L(s) = 1 | + (−0.400 − 0.193i)2-s + (0.777 − 0.974i)3-s + (−1.12 − 1.40i)4-s + (−0.5 + 0.240i)6-s + (−0.222 + 0.279i)7-s + (0.376 + 1.64i)8-s + (0.321 + 1.40i)9-s + (−1.09 + 4.81i)11-s − 2.24·12-s + (−1.25 + 5.51i)13-s + (0.143 − 0.0689i)14-s + (−0.634 + 2.77i)16-s − 4.49·17-s + (0.143 − 0.626i)18-s + (−1.46 − 1.84i)19-s + ⋯ |
L(s) = 1 | + (−0.283 − 0.136i)2-s + (0.448 − 0.562i)3-s + (−0.561 − 0.704i)4-s + (−0.204 + 0.0983i)6-s + (−0.0841 + 0.105i)7-s + (0.133 + 0.583i)8-s + (0.107 + 0.469i)9-s + (−0.331 + 1.45i)11-s − 0.648·12-s + (−0.348 + 1.52i)13-s + (0.0382 − 0.0184i)14-s + (−0.158 + 0.694i)16-s − 1.08·17-s + (0.0337 − 0.147i)18-s + (−0.337 − 0.422i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.441 - 0.897i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 725 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.441 - 0.897i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.712197 + 0.443444i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.712197 + 0.443444i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 29 | \( 1 + (5.09 + 1.73i)T \) |
good | 2 | \( 1 + (0.400 + 0.193i)T + (1.24 + 1.56i)T^{2} \) |
| 3 | \( 1 + (-0.777 + 0.974i)T + (-0.667 - 2.92i)T^{2} \) |
| 7 | \( 1 + (0.222 - 0.279i)T + (-1.55 - 6.82i)T^{2} \) |
| 11 | \( 1 + (1.09 - 4.81i)T + (-9.91 - 4.77i)T^{2} \) |
| 13 | \( 1 + (1.25 - 5.51i)T + (-11.7 - 5.64i)T^{2} \) |
| 17 | \( 1 + 4.49T + 17T^{2} \) |
| 19 | \( 1 + (1.46 + 1.84i)T + (-4.22 + 18.5i)T^{2} \) |
| 23 | \( 1 + (-2.06 + 0.996i)T + (14.3 - 17.9i)T^{2} \) |
| 31 | \( 1 + (-6.02 - 2.90i)T + (19.3 + 24.2i)T^{2} \) |
| 37 | \( 1 + (1.09 + 4.81i)T + (-33.3 + 16.0i)T^{2} \) |
| 41 | \( 1 - 3.10T + 41T^{2} \) |
| 43 | \( 1 + (3.06 - 1.47i)T + (26.8 - 33.6i)T^{2} \) |
| 47 | \( 1 + (1.43 - 6.28i)T + (-42.3 - 20.3i)T^{2} \) |
| 53 | \( 1 + (4.22 + 2.03i)T + (33.0 + 41.4i)T^{2} \) |
| 59 | \( 1 + 12.4T + 59T^{2} \) |
| 61 | \( 1 + (1.02 - 1.28i)T + (-13.5 - 59.4i)T^{2} \) |
| 67 | \( 1 + (0.516 + 2.26i)T + (-60.3 + 29.0i)T^{2} \) |
| 71 | \( 1 + (-1.63 + 7.15i)T + (-63.9 - 30.8i)T^{2} \) |
| 73 | \( 1 + (-5.06 + 2.44i)T + (45.5 - 57.0i)T^{2} \) |
| 79 | \( 1 + (-1.03 - 4.54i)T + (-71.1 + 34.2i)T^{2} \) |
| 83 | \( 1 + (2.77 + 3.48i)T + (-18.4 + 80.9i)T^{2} \) |
| 89 | \( 1 + (-5.11 - 2.46i)T + (55.4 + 69.5i)T^{2} \) |
| 97 | \( 1 + (-0.112 - 0.141i)T + (-21.5 + 94.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.51416633736959254888028329655, −9.406543439418259132688965456649, −9.126088205769461381953077609879, −7.999601231202406618374823756448, −7.12046156210336464619060733136, −6.34224305112678227831992593421, −4.78764279706192559590401521163, −4.49155208272479437146272177747, −2.38249258866783396995711421124, −1.72743695889751321779725478777,
0.44993679197153143187270202057, 2.94622801998361833055124395656, 3.53406359627434712043597100102, 4.59760755327555248945841427620, 5.74050609503776823558459682178, 6.87340184518462517433365844459, 8.052732773820569399545587092546, 8.466818853159313866630971153145, 9.282154863253267884231902946842, 10.09223566228414211444630352654