\) 0 0
\(651\) −0.662718 + 2.90356i −0.0259740 + 0.113799i
\(652\) −20.5221 + 9.88291i −0.803706 + 0.387044i
\(653\) 20.6603 9.94949i 0.808501 0.389354i 0.0164928 0.999864i \(-0.494750\pi\)
0.792008 + 0.610510i \(0.209036\pi\)
\(654\) −0.675096 + 2.95779i −0.0263983 + 0.115659i
\(655\) 0 0
\(656\) −1.97285 + 8.64363i −0.0770270 + 0.337477i
\(657\) 5.06853 + 6.35574i 0.197742 + 0.247961i
\(658\) 0.227792 + 0.998023i 0.00888027 + 0.0389070i
\(659\) 4.26755 + 18.6974i 0.166240 + 0.728346i 0.987478 + 0.157759i \(0.0504271\pi\)
−0.821237 + 0.570587i \(0.806716\pi\)
\(660\) 0 0
\(661\) 3.05107 1.46932i 0.118673 0.0571499i −0.373605 0.927588i \(-0.621879\pi\)
0.492278 + 0.870438i \(0.336164\pi\)
\(662\) −1.25667 0.605180i −0.0488418 0.0235210i
\(663\) −19.7506 24.7665i −0.767051 0.961851i
\(664\) 4.69955 5.89305i 0.182378 0.228695i
\(665\) 0 0
\(666\) −3.17629 −0.123079
\(667\) −12.2739 + 1.48821i −0.475247 + 0.0576238i
\(668\) −1.43535 −0.0555355
\(669\) −2.04288 0.983797i −0.0789822 0.0380358i
\(670\) 0 0
\(671\) −5.05980 6.34479i −0.195332 0.244938i
\(672\) 1.86563 + 0.898438i 0.0719680 + 0.0346580i
\(673\) 4.29805 2.06983i 0.165678 0.0797862i −0.349207 0.937046i \(-0.613549\pi\)
0.514885 + 0.857259i \(0.327835\pi\)
\(674\) −1.38255 + 1.73366i −0.0532539 + 0.0667782i
\(675\) 0 0
\(676\) 7.59999 + 33.2977i 0.292307 + 1.28068i
\(677\) 26.8662 + 33.6892i 1.03255 + 1.29478i 0.954622 + 0.297821i \(0.0962599\pi\)
0.0779309 + 0.996959i \(0.475169\pi\)
\(678\) −1.31820 + 5.77541i −0.0506252 + 0.221803i
\(679\) −0.0644568 −0.00247362
\(680\) 0 0
\(681\) −15.5673 + 7.49683i −0.596542 + 0.287279i
\(682\) 13.2528 6.38220i 0.507475 0.244387i
\(683\) 5.21432 22.8454i 0.199521 0.874157i −0.771702 0.635984i \(-0.780594\pi\)
0.971223 0.238173i \(-0.0765484\pi\)
\(684\) −6.13706 −0.234656
\(685\) 0 0
\(686\) 1.37382 + 1.72272i 0.0524528 + 0.0657737i
\(687\) 3.54407 + 15.5276i 0.135215 + 0.592415i
\(688\) −2.16056 9.46604i −0.0823707 0.360890i
\(689\) 16.5368 20.7365i 0.630003 0.789999i
\(690\) 0 0
\(691\) −38.8657 18.7167i −1.47852 0.712018i −0.491243 0.871023i \(-0.663457\pi\)
−0.987278 + 0.159005i \(0.949171\pi\)
\(692\) −10.2838 12.8955i −0.390932 0.490213i
\(693\) 1.58815 1.99147i 0.0603287 0.0756498i
\(694\) 8.06638 + 3.88456i 0.306195 + 0.147456i
\(695\) 0 0
\(696\) −8.10202 7.96605i −0.307106 0.301952i
\(697\) −13.9758 −0.529373
\(698\) −8.21552 3.95639i −0.310962 0.149751i
\(699\) 6.89307 8.64363i 0.260720 0.326932i
\(700\) 0 0
\(701\) −3.81186 1.83570i −0.143972 0.0693333i 0.360511 0.932755i \(-0.382602\pi\)
−0.504483 + 0.863422i \(0.668317\pi\)
\(702\) 12.5635 6.05024i 0.474177 0.228352i
\(703\) −7.25786 + 9.10107i −0.273736 + 0.343254i
\(704\) 3.99061 + 17.4840i 0.150402 + 0.658953i
\(705\) 0 0
\(706\) −4.99396 6.26223i −0.187950 0.235682i
\(707\) 0.256478 1.12370i 0.00964586 0.0422613i
\(708\) 28.0737 1.05507
\(709\) −3.18287 + 13.9450i −0.119535 + 0.523717i 0.879336 + 0.476203i \(0.157987\pi\)
−0.998871 + 0.0475144i \(0.984870\pi\)
\(710\) 0 0
\(711\) −6.07338 + 2.92478i −0.227769 + 0.109688i
\(712\) −2.13856 + 9.36962i −0.0801457 + 0.351141i
\(713\) 15.3642 0.575393
\(714\) −0.198062 + 0.867767i −0.00741229 + 0.0324754i
\(715\) 0 0
\(716\) 1.36563 + 5.98319i 0.0510358 + 0.223602i
\(717\) 7.09365 + 31.0793i 0.264917 + 1.16068i
\(718\) 6.55645 8.22153i 0.244685 0.306825i
\(719\) 21.1194 10.1706i 0.787620 0.379298i 0.00356825 0.999994i \(-0.498864\pi\)
0.784051 + 0.620696i \(0.213150\pi\)
\(720\) 0 0
\(721\) −3.03803 3.80957i −0.113142 0.141876i
\(722\) −3.73072 + 4.67817i −0.138843 + 0.174104i
\(723\) −10.9330 5.26504i −0.406601 0.195809i
\(724\) −22.8388 −0.848796
\(725\) 0 0
\(726\) 7.43296 0.275863
\(727\) 46.8482 + 22.5609i 1.73750 + 0.836738i 0.983741 + 0.179592i \(0.0574778\pi\)
0.753763 + 0.657146i \(0.228237\pi\)
\(728\) 2.12833 2.66885i 0.0788813 0.0989140i
\(729\) 15.2500 + 19.1228i 0.564813 + 0.708254i
\(730\) 0 0
\(731\) 13.7899 6.64084i 0.510036 0.245621i
\(732\) 2.30194 2.88654i 0.0850821 0.106690i
\(733\) 7.60806 + 33.3331i 0.281010 + 1.23119i 0.896501 + 0.443041i \(0.146101\pi\)
−0.615491 + 0.788144i \(0.711042\pi\)
\(734\) −2.93559 12.8617i −0.108355 0.474733i
\(735\) 0 0
\(736\) 2.37704 10.4145i 0.0876190 0.383884i
\(737\) 11.4735 0.422632
\(738\) 0.445042 1.94986i 0.0163822 0.0717752i
\(739\) −35.8342 + 17.2569i −1.31818 + 0.634804i −0.954915 0.296881i \(-0.904054\pi\)
−0.363269 + 0.931684i \(0.618339\pi\)
\(740\) 0 0
\(741\) 3.69687 16.1970i 0.135808 0.595013i
\(742\) −0.745251 −0.0273590
\(743\) 1.59730 6.99824i 0.0585993 0.256740i −0.937140 0.348954i \(-0.886537\pi\)
0.995739 + 0.0922133i \(0.0293942\pi\)
\(744\) 8.80343 + 11.0392i 0.322749 + 0.404715i
\(745\) 0 0
\(746\) −2.49439 10.9286i −0.0913260 0.400125i
\(747\) 4.01357 5.03286i 0.146849 0.184143i
\(748\) −36.0344 + 17.3533i −1.31755 + 0.634499i
\(749\) −5.22348 2.51550i −0.190862 0.0919142i
\(750\) 0 0
\(751\) −16.9393 + 21.2412i −0.618124 + 0.775103i −0.988079 0.153947i \(-0.950802\pi\)
0.369955 + 0.929050i \(0.379373\pi\)
\(752\) −16.5543 7.97213i −0.603673 0.290714i
\(753\) −12.1709 −0.443533
\(754\) −11.4097 + 7.30457i −0.415517 + 0.266017i
\(755\) 0 0
\(756\) 3.21164 + 1.54664i 0.116806 + 0.0562508i
\(757\) −14.7721 + 18.5236i −0.536901 + 0.673253i −0.974101 0.226111i \(-0.927399\pi\)
0.437200 + 0.899364i \(0.355970\pi\)
\(758\) −7.46615 9.36225i −0.271183 0.340052i
\(759\) 12.7397 + 6.13514i 0.462423 + 0.222691i
\(760\) 0 0
\(761\) −8.88740 + 11.1444i −0.322168 + 0.403986i −0.916372 0.400329i \(-0.868896\pi\)
0.594204 + 0.804315i \(0.297467\pi\)
\(762\) −0.128039 0.560974i −0.00463835 0.0203219i
\(763\) 0.434157 + 1.90216i 0.0157175 + 0.0688630i
\(764\) 11.9879 + 15.0324i 0.433708 + 0.543852i
\(765\) 0 0
\(766\) 8.75361 0.316281
\(767\) 15.7157 68.8550i 0.567461 2.48621i
\(768\) −2.69806 + 1.29932i −0.0973579 + 0.0468851i
\(769\) 40.2793 19.3975i 1.45251 0.699491i 0.469479 0.882944i \(-0.344442\pi\)
0.983029 + 0.183453i \(0.0587275\pi\)
\(770\) 0 0
\(771\) −20.3967 −0.734570
\(772\) −9.11356 + 39.9291i −0.328004 + 1.43708i
\(773\) −14.3083 17.9420i −0.514633 0.645329i 0.454827 0.890580i \(-0.349701\pi\)
−0.969460 + 0.245251i \(0.921130\pi\)
\(774\) 0.487386 + 2.13538i 0.0175187 + 0.0767546i
\(775\) 0 0
\(776\) −0.190530 + 0.238916i −0.00683961 + 0.00857660i
\(777\) 1.98039 0.953703i 0.0710459 0.0342139i
\(778\) −9.96615 4.79944i −0.357304 0.172068i
\(779\) −4.57002 5.73063i −0.163738 0.205321i
\(780\) 0 0
\(781\) 32.6405 + 15.7188i 1.16797 + 0.562464i
\(782\) 4.59179 0.164202
\(783\) −21.2845 20.9273i −0.760645 0.747881i
\(784\) −19.5929 −0.699745
\(785\) 0 0
\(786\) 2.77562 3.48052i 0.0990030 0.124146i
\(787\) −8.93631 11.2058i −0.318545 0.399443i 0.596619 0.802525i \(-0.296510\pi\)
−0.915164 + 0.403082i \(0.867939\pi\)
\(788\) 31.7521 + 15.2910i 1.13112 + 0.544720i
\(789\) 26.6531 12.8355i 0.948875 0.456954i
\(790\) 0 0
\(791\) 0.847740 + 3.71419i 0.0301422 + 0.132061i
\(792\) −2.68718 11.7733i −0.0954847 0.418346i
\(793\) −5.79105 7.26175i −0.205646 0.257872i
\(794\) −0.395592 + 1.73320i −0.0140390 + 0.0615090i
\(795\) 0 0
\(796\) −0.350855 + 1.53720i −0.0124357 + 0.0544845i
\(797\) 9.18382 4.42270i 0.325308 0.156660i −0.264101 0.964495i \(-0.585075\pi\)
0.589409 + 0.807835i \(0.299361\pi\)
\(798\) −0.420583 + 0.202542i −0.0148885 + 0.00716992i
\(799\) 6.44504 28.2376i 0.228009 0.998974i
\(800\) 0 0
\(801\) −1.82640 + 8.00197i −0.0645325 + 0.282736i
\(802\) −6.91119 8.66636i −0.244043 0.306020i
\(803\) 6.18276 + 27.0884i 0.218185 + 0.955930i
\(804\) 1.16152 + 5.08896i 0.0409637 + 0.179474i
\(805\) 0 0
\(806\) 15.1681 7.30457i 0.534273 0.257292i
\(807\) −28.4855 13.7179i −1.00274 0.482893i
\(808\) −3.40701 4.27225i −0.119858 0.150297i
\(809\) 5.59448 7.01526i 0.196692 0.246643i −0.673698 0.739006i \(-0.735295\pi\)
0.870390 + 0.492363i \(0.163867\pi\)
\(810\) 0 0
\(811\) −28.5628 −1.00298 −0.501489 0.865164i \(-0.667214\pi\)
−0.501489 + 0.865164i \(0.667214\pi\)
\(812\) −3.27844 1.11613i −0.115051 0.0391685i
\(813\) −1.50066 −0.0526306
\(814\) −9.78113 4.71034i −0.342828 0.165097i
\(815\) 0 0
\(816\) −9.96077 12.4904i −0.348697 0.437252i
\(817\) 7.23221 + 3.48285i 0.253023 + 0.121849i
\(818\) −0.113564 + 0.0546896i −0.00397068 + 0.00191218i
\(819\) 1.81767 2.27928i 0.0635144 0.0796446i
\(820\) 0 0
\(821\) −2.52230 11.0509i −0.0880290 0.385680i 0.911651 0.410965i \(-0.134808\pi\)
−0.999680 + 0.0252844i \(0.991951\pi\)
\(822\) −5.96263 7.47690i −0.207971 0.260787i
\(823\) 1.26218 5.52996i 0.0439967 0.192762i −0.948154 0.317812i \(-0.897052\pi\)
0.992150 + 0.125050i \(0.0399091\pi\)
\(824\) −23.1008 −0.804755
\(825\) 0 0
\(826\) −1.78794 + 0.861025i −0.0622103 + 0.0299589i
\(827\) −2.61572 + 1.25966i −0.0909575 + 0.0438028i −0.478809 0.877919i \(-0.658931\pi\)
0.387852 + 0.921722i \(0.373217\pi\)
\(828\) 1.33028 5.82834i 0.0462305 0.202549i
\(829\) −45.2137 −1.57034 −0.785169 0.619282i \(-0.787424\pi\)
−0.785169 + 0.619282i \(0.787424\pi\)
\(830\) 0 0
\(831\) −8.29172 10.3975i −0.287636 0.360685i
\(832\) 4.56734 + 20.0108i 0.158344 + 0.693750i
\(833\) −6.87263 30.1109i −0.238122 1.04328i
\(834\) −5.76726 + 7.23191i −0.199704 + 0.250421i
\(835\) 0 0
\(836\) −18.8986 9.10107i −0.653621 0.314767i
\(837\) 23.1271 + 29.0005i 0.799391 + 1.00240i
\(838\) −7.35003 + 9.21664i −0.253902 + 0.318384i
\(839\) 41.1073 + 19.7962i 1.41918 + 0.683442i 0.976952 0.213460i \(-0.0684734\pi\)
0.442229 + 0.896902i \(0.354188\pi\)
\(840\) 0 0
\(841\) 22.9758 + 17.6949i 0.792270 + 0.610170i
\(842\) −7.82477 −0.269659
\(843\) 18.2899 + 8.80793i 0.629936 + 0.303361i
\(844\) 20.5248 25.7372i 0.706491 0.885912i
\(845\) 0 0
\(846\) 3.73437 + 1.79838i 0.128390 + 0.0618294i
\(847\) 4.30678 2.07404i 0.147983 0.0712648i
\(848\) 8.33997 10.4580i 0.286396 0.359129i
\(849\) −1.45593 6.37883i −0.0499673 0.218921i
\(850\) 0 0
\(851\) −7.07002 8.86553i −0.242357 0.303906i
\(852\) −3.66756 + 16.0686i −0.125649 + 0.550503i
\(853\) 36.9288 1.26442 0.632210 0.774797i \(-0.282148\pi\)
0.632210 + 0.774797i \(0.282148\pi\)
\(854\) −0.0580735 + 0.254437i −0.00198724 + 0.00870665i
\(855\) 0 0
\(856\) −24.7642 + 11.9258i −0.846423 + 0.407616i
\(857\) 7.91066 34.6589i 0.270223 1.18392i −0.639527 0.768768i \(-0.720870\pi\)
0.909750 0.415156i \(-0.136273\pi\)
\(858\) 15.4940 0.528955
\(859\) −9.43070 + 41.3186i −0.321771 + 1.40977i 0.512628 + 0.858611i \(0.328672\pi\)
−0.834399 + 0.551161i \(0.814185\pi\)
\(860\) 0 0
\(861\) 0.307979 + 1.34934i 0.0104959 + 0.0459855i
\(862\) 2.75259 + 12.0599i 0.0937537 + 0.410762i
\(863\) −31.0371 + 38.9193i −1.05652 + 1.32483i −0.112966 + 0.993599i \(0.536035\pi\)
−0.943550 + 0.331231i \(0.892536\pi\)
\(864\) 23.2359 11.1898i 0.790500 0.380685i
\(865\) 0 0
\(866\) −1.63036 2.04440i −0.0554018 0.0694717i
\(867\) 2.48457 3.11555i 0.0843803 0.105810i
\(868\) 3.87747 + 1.86729i 0.131610 + 0.0633800i
\(869\) −23.0398 −0.781572
\(870\) 0 0
\(871\) 13.1317 0.444950
\(872\) 8.33393 + 4.01341i 0.282222 + 0.135911i
\(873\) −0.162718 + 0.204042i −0.00550719 + 0.00690579i
\(874\) 1.50149 + 1.88281i 0.0507887 + 0.0636870i
\(875\) 0 0
\(876\) −11.3889 + 5.48460i −0.384795 + 0.185307i
\(877\) −13.6501 + 17.1167i −0.460931 + 0.577990i −0.956925 0.290337i \(-0.906233\pi\)
0.495993 + 0.868326i \(0.334804\pi\)
\(878\) 1.55884 + 6.82974i 0.0526084 + 0.230492i
\(879\) 1.87681 + 8.22282i 0.0633031 + 0.277349i
\(880\) 0 0
\(881\) 7.46130 32.6901i 0.251378 1.10136i −0.678822 0.734303i \(-0.737509\pi\)
0.930199 0.367055i \(-0.119634\pi\)
\(882\) 4.41981 0.148823
\(883\) −3.58868 + 15.7230i −0.120769 + 0.529122i 0.877961 + 0.478732i \(0.158904\pi\)
−0.998730 + 0.0503898i \(0.983954\pi\)
\(884\) −41.2422 + 19.8612i −1.38713 + 0.668004i
\(885\) 0 0
\(886\) 0.667326 2.92375i 0.0224192 0.0982252i
\(887\) −52.7391 −1.77081 −0.885403 0.464823i \(-0.846118\pi\)
−0.885403 + 0.464823i \(0.846118\pi\)
\(888\) 2.31886 10.1596i 0.0778160 0.340934i
\(889\) −0.230718 0.289311i −0.00773802 0.00970317i
\(890\) 0 0
\(891\) 2.83190 + 12.4074i 0.0948724 + 0.415663i
\(892\) −2.04288 + 2.56169i −0.0684006 + 0.0857716i
\(893\) 13.6860 6.59082i 0.457984 0.220553i
\(894\) −9.30343 4.48030i −0.311153 0.149844i
\(895\) 0 0
\(896\) 2.43027 3.04746i 0.0811897 0.101809i
\(897\) 14.5809 + 7.02180i 0.486842 + 0.234451i
\(898\) 5.48294 0.182968
\(899\) −25.6972 25.2659i −0.857048 0.842666i
\(900\) 0 0
\(901\) 18.9976 + 9.14877i 0.632902 + 0.304790i
\(902\) 4.26205 5.34444i 0.141911 0.177950i
\(903\) −0.945042 1.18505i −0.0314490 0.0394358i
\(904\) 16.2729 + 7.83663i 0.541230 + 0.260642i
\(905\) 0 0
\(906\) −2.60470 + 3.26619i −0.0865355 + 0.108512i
\(907\) −6.64084 29.0954i −0.220506 0.966098i −0.957099 0.289762i \(-0.906424\pi\)
0.736593 0.676336i \(-0.236433\pi\)
\(908\) 5.55592 + 24.3421i 0.184380 + 0.807820i
\(909\) −2.90970 3.64865i −0.0965086 0.121018i
\(910\) 0 0
\(911\) −9.34050 −0.309465 −0.154732 0.987956i \(-0.549452\pi\)
−0.154732 + 0.987956i \(0.549452\pi\)
\(912\) 1.86443 8.16860i 0.0617374 0.270489i
\(913\) 19.8230 9.54627i 0.656047 0.315936i
\(914\) 5.47823 2.63818i 0.181204 0.0872631i
\(915\) 0 0
\(916\) 23.0151 0.760439
\(917\) 0.637063 2.79116i 0.0210377 0.0921721i
\(918\) 6.91185 + 8.66719i 0.228125 + 0.286060i
\(919\) 4.09903 + 17.9590i 0.135215 + 0.592414i 0.996448 + 0.0842049i \(0.0268350\pi\)
−0.861234 + 0.508209i \(0.830308\pi\)
\(920\) 0 0
\(921\) −3.51275 + 4.40484i −0.115749 + 0.145145i
\(922\) −4.65452 + 2.24150i −0.153289 + 0.0738199i
\(923\) 37.3577 + 17.9905i 1.22964 + 0.592166i
\(924\) 2.46950 + 3.09666i 0.0812406 + 0.101872i
\(925\) 0 0
\(926\) −2.90408 1.39853i −0.0954341 0.0459587i
\(927\) −19.7289 −0.647981
\(928\) −21.1020 + 13.5097i −0.692708 + 0.443476i
\(929\) −4.84654 −0.159010 −0.0795050 0.996834i \(-0.525334\pi\)
−0.0795050 + 0.996834i \(0.525334\pi\)
\(930\) 0 0
\(931\) 10.0993 12.6642i 0.330992 0.415051i
\(932\) −9.96077 12.4904i −0.326276 0.409137i
\(933\) 14.1746 + 6.82611i 0.464054 + 0.223477i
\(934\) −0.827356 + 0.398434i −0.0270719 + 0.0130371i
\(935\) 0 0
\(936\) −3.07553 13.4748i −0.100527 0.440437i
\(937\) −9.94989 43.5933i −0.325049 1.42413i −0.828443 0.560074i \(-0.810773\pi\)
0.503394 0.864057i \(-0.332084\pi\)
\(938\) −0.230054 0.288478i −0.00751152 0.00941915i
\(939\) 5.33877 23.3907i 0.174224 0.763326i
\(940\) 0 0
\(941\) −3.02297 + 13.2445i −0.0985459 + 0.431758i −0.999999 0.00111821i \(-0.999644\pi\)
0.901453 + 0.432876i \(0.142501\pi\)
\(942\) −9.11960 + 4.39177i −0.297133 + 0.143092i
\(943\) 6.43296 3.09795i 0.209486 0.100883i
\(944\) 7.92585 34.7254i 0.257965 1.13022i
\(945\) 0 0
\(946\) −1.66583 + 7.29850i −0.0541609 + 0.237295i
\(947\) −9.35958 11.7365i −0.304146 0.381387i 0.606147 0.795353i \(-0.292715\pi\)
−0.910292 + 0.413966i \(0.864143\pi\)
\(948\) −2.33244 10.2191i −0.0757540 0.331900i
\(949\) 7.07630 + 31.0033i 0.229706 + 1.00641i
\(950\) 0 0
\(951\) 3.22252 1.55188i 0.104497 0.0503233i
\(952\) 2.44504 + 1.17747i 0.0792443 + 0.0381620i
\(953\) −32.3247 40.5339i −1.04710 1.31302i −0.948114 0.317931i \(-0.897012\pi\)
−0.0989849 0.995089i \(-0.531560\pi\)
\(954\) −1.88135 + 2.35914i −0.0609111 + 0.0763801i
\(955\) 0 0
\(956\) 46.0659 1.48988
\(957\) −11.2186 31.2113i −0.362647 1.00892i
\(958\) −1.73078 −0.0559188
\(959\) −5.54115 2.66848i −0.178933 0.0861696i
\(960\) 0 0
\(961\) 8.59365 + 10.7761i 0.277215 + 0.347616i
\(962\) −11.1947 5.39109i −0.360932 0.173816i
\(963\) −21.1494 + 10.1850i −0.681531 + 0.328208i
\(964\) −10.9330 + 13.7095i −0.352127 + 0.441553i
\(965\) 0 0
\(966\) −0.101187 0.443330i −0.00325564 0.0142639i
\(967\) 25.9527 + 32.5437i 0.834583 + 1.04653i 0.998198 + 0.0600094i \(0.0191131\pi\)
−0.163615 + 0.986524i \(0.552315\pi\)
\(968\) 5.04288 22.0943i 0.162084 0.710137i
\(969\) 13.2078 0.424294
\(970\) 0 0
\(971\) 50.2497 24.1990i 1.61259 0.776583i 0.612685 0.790327i \(-0.290089\pi\)
0.999906 + 0.0137446i \(0.00437519\pi\)
\(972\) 21.7799 10.4887i 0.698592 0.336424i
\(973\) −1.32371 + 5.79954i −0.0424361 + 0.185925i
\(974\) −4.38165 −0.140397
\(975\) 0 0
\(976\) −2.92058 3.66230i −0.0934856 0.117227i
\(977\) 10.8943 + 47.7309i 0.348538 + 1.52705i 0.780501 + 0.625155i \(0.214964\pi\)
−0.431962 + 0.901892i \(0.642179\pi\)
\(978\) 1.56100 + 6.83918i 0.0499152 + 0.218693i
\(979\) −17.4909 + 21.9329i −0.559012 + 0.700978i
\(980\) 0 0
\(981\) 7.11745 + 3.42758i 0.227243 + 0.109434i
\(982\) 2.16189 + 2.71092i 0.0689887 + 0.0865091i
\(983\) −3.22550 + 4.04466i −0.102878 + 0.129004i −0.830605 0.556862i \(-0.812005\pi\)
0.727727 + 0.685867i \(0.240577\pi\)
\(984\) 5.91185 + 2.84700i 0.188463 + 0.0907590i
\(985\) 0 0
\(986\) −7.67994 7.55106i −0.244579 0.240475i
\(987\) −2.86831 −0.0912994
\(988\) −21.6298 10.4164i −0.688136 0.331389i
\(989\) −4.87531 + 6.11345i −0.155026 + 0.194396i
\(990\) 0 0
\(991\) 15.1838 + 7.31214i 0.482330 + 0.232278i 0.659216 0.751953i \(-0.270888\pi\)
−0.176886 + 0.984231i \(0.556602\pi\)
\(992\) 28.0531 13.5097i 0.890687 0.428932i
\(993\) 2.43668 3.05550i 0.0773257 0.0969634i
\(994\) −0.259251 1.13585i −0.00822295 0.0360271i
\(995\) 0 0
\(996\) 6.24094 + 7.82589i 0.197752 + 0.247973i
\(997\) 8.50245 37.2517i 0.269275 1.17977i −0.641583 0.767054i \(-0.721722\pi\)
0.910858 0.412719i \(-0.135421\pi\)
\(998\) −9.15239 −0.289714
\(999\) 6.09179 26.6899i 0.192736 0.844431i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.l.b.451.1 6
5.2 odd 4 725.2.r.b.74.2 12
5.3 odd 4 725.2.r.b.74.1 12
5.4 even 2 29.2.d.a.16.1 6
15.14 odd 2 261.2.k.a.190.1 6
20.19 odd 2 464.2.u.f.161.1 6
29.20 even 7 inner 725.2.l.b.426.1 6
145.4 even 14 841.2.d.c.778.1 6
145.9 even 14 841.2.d.d.571.1 6
145.14 odd 28 841.2.e.b.236.1 12
145.19 odd 28 841.2.e.c.63.1 12
145.24 even 14 841.2.d.b.574.1 6
145.34 even 14 841.2.d.c.574.1 6
145.39 odd 28 841.2.e.c.63.2 12
145.44 odd 28 841.2.e.b.236.2 12
145.49 even 14 29.2.d.a.20.1 yes 6
145.54 even 14 841.2.d.b.778.1 6
145.64 even 14 841.2.d.a.605.1 6
145.69 odd 28 841.2.e.b.196.2 12
145.74 even 14 841.2.d.e.645.1 6
145.78 odd 28 725.2.r.b.49.2 12
145.79 odd 28 841.2.e.d.270.1 12
145.84 odd 28 841.2.b.c.840.3 6
145.89 odd 28 841.2.e.c.267.2 12
145.94 even 14 841.2.a.e.1.2 3
145.99 odd 4 841.2.e.d.651.1 12
145.104 odd 4 841.2.e.d.651.2 12
145.107 odd 28 725.2.r.b.49.1 12
145.109 even 14 841.2.a.f.1.2 3
145.114 odd 28 841.2.e.c.267.1 12
145.119 odd 28 841.2.b.c.840.4 6
145.124 odd 28 841.2.e.d.270.2 12
145.129 even 14 841.2.d.a.645.1 6
145.134 odd 28 841.2.e.b.196.1 12
145.139 even 14 841.2.d.e.605.1 6
145.144 even 2 841.2.d.d.190.1 6
435.194 odd 14 261.2.k.a.136.1 6
435.239 odd 14 7569.2.a.r.1.2 3
435.254 odd 14 7569.2.a.p.1.2 3
580.339 odd 14 464.2.u.f.49.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.d.a.16.1 6 5.4 even 2
29.2.d.a.20.1 yes 6 145.49 even 14
261.2.k.a.136.1 6 435.194 odd 14
261.2.k.a.190.1 6 15.14 odd 2
464.2.u.f.49.1 6 580.339 odd 14
464.2.u.f.161.1 6 20.19 odd 2
725.2.l.b.426.1 6 29.20 even 7 inner
725.2.l.b.451.1 6 1.1 even 1 trivial
725.2.r.b.49.1 12 145.107 odd 28
725.2.r.b.49.2 12 145.78 odd 28
725.2.r.b.74.1 12 5.3 odd 4
725.2.r.b.74.2 12 5.2 odd 4
841.2.a.e.1.2 3 145.94 even 14
841.2.a.f.1.2 3 145.109 even 14
841.2.b.c.840.3 6 145.84 odd 28
841.2.b.c.840.4 6 145.119 odd 28
841.2.d.a.605.1 6 145.64 even 14
841.2.d.a.645.1 6 145.129 even 14
841.2.d.b.574.1 6 145.24 even 14
841.2.d.b.778.1 6 145.54 even 14
841.2.d.c.574.1 6 145.34 even 14
841.2.d.c.778.1 6 145.4 even 14
841.2.d.d.190.1 6 145.144 even 2
841.2.d.d.571.1 6 145.9 even 14
841.2.d.e.605.1 6 145.139 even 14
841.2.d.e.645.1 6 145.74 even 14
841.2.e.b.196.1 12 145.134 odd 28
841.2.e.b.196.2 12 145.69 odd 28
841.2.e.b.236.1 12 145.14 odd 28
841.2.e.b.236.2 12 145.44 odd 28
841.2.e.c.63.1 12 145.19 odd 28
841.2.e.c.63.2 12 145.39 odd 28
841.2.e.c.267.1 12 145.114 odd 28
841.2.e.c.267.2 12 145.89 odd 28
841.2.e.d.270.1 12 145.79 odd 28
841.2.e.d.270.2 12 145.124 odd 28
841.2.e.d.651.1 12 145.99 odd 4
841.2.e.d.651.2 12 145.104 odd 4
7569.2.a.p.1.2 3 435.254 odd 14
7569.2.a.r.1.2 3 435.239 odd 14