Properties

Label 261.2.k.a.190.1
Level $261$
Weight $2$
Character 261.190
Analytic conductor $2.084$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [261,2,Mod(82,261)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(261, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("261.82"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 261 = 3^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 261.k (of order \(7\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.08409549276\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 29)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 190.1
Root \(-0.623490 - 0.781831i\) of defining polynomial
Character \(\chi\) \(=\) 261.190
Dual form 261.2.k.a.136.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.400969 - 0.193096i) q^{2} +(-1.12349 - 1.40881i) q^{4} +(0.623490 + 0.300257i) q^{5} +(0.222521 - 0.279032i) q^{7} +(0.376510 + 1.64960i) q^{8} +(-0.192021 - 0.240787i) q^{10} +(1.09903 - 4.81517i) q^{11} +(1.25786 - 5.51107i) q^{13} +(-0.143104 + 0.0689153i) q^{14} +(-0.634375 + 2.77938i) q^{16} -4.49396 q^{17} +(-1.46950 - 1.84270i) q^{19} +(-0.277479 - 1.21572i) q^{20} +(-1.37047 + 1.71851i) q^{22} +(2.06853 - 0.996152i) q^{23} +(-2.81886 - 3.53474i) q^{25} +(-1.56853 + 1.96688i) q^{26} -0.643104 q^{28} +(5.09783 + 1.73553i) q^{29} +(6.02930 + 2.90356i) q^{31} +(2.90097 - 3.63770i) q^{32} +(1.80194 + 0.867767i) q^{34} +(0.222521 - 0.107160i) q^{35} +(1.09903 + 4.81517i) q^{37} +(0.233406 + 1.02262i) q^{38} +(-0.260553 + 1.14156i) q^{40} -3.10992 q^{41} +(3.06853 - 1.47773i) q^{43} +(-8.01842 + 3.86147i) q^{44} -1.02177 q^{46} +(-1.43416 + 6.28345i) q^{47} +(1.52930 + 6.70031i) q^{49} +(0.447730 + 1.96163i) q^{50} +(-9.17725 + 4.41953i) q^{52} +(-4.22737 - 2.03579i) q^{53} +(2.13102 - 2.67222i) q^{55} +(0.544073 + 0.262012i) q^{56} +(-1.70895 - 1.68027i) q^{58} +12.4940 q^{59} +(-1.02446 + 1.28463i) q^{61} +(-1.85690 - 2.32847i) q^{62} +(3.27144 - 1.57544i) q^{64} +(2.43900 - 3.05841i) q^{65} +(0.516926 + 2.26480i) q^{67} +(5.04892 + 6.33114i) q^{68} -0.109916 q^{70} +(-1.63222 + 7.15122i) q^{71} +(-5.06853 + 2.44088i) q^{73} +(0.489115 - 2.14295i) q^{74} +(-0.945042 + 4.14050i) q^{76} +(-1.09903 - 1.37814i) q^{77} +(1.03803 + 4.54792i) q^{79} +(-1.23005 + 1.54244i) q^{80} +(1.24698 + 0.600514i) q^{82} +(-2.77748 - 3.48285i) q^{83} +(-2.80194 - 1.34934i) q^{85} -1.51573 q^{86} +8.35690 q^{88} +(-5.11745 - 2.46443i) q^{89} +(-1.25786 - 1.57731i) q^{91} +(-3.72737 - 1.79500i) q^{92} +(1.78836 - 2.24254i) q^{94} +(-0.362937 - 1.59013i) q^{95} +(-0.112605 - 0.141202i) q^{97} +(0.680604 - 2.98192i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} - 2 q^{4} - q^{5} + q^{7} + 7 q^{8} + 9 q^{10} + 11 q^{11} - 5 q^{13} - 9 q^{14} + 4 q^{16} - 8 q^{17} + q^{19} - 2 q^{20} + 6 q^{22} + 7 q^{23} - 24 q^{25} - 4 q^{26} - 12 q^{28} - 6 q^{29}+ \cdots - 19 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/261\mathbb{Z}\right)^\times\).

\(n\) \(118\) \(146\)
\(\chi(n)\) \(e\left(\frac{1}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.400969 0.193096i −0.283528 0.136540i 0.286715 0.958016i \(-0.407437\pi\)
−0.570243 + 0.821476i \(0.693151\pi\)
\(3\) 0 0
\(4\) −1.12349 1.40881i −0.561745 0.704406i
\(5\) 0.623490 + 0.300257i 0.278833 + 0.134279i 0.568074 0.822977i \(-0.307689\pi\)
−0.289241 + 0.957256i \(0.593403\pi\)
\(6\) 0 0
\(7\) 0.222521 0.279032i 0.0841050 0.105464i −0.737999 0.674802i \(-0.764229\pi\)
0.822104 + 0.569338i \(0.192800\pi\)
\(8\) 0.376510 + 1.64960i 0.133116 + 0.583221i
\(9\) 0 0
\(10\) −0.192021 0.240787i −0.0607225 0.0761436i
\(11\) 1.09903 4.81517i 0.331370 1.45183i −0.485109 0.874454i \(-0.661220\pi\)
0.816479 0.577375i \(-0.195923\pi\)
\(12\) 0 0
\(13\) 1.25786 5.51107i 0.348869 1.52849i −0.430884 0.902407i \(-0.641798\pi\)
0.779753 0.626087i \(-0.215345\pi\)
\(14\) −0.143104 + 0.0689153i −0.0382462 + 0.0184184i
\(15\) 0 0
\(16\) −0.634375 + 2.77938i −0.158594 + 0.694845i
\(17\) −4.49396 −1.08995 −0.544973 0.838454i \(-0.683460\pi\)
−0.544973 + 0.838454i \(0.683460\pi\)
\(18\) 0 0
\(19\) −1.46950 1.84270i −0.337127 0.422743i 0.584153 0.811643i \(-0.301427\pi\)
−0.921280 + 0.388900i \(0.872855\pi\)
\(20\) −0.277479 1.21572i −0.0620462 0.271842i
\(21\) 0 0
\(22\) −1.37047 + 1.71851i −0.292185 + 0.366388i
\(23\) 2.06853 0.996152i 0.431319 0.207712i −0.205611 0.978634i \(-0.565918\pi\)
0.636930 + 0.770922i \(0.280204\pi\)
\(24\) 0 0
\(25\) −2.81886 3.53474i −0.563773 0.706949i
\(26\) −1.56853 + 1.96688i −0.307614 + 0.385736i
\(27\) 0 0
\(28\) −0.643104 −0.121535
\(29\) 5.09783 + 1.73553i 0.946644 + 0.322281i
\(30\) 0 0
\(31\) 6.02930 + 2.90356i 1.08289 + 0.521495i 0.888241 0.459377i \(-0.151927\pi\)
0.194654 + 0.980872i \(0.437642\pi\)
\(32\) 2.90097 3.63770i 0.512824 0.643061i
\(33\) 0 0
\(34\) 1.80194 + 0.867767i 0.309030 + 0.148821i
\(35\) 0.222521 0.107160i 0.0376129 0.0181134i
\(36\) 0 0
\(37\) 1.09903 + 4.81517i 0.180680 + 0.791609i 0.981307 + 0.192447i \(0.0616424\pi\)
−0.800628 + 0.599162i \(0.795501\pi\)
\(38\) 0.233406 + 1.02262i 0.0378635 + 0.165891i
\(39\) 0 0
\(40\) −0.260553 + 1.14156i −0.0411971 + 0.180496i
\(41\) −3.10992 −0.485687 −0.242844 0.970065i \(-0.578080\pi\)
−0.242844 + 0.970065i \(0.578080\pi\)
\(42\) 0 0
\(43\) 3.06853 1.47773i 0.467947 0.225351i −0.185025 0.982734i \(-0.559236\pi\)
0.652971 + 0.757383i \(0.273522\pi\)
\(44\) −8.01842 + 3.86147i −1.20882 + 0.582138i
\(45\) 0 0
\(46\) −1.02177 −0.150652
\(47\) −1.43416 + 6.28345i −0.209193 + 0.916536i 0.755912 + 0.654673i \(0.227194\pi\)
−0.965105 + 0.261862i \(0.915663\pi\)
\(48\) 0 0
\(49\) 1.52930 + 6.70031i 0.218472 + 0.957188i
\(50\) 0.447730 + 1.96163i 0.0633186 + 0.277417i
\(51\) 0 0
\(52\) −9.17725 + 4.41953i −1.27266 + 0.612879i
\(53\) −4.22737 2.03579i −0.580673 0.279638i 0.120401 0.992725i \(-0.461582\pi\)
−0.701075 + 0.713088i \(0.747296\pi\)
\(54\) 0 0
\(55\) 2.13102 2.67222i 0.287347 0.360322i
\(56\) 0.544073 + 0.262012i 0.0727048 + 0.0350128i
\(57\) 0 0
\(58\) −1.70895 1.68027i −0.224396 0.220630i
\(59\) 12.4940 1.62657 0.813287 0.581862i \(-0.197676\pi\)
0.813287 + 0.581862i \(0.197676\pi\)
\(60\) 0 0
\(61\) −1.02446 + 1.28463i −0.131168 + 0.164480i −0.843078 0.537791i \(-0.819259\pi\)
0.711910 + 0.702271i \(0.247830\pi\)
\(62\) −1.85690 2.32847i −0.235826 0.295716i
\(63\) 0 0
\(64\) 3.27144 1.57544i 0.408930 0.196930i
\(65\) 2.43900 3.05841i 0.302521 0.379349i
\(66\) 0 0
\(67\) 0.516926 + 2.26480i 0.0631526 + 0.276689i 0.996639 0.0819245i \(-0.0261066\pi\)
−0.933486 + 0.358614i \(0.883249\pi\)
\(68\) 5.04892 + 6.33114i 0.612271 + 0.767764i
\(69\) 0 0
\(70\) −0.109916 −0.0131375
\(71\) −1.63222 + 7.15122i −0.193709 + 0.848694i 0.780878 + 0.624683i \(0.214772\pi\)
−0.974587 + 0.224010i \(0.928085\pi\)
\(72\) 0 0
\(73\) −5.06853 + 2.44088i −0.593227 + 0.285683i −0.706310 0.707903i \(-0.749642\pi\)
0.113083 + 0.993586i \(0.463927\pi\)
\(74\) 0.489115 2.14295i 0.0568584 0.249113i
\(75\) 0 0
\(76\) −0.945042 + 4.14050i −0.108404 + 0.474948i
\(77\) −1.09903 1.37814i −0.125246 0.157054i
\(78\) 0 0
\(79\) 1.03803 + 4.54792i 0.116788 + 0.511681i 0.999154 + 0.0411178i \(0.0130919\pi\)
−0.882367 + 0.470563i \(0.844051\pi\)
\(80\) −1.23005 + 1.54244i −0.137524 + 0.172450i
\(81\) 0 0
\(82\) 1.24698 + 0.600514i 0.137706 + 0.0663156i
\(83\) −2.77748 3.48285i −0.304868 0.382292i 0.605671 0.795715i \(-0.292905\pi\)
−0.910539 + 0.413423i \(0.864333\pi\)
\(84\) 0 0
\(85\) −2.80194 1.34934i −0.303913 0.146357i
\(86\) −1.51573 −0.163445
\(87\) 0 0
\(88\) 8.35690 0.890848
\(89\) −5.11745 2.46443i −0.542449 0.261229i 0.142533 0.989790i \(-0.454475\pi\)
−0.684981 + 0.728561i \(0.740190\pi\)
\(90\) 0 0
\(91\) −1.25786 1.57731i −0.131860 0.165347i
\(92\) −3.72737 1.79500i −0.388605 0.187142i
\(93\) 0 0
\(94\) 1.78836 2.24254i 0.184456 0.231300i
\(95\) −0.362937 1.59013i −0.0372365 0.163144i
\(96\) 0 0
\(97\) −0.112605 0.141202i −0.0114333 0.0143369i 0.776082 0.630632i \(-0.217204\pi\)
−0.787515 + 0.616295i \(0.788633\pi\)
\(98\) 0.680604 2.98192i 0.0687514 0.301219i
\(99\) 0 0
\(100\) −1.81282 + 7.94250i −0.181282 + 0.794250i
\(101\) 2.90970 1.40124i 0.289526 0.139428i −0.283484 0.958977i \(-0.591490\pi\)
0.573009 + 0.819549i \(0.305776\pi\)
\(102\) 0 0
\(103\) 3.03803 13.3105i 0.299346 1.31152i −0.571758 0.820423i \(-0.693738\pi\)
0.871104 0.491099i \(-0.163405\pi\)
\(104\) 9.56465 0.937891
\(105\) 0 0
\(106\) 1.30194 + 1.63258i 0.126455 + 0.158570i
\(107\) 3.61476 + 15.8373i 0.349452 + 1.53105i 0.778428 + 0.627734i \(0.216017\pi\)
−0.428976 + 0.903316i \(0.641126\pi\)
\(108\) 0 0
\(109\) 3.40850 4.27413i 0.326475 0.409387i −0.591323 0.806435i \(-0.701394\pi\)
0.917798 + 0.397048i \(0.129965\pi\)
\(110\) −1.37047 + 0.659983i −0.130669 + 0.0629269i
\(111\) 0 0
\(112\) 0.634375 + 0.795481i 0.0599428 + 0.0751659i
\(113\) 6.65548 8.34571i 0.626095 0.785098i −0.363093 0.931753i \(-0.618279\pi\)
0.989188 + 0.146655i \(0.0468506\pi\)
\(114\) 0 0
\(115\) 1.58881 0.148157
\(116\) −3.28232 9.13174i −0.304756 0.847861i
\(117\) 0 0
\(118\) −5.00969 2.41254i −0.461179 0.222092i
\(119\) −1.00000 + 1.25396i −0.0916698 + 0.114950i
\(120\) 0 0
\(121\) −12.0673 5.81132i −1.09703 0.528302i
\(122\) 0.658834 0.317278i 0.0596480 0.0287250i
\(123\) 0 0
\(124\) −2.68329 11.7563i −0.240967 1.05574i
\(125\) −1.46615 6.42361i −0.131136 0.574546i
\(126\) 0 0
\(127\) 0.230718 1.01084i 0.0204729 0.0896976i −0.963659 0.267134i \(-0.913923\pi\)
0.984132 + 0.177437i \(0.0567805\pi\)
\(128\) −10.9215 −0.965337
\(129\) 0 0
\(130\) −1.56853 + 0.755365i −0.137569 + 0.0662499i
\(131\) 7.22737 3.48052i 0.631458 0.304094i −0.0906414 0.995884i \(-0.528892\pi\)
0.722099 + 0.691790i \(0.243177\pi\)
\(132\) 0 0
\(133\) −0.841166 −0.0729384
\(134\) 0.230054 1.00793i 0.0198736 0.0870720i
\(135\) 0 0
\(136\) −1.69202 7.41323i −0.145090 0.635679i
\(137\) 3.83459 + 16.8005i 0.327611 + 1.43536i 0.823670 + 0.567070i \(0.191923\pi\)
−0.496058 + 0.868289i \(0.665220\pi\)
\(138\) 0 0
\(139\) 15.0172 7.23191i 1.27374 0.613403i 0.329969 0.943992i \(-0.392962\pi\)
0.943775 + 0.330589i \(0.107247\pi\)
\(140\) −0.400969 0.193096i −0.0338881 0.0163196i
\(141\) 0 0
\(142\) 2.03534 2.55224i 0.170802 0.214179i
\(143\) −25.1543 12.1137i −2.10351 1.01300i
\(144\) 0 0
\(145\) 2.65734 + 2.61275i 0.220680 + 0.216977i
\(146\) 2.50365 0.207203
\(147\) 0 0
\(148\) 5.54892 6.95812i 0.456118 0.571954i
\(149\) −11.6012 14.5474i −0.950406 1.19177i −0.981346 0.192251i \(-0.938421\pi\)
0.0309396 0.999521i \(-0.490150\pi\)
\(150\) 0 0
\(151\) 6.78232 3.26619i 0.551938 0.265799i −0.137060 0.990563i \(-0.543765\pi\)
0.688998 + 0.724764i \(0.258051\pi\)
\(152\) 2.48643 3.11788i 0.201676 0.252893i
\(153\) 0 0
\(154\) 0.174563 + 0.764811i 0.0140667 + 0.0616302i
\(155\) 2.88740 + 3.62068i 0.231921 + 0.290820i
\(156\) 0 0
\(157\) −18.2392 −1.45565 −0.727824 0.685764i \(-0.759468\pi\)
−0.727824 + 0.685764i \(0.759468\pi\)
\(158\) 0.461968 2.02401i 0.0367522 0.161022i
\(159\) 0 0
\(160\) 2.90097 1.39703i 0.229342 0.110445i
\(161\) 0.182333 0.798852i 0.0143698 0.0629584i
\(162\) 0 0
\(163\) −2.81282 + 12.3238i −0.220317 + 0.965273i 0.736922 + 0.675977i \(0.236278\pi\)
−0.957240 + 0.289296i \(0.906579\pi\)
\(164\) 3.49396 + 4.38129i 0.272832 + 0.342121i
\(165\) 0 0
\(166\) 0.441157 + 1.93284i 0.0342404 + 0.150017i
\(167\) 0.496648 0.622776i 0.0384317 0.0481919i −0.762244 0.647290i \(-0.775902\pi\)
0.800676 + 0.599098i \(0.204474\pi\)
\(168\) 0 0
\(169\) −17.0770 8.22386i −1.31362 0.632605i
\(170\) 0.862937 + 1.08209i 0.0661842 + 0.0829924i
\(171\) 0 0
\(172\) −5.52930 2.66277i −0.421605 0.203034i
\(173\) 9.15346 0.695924 0.347962 0.937509i \(-0.386874\pi\)
0.347962 + 0.937509i \(0.386874\pi\)
\(174\) 0 0
\(175\) −1.61356 −0.121974
\(176\) 12.6860 + 6.10925i 0.956242 + 0.460502i
\(177\) 0 0
\(178\) 1.57606 + 1.97632i 0.118131 + 0.148132i
\(179\) 3.06853 + 1.47773i 0.229353 + 0.110450i 0.545031 0.838416i \(-0.316518\pi\)
−0.315678 + 0.948866i \(0.602232\pi\)
\(180\) 0 0
\(181\) 7.90246 9.90937i 0.587385 0.736558i −0.395967 0.918265i \(-0.629591\pi\)
0.983353 + 0.181707i \(0.0581621\pi\)
\(182\) 0.199791 + 0.875342i 0.0148095 + 0.0648847i
\(183\) 0 0
\(184\) 2.42208 + 3.03719i 0.178558 + 0.223904i
\(185\) −0.760553 + 3.33220i −0.0559170 + 0.244988i
\(186\) 0 0
\(187\) −4.93900 + 21.6392i −0.361176 + 1.58241i
\(188\) 10.4635 5.03894i 0.763126 0.367502i
\(189\) 0 0
\(190\) −0.161522 + 0.707674i −0.0117180 + 0.0513401i
\(191\) 10.6703 0.772072 0.386036 0.922484i \(-0.373844\pi\)
0.386036 + 0.922484i \(0.373844\pi\)
\(192\) 0 0
\(193\) 14.1712 + 17.7701i 1.02007 + 1.27912i 0.959724 + 0.280945i \(0.0906477\pi\)
0.0603421 + 0.998178i \(0.480781\pi\)
\(194\) 0.0178854 + 0.0783611i 0.00128410 + 0.00562600i
\(195\) 0 0
\(196\) 7.72132 9.68223i 0.551523 0.691588i
\(197\) −17.6211 + 8.48587i −1.25545 + 0.604593i −0.938968 0.344005i \(-0.888216\pi\)
−0.316483 + 0.948598i \(0.602502\pi\)
\(198\) 0 0
\(199\) −0.545565 0.684117i −0.0386741 0.0484958i 0.762118 0.647438i \(-0.224159\pi\)
−0.800792 + 0.598942i \(0.795588\pi\)
\(200\) 4.76958 5.98086i 0.337260 0.422911i
\(201\) 0 0
\(202\) −1.43727 −0.101126
\(203\) 1.61865 1.03627i 0.113607 0.0727318i
\(204\) 0 0
\(205\) −1.93900 0.933774i −0.135426 0.0652176i
\(206\) −3.78836 + 4.75046i −0.263948 + 0.330980i
\(207\) 0 0
\(208\) 14.5194 + 6.99216i 1.00674 + 0.484819i
\(209\) −10.4879 + 5.05072i −0.725464 + 0.349365i
\(210\) 0 0
\(211\) 4.06518 + 17.8107i 0.279858 + 1.22614i 0.897972 + 0.440052i \(0.145040\pi\)
−0.618114 + 0.786088i \(0.712103\pi\)
\(212\) 1.88135 + 8.24275i 0.129212 + 0.566115i
\(213\) 0 0
\(214\) 1.60872 7.04826i 0.109970 0.481809i
\(215\) 2.35690 0.160739
\(216\) 0 0
\(217\) 2.15183 1.03627i 0.146076 0.0703465i
\(218\) −2.19202 + 1.05562i −0.148462 + 0.0714957i
\(219\) 0 0
\(220\) −6.15883 −0.415228
\(221\) −5.65279 + 24.7665i −0.380248 + 1.66598i
\(222\) 0 0
\(223\) 0.404617 + 1.77274i 0.0270951 + 0.118712i 0.986667 0.162752i \(-0.0520372\pi\)
−0.959572 + 0.281464i \(0.909180\pi\)
\(224\) −0.369510 1.61893i −0.0246889 0.108169i
\(225\) 0 0
\(226\) −4.28017 + 2.06122i −0.284713 + 0.137110i
\(227\) −12.4840 6.01199i −0.828594 0.399030i −0.0290066 0.999579i \(-0.509234\pi\)
−0.799588 + 0.600549i \(0.794949\pi\)
\(228\) 0 0
\(229\) −7.96346 + 9.98586i −0.526240 + 0.659884i −0.971921 0.235308i \(-0.924390\pi\)
0.445681 + 0.895192i \(0.352962\pi\)
\(230\) −0.637063 0.306794i −0.0420067 0.0202294i
\(231\) 0 0
\(232\) −0.943550 + 9.06283i −0.0619471 + 0.595004i
\(233\) 8.86592 0.580826 0.290413 0.956901i \(-0.406207\pi\)
0.290413 + 0.956901i \(0.406207\pi\)
\(234\) 0 0
\(235\) −2.78083 + 3.48705i −0.181401 + 0.227470i
\(236\) −14.0368 17.6016i −0.913720 1.14577i
\(237\) 0 0
\(238\) 0.643104 0.309703i 0.0416862 0.0200750i
\(239\) 15.9393 19.9872i 1.03103 1.29287i 0.0757593 0.997126i \(-0.475862\pi\)
0.955268 0.295741i \(-0.0955666\pi\)
\(240\) 0 0
\(241\) −2.16541 9.48727i −0.139486 0.611129i −0.995548 0.0942554i \(-0.969953\pi\)
0.856062 0.516873i \(-0.172904\pi\)
\(242\) 3.71648 + 4.66032i 0.238904 + 0.299577i
\(243\) 0 0
\(244\) 2.96077 0.189544
\(245\) −1.05831 + 4.63676i −0.0676130 + 0.296232i
\(246\) 0 0
\(247\) −12.0036 + 5.78065i −0.763774 + 0.367814i
\(248\) −2.51961 + 11.0392i −0.159996 + 0.700987i
\(249\) 0 0
\(250\) −0.652497 + 2.85878i −0.0412676 + 0.180805i
\(251\) 6.08546 + 7.63092i 0.384111 + 0.481660i 0.935871 0.352343i \(-0.114615\pi\)
−0.551760 + 0.834003i \(0.686044\pi\)
\(252\) 0 0
\(253\) −2.52326 11.0551i −0.158636 0.695030i
\(254\) −0.287700 + 0.360765i −0.0180519 + 0.0226364i
\(255\) 0 0
\(256\) −2.16368 1.04197i −0.135230 0.0651233i
\(257\) −10.1984 12.7883i −0.636156 0.797714i 0.354360 0.935109i \(-0.384699\pi\)
−0.990516 + 0.137394i \(0.956127\pi\)
\(258\) 0 0
\(259\) 1.58815 + 0.764811i 0.0986826 + 0.0475230i
\(260\) −7.04892 −0.437155
\(261\) 0 0
\(262\) −3.57002 −0.220557
\(263\) 21.3741 + 10.2932i 1.31798 + 0.634708i 0.954867 0.297035i \(-0.0959979\pi\)
0.363118 + 0.931743i \(0.381712\pi\)
\(264\) 0 0
\(265\) −2.02446 2.53859i −0.124362 0.155944i
\(266\) 0.337282 + 0.162426i 0.0206801 + 0.00995899i
\(267\) 0 0
\(268\) 2.60992 3.27273i 0.159426 0.199914i
\(269\) 5.64191 + 24.7188i 0.343993 + 1.50713i 0.790561 + 0.612383i \(0.209789\pi\)
−0.446568 + 0.894750i \(0.647354\pi\)
\(270\) 0 0
\(271\) −0.750332 0.940887i −0.0455794 0.0571548i 0.758519 0.651651i \(-0.225923\pi\)
−0.804099 + 0.594496i \(0.797352\pi\)
\(272\) 2.85086 12.4904i 0.172858 0.757342i
\(273\) 0 0
\(274\) 1.70655 7.47690i 0.103097 0.451696i
\(275\) −20.1184 + 9.68851i −1.21319 + 0.584239i
\(276\) 0 0
\(277\) −2.37316 + 10.3975i −0.142589 + 0.624724i 0.852239 + 0.523153i \(0.175244\pi\)
−0.994828 + 0.101572i \(0.967613\pi\)
\(278\) −7.41789 −0.444896
\(279\) 0 0
\(280\) 0.260553 + 0.326723i 0.0155710 + 0.0195255i
\(281\) −3.62253 15.8713i −0.216102 0.946805i −0.960327 0.278876i \(-0.910038\pi\)
0.744225 0.667929i \(-0.232819\pi\)
\(282\) 0 0
\(283\) −3.27144 + 4.10225i −0.194467 + 0.243854i −0.869499 0.493935i \(-0.835558\pi\)
0.675032 + 0.737788i \(0.264130\pi\)
\(284\) 11.9085 5.73483i 0.706640 0.340300i
\(285\) 0 0
\(286\) 7.74698 + 9.71441i 0.458089 + 0.574425i
\(287\) −0.692021 + 0.867767i −0.0408487 + 0.0512227i
\(288\) 0 0
\(289\) 3.19567 0.187981
\(290\) −0.560999 1.56075i −0.0329430 0.0916506i
\(291\) 0 0
\(292\) 9.13318 + 4.39831i 0.534479 + 0.257391i
\(293\) −4.21714 + 5.28813i −0.246368 + 0.308936i −0.889604 0.456732i \(-0.849020\pi\)
0.643236 + 0.765668i \(0.277591\pi\)
\(294\) 0 0
\(295\) 7.78986 + 3.75140i 0.453543 + 0.218415i
\(296\) −7.52930 + 3.62592i −0.437632 + 0.210752i
\(297\) 0 0
\(298\) 1.84266 + 8.07321i 0.106742 + 0.467669i
\(299\) −2.88793 12.6528i −0.167013 0.731733i
\(300\) 0 0
\(301\) 0.270479 1.18505i 0.0155901 0.0683049i
\(302\) −3.35019 −0.192782
\(303\) 0 0
\(304\) 6.05376 2.91534i 0.347207 0.167206i
\(305\) −1.02446 + 0.493353i −0.0586603 + 0.0282493i
\(306\) 0 0
\(307\) 4.51812 0.257863 0.128931 0.991654i \(-0.458845\pi\)
0.128931 + 0.991654i \(0.458845\pi\)
\(308\) −0.706791 + 3.09666i −0.0402732 + 0.176448i
\(309\) 0 0
\(310\) −0.458615 2.00933i −0.0260476 0.114122i
\(311\) −2.80745 12.3002i −0.159196 0.697482i −0.990018 0.140944i \(-0.954986\pi\)
0.830822 0.556538i \(-0.187871\pi\)
\(312\) 0 0
\(313\) −17.3349 + 8.34804i −0.979826 + 0.471859i −0.854045 0.520199i \(-0.825858\pi\)
−0.125781 + 0.992058i \(0.540144\pi\)
\(314\) 7.31336 + 3.52193i 0.412717 + 0.198754i
\(315\) 0 0
\(316\) 5.24094 6.57193i 0.294826 0.369700i
\(317\) 2.58426 + 1.24451i 0.145147 + 0.0698989i 0.505047 0.863092i \(-0.331475\pi\)
−0.359901 + 0.932991i \(0.617189\pi\)
\(318\) 0 0
\(319\) 13.9596 22.6395i 0.781586 1.26757i
\(320\) 2.51275 0.140467
\(321\) 0 0
\(322\) −0.227365 + 0.285107i −0.0126706 + 0.0158884i
\(323\) 6.60388 + 8.28100i 0.367449 + 0.460767i
\(324\) 0 0
\(325\) −23.0260 + 11.0887i −1.27725 + 0.615091i
\(326\) 3.50753 4.39831i 0.194264 0.243600i
\(327\) 0 0
\(328\) −1.17092 5.13011i −0.0646530 0.283263i
\(329\) 1.43416 + 1.79838i 0.0790676 + 0.0991477i
\(330\) 0 0
\(331\) 3.13408 0.172265 0.0861323 0.996284i \(-0.472549\pi\)
0.0861323 + 0.996284i \(0.472549\pi\)
\(332\) −1.78621 + 7.82589i −0.0980309 + 0.429501i
\(333\) 0 0
\(334\) −0.319396 + 0.153813i −0.0174766 + 0.00841628i
\(335\) −0.357724 + 1.56729i −0.0195445 + 0.0856302i
\(336\) 0 0
\(337\) −1.10872 + 4.85762i −0.0603958 + 0.264611i −0.996107 0.0881567i \(-0.971902\pi\)
0.935711 + 0.352768i \(0.114760\pi\)
\(338\) 5.25936 + 6.59502i 0.286071 + 0.358722i
\(339\) 0 0
\(340\) 1.24698 + 5.46337i 0.0676270 + 0.296293i
\(341\) 20.6075 25.8410i 1.11596 1.39937i
\(342\) 0 0
\(343\) 4.46077 + 2.14819i 0.240859 + 0.115992i
\(344\) 3.59299 + 4.50547i 0.193721 + 0.242919i
\(345\) 0 0
\(346\) −3.67025 1.76750i −0.197314 0.0950214i
\(347\) −20.1172 −1.07995 −0.539974 0.841682i \(-0.681566\pi\)
−0.539974 + 0.841682i \(0.681566\pi\)
\(348\) 0 0
\(349\) 20.4892 1.09676 0.548380 0.836229i \(-0.315245\pi\)
0.548380 + 0.836229i \(0.315245\pi\)
\(350\) 0.646989 + 0.311573i 0.0345830 + 0.0166543i
\(351\) 0 0
\(352\) −14.3279 17.9666i −0.763679 0.957623i
\(353\) 16.2153 + 7.80887i 0.863052 + 0.415624i 0.812406 0.583092i \(-0.198157\pi\)
0.0506467 + 0.998717i \(0.483872\pi\)
\(354\) 0 0
\(355\) −3.16487 + 3.96863i −0.167974 + 0.210633i
\(356\) 2.27748 + 9.97829i 0.120706 + 0.528848i
\(357\) 0 0
\(358\) −0.945042 1.18505i −0.0499470 0.0626316i
\(359\) 5.25786 23.0362i 0.277499 1.21580i −0.623444 0.781868i \(-0.714267\pi\)
0.900943 0.433937i \(-0.142876\pi\)
\(360\) 0 0
\(361\) 2.99180 13.1079i 0.157463 0.689892i
\(362\) −5.08211 + 2.44741i −0.267110 + 0.128633i
\(363\) 0 0
\(364\) −0.808938 + 3.54419i −0.0423999 + 0.185766i
\(365\) −3.89307 −0.203772
\(366\) 0 0
\(367\) −18.4822 23.1759i −0.964762 1.20977i −0.977732 0.209857i \(-0.932700\pi\)
0.0129705 0.999916i \(-0.495871\pi\)
\(368\) 1.45646 + 6.38117i 0.0759232 + 0.332641i
\(369\) 0 0
\(370\) 0.948394 1.18925i 0.0493047 0.0618261i
\(371\) −1.50873 + 0.726566i −0.0783293 + 0.0377214i
\(372\) 0 0
\(373\) −15.7044 19.6927i −0.813143 1.01965i −0.999310 0.0371310i \(-0.988178\pi\)
0.186167 0.982518i \(-0.440393\pi\)
\(374\) 6.15883 7.72293i 0.318466 0.399343i
\(375\) 0 0
\(376\) −10.9051 −0.562390
\(377\) 15.9770 25.9114i 0.822859 1.33451i
\(378\) 0 0
\(379\) 24.2424 + 11.6745i 1.24525 + 0.599681i 0.936234 0.351376i \(-0.114286\pi\)
0.309016 + 0.951057i \(0.400000\pi\)
\(380\) −1.83244 + 2.29780i −0.0940020 + 0.117875i
\(381\) 0 0
\(382\) −4.27844 2.06039i −0.218904 0.105419i
\(383\) −17.7213 + 8.53414i −0.905517 + 0.436074i −0.827879 0.560907i \(-0.810452\pi\)
−0.0776388 + 0.996982i \(0.524738\pi\)
\(384\) 0 0
\(385\) −0.271438 1.18925i −0.0138338 0.0606097i
\(386\) −2.25086 9.86168i −0.114566 0.501946i
\(387\) 0 0
\(388\) −0.0724165 + 0.317278i −0.00367639 + 0.0161073i
\(389\) −24.8552 −1.26021 −0.630103 0.776511i \(-0.716988\pi\)
−0.630103 + 0.776511i \(0.716988\pi\)
\(390\) 0 0
\(391\) −9.29590 + 4.47667i −0.470114 + 0.226395i
\(392\) −10.4770 + 5.04547i −0.529170 + 0.254835i
\(393\) 0 0
\(394\) 8.70410 0.438506
\(395\) −0.718341 + 3.14726i −0.0361436 + 0.158356i
\(396\) 0 0
\(397\) 0.888887 + 3.89447i 0.0446120 + 0.195458i 0.992323 0.123671i \(-0.0394668\pi\)
−0.947711 + 0.319129i \(0.896610\pi\)
\(398\) 0.0866540 + 0.379656i 0.00434357 + 0.0190304i
\(399\) 0 0
\(400\) 11.6126 5.59234i 0.580630 0.279617i
\(401\) −22.4405 10.8068i −1.12062 0.539664i −0.220539 0.975378i \(-0.570782\pi\)
−0.900085 + 0.435714i \(0.856496\pi\)
\(402\) 0 0
\(403\) 23.5858 29.5756i 1.17489 1.47327i
\(404\) −5.24309 2.52494i −0.260854 0.125621i
\(405\) 0 0
\(406\) −0.849126 + 0.102957i −0.0421414 + 0.00510965i
\(407\) 24.3937 1.20915
\(408\) 0 0
\(409\) 0.176587 0.221434i 0.00873169 0.0109492i −0.777446 0.628949i \(-0.783485\pi\)
0.786178 + 0.618000i \(0.212057\pi\)
\(410\) 0.597171 + 0.748828i 0.0294922 + 0.0369820i
\(411\) 0 0
\(412\) −22.1652 + 10.6742i −1.09200 + 0.525879i
\(413\) 2.78017 3.48622i 0.136803 0.171546i
\(414\) 0 0
\(415\) −0.685981 3.00548i −0.0336735 0.147533i
\(416\) −16.3986 20.5632i −0.804006 1.00819i
\(417\) 0 0
\(418\) 5.18060 0.253392
\(419\) −5.89426 + 25.8245i −0.287954 + 1.26161i 0.599374 + 0.800469i \(0.295416\pi\)
−0.887328 + 0.461139i \(0.847441\pi\)
\(420\) 0 0
\(421\) 15.8409 7.62859i 0.772040 0.371795i −0.00602261 0.999982i \(-0.501917\pi\)
0.778062 + 0.628187i \(0.216203\pi\)
\(422\) 1.80917 7.92651i 0.0880693 0.385857i
\(423\) 0 0
\(424\) 1.76659 7.73995i 0.0857934 0.375885i
\(425\) 12.6679 + 15.8850i 0.614481 + 0.770535i
\(426\) 0 0
\(427\) 0.130490 + 0.571714i 0.00631486 + 0.0276672i
\(428\) 18.2506 22.8856i 0.882177 1.10622i
\(429\) 0 0
\(430\) −0.945042 0.455108i −0.0455740 0.0219473i
\(431\) 17.3300 + 21.7312i 0.834759 + 1.04675i 0.998186 + 0.0601992i \(0.0191736\pi\)
−0.163428 + 0.986555i \(0.552255\pi\)
\(432\) 0 0
\(433\) −5.29374 2.54933i −0.254401 0.122513i 0.302337 0.953201i \(-0.402233\pi\)
−0.556738 + 0.830688i \(0.687947\pi\)
\(434\) −1.06292 −0.0510217
\(435\) 0 0
\(436\) −9.85086 −0.471770
\(437\) −4.87531 2.34783i −0.233218 0.112312i
\(438\) 0 0
\(439\) −9.81431 12.3068i −0.468412 0.587370i 0.490370 0.871515i \(-0.336862\pi\)
−0.958781 + 0.284145i \(0.908290\pi\)
\(440\) 5.21044 + 2.50922i 0.248398 + 0.119622i
\(441\) 0 0
\(442\) 7.04892 8.83906i 0.335283 0.420431i
\(443\) 1.49947 + 6.56960i 0.0712419 + 0.312131i 0.997976 0.0635859i \(-0.0202537\pi\)
−0.926735 + 0.375717i \(0.877397\pi\)
\(444\) 0 0
\(445\) −2.45071 3.07310i −0.116175 0.145679i
\(446\) 0.180071 0.788944i 0.00852663 0.0373576i
\(447\) 0 0
\(448\) 0.288364 1.26341i 0.0136239 0.0596903i
\(449\) 11.1000 5.34547i 0.523841 0.252269i −0.153224 0.988191i \(-0.548966\pi\)
0.677065 + 0.735923i \(0.263251\pi\)
\(450\) 0 0
\(451\) −3.41789 + 14.9748i −0.160942 + 0.705135i
\(452\) −19.2349 −0.904733
\(453\) 0 0
\(454\) 3.84481 + 4.82124i 0.180446 + 0.226272i
\(455\) −0.310667 1.36112i −0.0145643 0.0638103i
\(456\) 0 0
\(457\) 8.51842 10.6818i 0.398475 0.499672i −0.541602 0.840635i \(-0.682182\pi\)
0.940076 + 0.340964i \(0.110753\pi\)
\(458\) 5.12133 2.46630i 0.239304 0.115243i
\(459\) 0 0
\(460\) −1.78501 2.23833i −0.0832266 0.104363i
\(461\) −7.23759 + 9.07565i −0.337088 + 0.422695i −0.921268 0.388929i \(-0.872845\pi\)
0.584180 + 0.811624i \(0.301416\pi\)
\(462\) 0 0
\(463\) −7.24267 −0.336595 −0.168298 0.985736i \(-0.553827\pi\)
−0.168298 + 0.985736i \(0.553827\pi\)
\(464\) −8.05765 + 13.0678i −0.374067 + 0.606659i
\(465\) 0 0
\(466\) −3.55496 1.71198i −0.164680 0.0793058i
\(467\) 1.28650 1.61322i 0.0595323 0.0746511i −0.751174 0.660104i \(-0.770512\pi\)
0.810706 + 0.585453i \(0.199083\pi\)
\(468\) 0 0
\(469\) 0.746980 + 0.359726i 0.0344923 + 0.0166106i
\(470\) 1.78836 0.861231i 0.0824911 0.0397256i
\(471\) 0 0
\(472\) 4.70410 + 20.6100i 0.216524 + 0.948653i
\(473\) −3.74309 16.3996i −0.172108 0.754053i
\(474\) 0 0
\(475\) −2.37113 + 10.3886i −0.108795 + 0.476662i
\(476\) 2.89008 0.132467
\(477\) 0 0
\(478\) −10.2506 + 4.93644i −0.468853 + 0.225788i
\(479\) −3.50388 + 1.68738i −0.160097 + 0.0770985i −0.512216 0.858857i \(-0.671175\pi\)
0.352120 + 0.935955i \(0.385461\pi\)
\(480\) 0 0
\(481\) 27.9191 1.27300
\(482\) −0.963697 + 4.22223i −0.0438952 + 0.192317i
\(483\) 0 0
\(484\) 5.37047 + 23.5296i 0.244112 + 1.06953i
\(485\) −0.0278111 0.121848i −0.00126284 0.00553284i
\(486\) 0 0
\(487\) −8.87047 + 4.27179i −0.401959 + 0.193573i −0.623931 0.781480i \(-0.714465\pi\)
0.221971 + 0.975053i \(0.428751\pi\)
\(488\) −2.50484 1.20627i −0.113389 0.0546053i
\(489\) 0 0
\(490\) 1.31969 1.65484i 0.0596176 0.0747581i
\(491\) 7.01961 + 3.38047i 0.316791 + 0.152558i 0.585521 0.810657i \(-0.300890\pi\)
−0.268731 + 0.963215i \(0.586604\pi\)
\(492\) 0 0
\(493\) −22.9095 7.79942i −1.03179 0.351268i
\(494\) 5.92931 0.266772
\(495\) 0 0
\(496\) −11.8949 + 14.9158i −0.534098 + 0.669738i
\(497\) 1.63222 + 2.04674i 0.0732150 + 0.0918087i
\(498\) 0 0
\(499\) 18.5286 8.92292i 0.829456 0.399445i 0.0295448 0.999563i \(-0.490594\pi\)
0.799911 + 0.600119i \(0.204880\pi\)
\(500\) −7.40246 + 9.28239i −0.331048 + 0.415121i
\(501\) 0 0
\(502\) −0.966575 4.23484i −0.0431404 0.189010i
\(503\) −5.13437 6.43830i −0.228930 0.287070i 0.654078 0.756427i \(-0.273057\pi\)
−0.883008 + 0.469358i \(0.844486\pi\)
\(504\) 0 0
\(505\) 2.23490 0.0994517
\(506\) −1.12296 + 4.92000i −0.0499215 + 0.218721i
\(507\) 0 0
\(508\) −1.68329 + 0.810631i −0.0746840 + 0.0359659i
\(509\) 1.76151 7.71769i 0.0780777 0.342081i −0.920768 0.390110i \(-0.872437\pi\)
0.998846 + 0.0480294i \(0.0152941\pi\)
\(510\) 0 0
\(511\) −0.446771 + 1.95743i −0.0197640 + 0.0865916i
\(512\) 14.2853 + 17.9132i 0.631327 + 0.791659i
\(513\) 0 0
\(514\) 1.61984 + 7.09699i 0.0714482 + 0.313035i
\(515\) 5.89075 7.38676i 0.259577 0.325500i
\(516\) 0 0
\(517\) 28.6797 + 13.8114i 1.26133 + 0.607425i
\(518\) −0.489115 0.613331i −0.0214905 0.0269482i
\(519\) 0 0
\(520\) 5.96346 + 2.87185i 0.261515 + 0.125939i
\(521\) 3.52542 0.154451 0.0772257 0.997014i \(-0.475394\pi\)
0.0772257 + 0.997014i \(0.475394\pi\)
\(522\) 0 0
\(523\) 10.0301 0.438587 0.219294 0.975659i \(-0.429625\pi\)
0.219294 + 0.975659i \(0.429625\pi\)
\(524\) −13.0233 6.27167i −0.568924 0.273979i
\(525\) 0 0
\(526\) −6.58277 8.25453i −0.287022 0.359915i
\(527\) −27.0954 13.0485i −1.18030 0.568401i
\(528\) 0 0
\(529\) −11.0538 + 13.8610i −0.480598 + 0.602651i
\(530\) 0.321552 + 1.40881i 0.0139673 + 0.0611949i
\(531\) 0 0
\(532\) 0.945042 + 1.18505i 0.0409728 + 0.0513782i
\(533\) −3.91185 + 17.1390i −0.169441 + 0.742370i
\(534\) 0 0
\(535\) −2.50149 + 10.9598i −0.108149 + 0.473831i
\(536\) −3.54138 + 1.70544i −0.152965 + 0.0736638i
\(537\) 0 0
\(538\) 2.51089 11.0009i 0.108252 0.474283i
\(539\) 33.9439 1.46207
\(540\) 0 0
\(541\) 5.12767 + 6.42990i 0.220456 + 0.276443i 0.879744 0.475447i \(-0.157714\pi\)
−0.659288 + 0.751890i \(0.729142\pi\)
\(542\) 0.119178 + 0.522153i 0.00511913 + 0.0224284i
\(543\) 0 0
\(544\) −13.0368 + 16.3477i −0.558950 + 0.700901i
\(545\) 3.40850 1.64145i 0.146004 0.0703119i
\(546\) 0 0
\(547\) 16.1253 + 20.2205i 0.689467 + 0.864564i 0.996188 0.0872352i \(-0.0278032\pi\)
−0.306721 + 0.951800i \(0.599232\pi\)
\(548\) 19.3605 24.2774i 0.827041 1.03708i
\(549\) 0 0
\(550\) 9.93767 0.423744
\(551\) −4.29321 11.9441i −0.182897 0.508837i
\(552\) 0 0
\(553\) 1.50000 + 0.722362i 0.0637865 + 0.0307180i
\(554\) 2.95928 3.71082i 0.125728 0.157658i
\(555\) 0 0
\(556\) −27.0601 13.0315i −1.14760 0.552657i
\(557\) 20.7310 9.98353i 0.878401 0.423016i 0.0603609 0.998177i \(-0.480775\pi\)
0.818040 + 0.575161i \(0.195061\pi\)
\(558\) 0 0
\(559\) −4.28405 18.7697i −0.181196 0.793872i
\(560\) 0.156678 + 0.686450i 0.00662084 + 0.0290078i
\(561\) 0 0
\(562\) −1.61218 + 7.06341i −0.0680056 + 0.297952i
\(563\) −43.1159 −1.81712 −0.908559 0.417757i \(-0.862816\pi\)
−0.908559 + 0.417757i \(0.862816\pi\)
\(564\) 0 0
\(565\) 6.65548 3.20511i 0.279998 0.134840i
\(566\) 2.10388 1.01317i 0.0884325 0.0425868i
\(567\) 0 0
\(568\) −12.4112 −0.520762
\(569\) −5.40999 + 23.7027i −0.226799 + 0.993670i 0.725433 + 0.688293i \(0.241640\pi\)
−0.952231 + 0.305377i \(0.901217\pi\)
\(570\) 0 0
\(571\) −4.11410 18.0250i −0.172170 0.754324i −0.985103 0.171967i \(-0.944988\pi\)
0.812933 0.582357i \(-0.197869\pi\)
\(572\) 11.1947 + 49.0472i 0.468074 + 2.05077i
\(573\) 0 0
\(574\) 0.445042 0.214321i 0.0185757 0.00894558i
\(575\) −9.35205 4.50371i −0.390008 0.187818i
\(576\) 0 0
\(577\) −23.6042 + 29.5987i −0.982654 + 1.23221i −0.0100007 + 0.999950i \(0.503183\pi\)
−0.972654 + 0.232260i \(0.925388\pi\)
\(578\) −1.28136 0.617072i −0.0532977 0.0256668i
\(579\) 0 0
\(580\) 0.695374 6.67909i 0.0288738 0.277334i
\(581\) −1.58987 −0.0659591
\(582\) 0 0
\(583\) −14.4487 + 18.1181i −0.598404 + 0.750374i
\(584\) −5.93482 7.44203i −0.245585 0.307953i
\(585\) 0 0
\(586\) 2.71206 1.30606i 0.112034 0.0539529i
\(587\) 9.00030 11.2860i 0.371482 0.465824i −0.560592 0.828092i \(-0.689426\pi\)
0.932074 + 0.362269i \(0.117998\pi\)
\(588\) 0 0
\(589\) −3.50969 15.3770i −0.144614 0.633596i
\(590\) −2.39911 3.00839i −0.0987697 0.123853i
\(591\) 0 0
\(592\) −14.0804 −0.578700
\(593\) −2.89320 + 12.6759i −0.118809 + 0.520538i 0.880140 + 0.474714i \(0.157449\pi\)
−0.998950 + 0.0458241i \(0.985409\pi\)
\(594\) 0 0
\(595\) −1.00000 + 0.481575i −0.0409960 + 0.0197426i
\(596\) −7.46077 + 32.6878i −0.305605 + 1.33894i
\(597\) 0 0
\(598\) −1.28525 + 5.63104i −0.0525577 + 0.230270i
\(599\) −7.54019 9.45510i −0.308084 0.386325i 0.603552 0.797323i \(-0.293751\pi\)
−0.911636 + 0.410999i \(0.865180\pi\)
\(600\) 0 0
\(601\) 4.97272 + 21.7869i 0.202842 + 0.888707i 0.969196 + 0.246289i \(0.0792113\pi\)
−0.766355 + 0.642418i \(0.777932\pi\)
\(602\) −0.337282 + 0.422938i −0.0137466 + 0.0172377i
\(603\) 0 0
\(604\) −12.2213 5.88548i −0.497279 0.239477i
\(605\) −5.77897 7.24660i −0.234949 0.294616i
\(606\) 0 0
\(607\) −37.3620 17.9926i −1.51648 0.730297i −0.523886 0.851789i \(-0.675518\pi\)
−0.992593 + 0.121491i \(0.961232\pi\)
\(608\) −10.9661 −0.444736
\(609\) 0 0
\(610\) 0.506041 0.0204890
\(611\) 32.8245 + 15.8075i 1.32794 + 0.639502i
\(612\) 0 0
\(613\) 16.0764 + 20.1591i 0.649318 + 0.814219i 0.992134 0.125184i \(-0.0399520\pi\)
−0.342816 + 0.939403i \(0.611381\pi\)
\(614\) −1.81163 0.872433i −0.0731113 0.0352085i
\(615\) 0 0
\(616\) 1.85958 2.33184i 0.0749248 0.0939527i
\(617\) 1.97272 + 8.64306i 0.0794188 + 0.347956i 0.998988 0.0449710i \(-0.0143195\pi\)
−0.919570 + 0.392927i \(0.871462\pi\)
\(618\) 0 0
\(619\) 18.3626 + 23.0259i 0.738054 + 0.925490i 0.999207 0.0398069i \(-0.0126743\pi\)
−0.261153 + 0.965297i \(0.584103\pi\)
\(620\) 1.85690 8.13559i 0.0745747 0.326733i
\(621\) 0 0
\(622\) −1.24943 + 5.47412i −0.0500976 + 0.219492i
\(623\) −1.82640 + 0.879546i −0.0731730 + 0.0352383i
\(624\) 0 0
\(625\) −4.01560 + 17.5935i −0.160624 + 0.703739i
\(626\) 8.56273 0.342235
\(627\) 0 0
\(628\) 20.4916 + 25.6956i 0.817703 + 1.02537i
\(629\) −4.93900 21.6392i −0.196931 0.862811i
\(630\) 0 0
\(631\) 14.8210 18.5850i 0.590015 0.739856i −0.393769 0.919209i \(-0.628829\pi\)
0.983785 + 0.179353i \(0.0574005\pi\)
\(632\) −7.11141 + 3.42467i −0.282877 + 0.136226i
\(633\) 0 0
\(634\) −0.795897 0.998023i −0.0316091 0.0396366i
\(635\) 0.447362 0.560974i 0.0177530 0.0222616i
\(636\) 0 0
\(637\) 38.8495 1.53927
\(638\) −9.96897 + 6.38220i −0.394675 + 0.252674i
\(639\) 0 0
\(640\) −6.80947 3.27927i −0.269168 0.129624i
\(641\) −17.7479 + 22.2552i −0.701001 + 0.879028i −0.997098 0.0761300i \(-0.975744\pi\)
0.296096 + 0.955158i \(0.404315\pi\)
\(642\) 0 0
\(643\) 17.4308 + 8.39423i 0.687404 + 0.331036i 0.744774 0.667317i \(-0.232557\pi\)
−0.0573702 + 0.998353i \(0.518272\pi\)
\(644\) −1.33028 + 0.640630i −0.0524204 + 0.0252443i
\(645\) 0 0
\(646\) −1.04892 4.59561i −0.0412691 0.180812i
\(647\) 5.05443 + 22.1449i 0.198710 + 0.870605i 0.971706 + 0.236194i \(0.0759002\pi\)
−0.772996 + 0.634411i \(0.781243\pi\)
\(648\) 0 0
\(649\) 13.7313 60.1605i 0.538999 2.36151i
\(650\) 11.3739 0.446120
\(651\) 0 0
\(652\) 20.5221 9.88291i 0.803706 0.387044i
\(653\) 20.6603 9.94949i 0.808501 0.389354i 0.0164928 0.999864i \(-0.494750\pi\)
0.792008 + 0.610510i \(0.209036\pi\)
\(654\) 0 0
\(655\) 5.55124 0.216905
\(656\) 1.97285 8.64363i 0.0770270 0.337477i
\(657\) 0 0
\(658\) −0.227792 0.998023i −0.00888027 0.0389070i
\(659\) −4.26755 18.6974i −0.166240 0.728346i −0.987478 0.157759i \(-0.949573\pi\)
0.821237 0.570587i \(-0.193284\pi\)
\(660\) 0 0
\(661\) 3.05107 1.46932i 0.118673 0.0571499i −0.373605 0.927588i \(-0.621879\pi\)
0.492278 + 0.870438i \(0.336164\pi\)
\(662\) −1.25667 0.605180i −0.0488418 0.0235210i
\(663\) 0 0
\(664\) 4.69955 5.89305i 0.182378 0.228695i
\(665\) −0.524459 0.252566i −0.0203376 0.00979409i
\(666\) 0 0
\(667\) 12.2739 1.48821i 0.475247 0.0576238i
\(668\) −1.43535 −0.0555355
\(669\) 0 0
\(670\) 0.446074 0.559360i 0.0172334 0.0216099i
\(671\) 5.05980 + 6.34479i 0.195332 + 0.244938i
\(672\) 0 0
\(673\) −4.29805 + 2.06983i −0.165678 + 0.0797862i −0.514885 0.857259i \(-0.672165\pi\)
0.349207 + 0.937046i \(0.386451\pi\)
\(674\) 1.38255 1.73366i 0.0532539 0.0667782i
\(675\) 0 0
\(676\) 7.59999 + 33.2977i 0.292307 + 1.28068i
\(677\) 26.8662 + 33.6892i 1.03255 + 1.29478i 0.954622 + 0.297821i \(0.0962599\pi\)
0.0779309 + 0.996959i \(0.475169\pi\)
\(678\) 0 0
\(679\) −0.0644568 −0.00247362
\(680\) 1.17092 5.13011i 0.0449025 0.196731i
\(681\) 0 0
\(682\) −13.2528 + 6.38220i −0.507475 + 0.244387i
\(683\) 5.21432 22.8454i 0.199521 0.874157i −0.771702 0.635984i \(-0.780594\pi\)
0.971223 0.238173i \(-0.0765484\pi\)
\(684\) 0 0
\(685\) −2.65362 + 11.6263i −0.101390 + 0.444217i
\(686\) −1.37382 1.72272i −0.0524528 0.0657737i
\(687\) 0 0
\(688\) 2.16056 + 9.46604i 0.0823707 + 0.360890i
\(689\) −16.5368 + 20.7365i −0.630003 + 0.789999i
\(690\) 0 0
\(691\) −38.8657 18.7167i −1.47852 0.712018i −0.491243 0.871023i \(-0.663457\pi\)
−0.987278 + 0.159005i \(0.949171\pi\)
\(692\) −10.2838 12.8955i −0.390932 0.490213i
\(693\) 0 0
\(694\) 8.06638 + 3.88456i 0.306195 + 0.147456i
\(695\) 11.5345 0.437529
\(696\) 0 0
\(697\) 13.9758 0.529373
\(698\) −8.21552 3.95639i −0.310962 0.149751i
\(699\) 0 0
\(700\) 1.81282 + 2.27321i 0.0685183 + 0.0859192i
\(701\) 3.81186 + 1.83570i 0.143972 + 0.0693333i 0.504483 0.863422i \(-0.331683\pi\)
−0.360511 + 0.932755i \(0.617398\pi\)
\(702\) 0 0
\(703\) 7.25786 9.10107i 0.273736 0.343254i
\(704\) −3.99061 17.4840i −0.150402 0.658953i
\(705\) 0 0
\(706\) −4.99396 6.26223i −0.187950 0.235682i
\(707\) 0.256478 1.12370i 0.00964586 0.0422613i
\(708\) 0 0
\(709\) −3.18287 + 13.9450i −0.119535 + 0.523717i 0.879336 + 0.476203i \(0.157987\pi\)
−0.998871 + 0.0475144i \(0.984870\pi\)
\(710\) 2.03534 0.980170i 0.0763851 0.0367851i
\(711\) 0 0
\(712\) 2.13856 9.36962i 0.0801457 0.351141i
\(713\) 15.3642 0.575393
\(714\) 0 0
\(715\) −12.0462 15.1055i −0.450503 0.564913i
\(716\) −1.36563 5.98319i −0.0510358 0.223602i
\(717\) 0 0
\(718\) −6.55645 + 8.22153i −0.244685 + 0.306825i
\(719\) −21.1194 + 10.1706i −0.787620 + 0.379298i −0.784051 0.620696i \(-0.786850\pi\)
−0.00356825 + 0.999994i \(0.501136\pi\)
\(720\) 0 0
\(721\) −3.03803 3.80957i −0.113142 0.141876i
\(722\) −3.73072 + 4.67817i −0.138843 + 0.174104i
\(723\) 0 0
\(724\) −22.8388 −0.848796
\(725\) −8.23543 22.9118i −0.305856 0.850922i
\(726\) 0 0
\(727\) −46.8482 22.5609i −1.73750 0.836738i −0.983741 0.179592i \(-0.942522\pi\)
−0.753763 0.657146i \(-0.771763\pi\)
\(728\) 2.12833 2.66885i 0.0788813 0.0989140i
\(729\) 0 0
\(730\) 1.56100 + 0.751737i 0.0577752 + 0.0278231i
\(731\) −13.7899 + 6.64084i −0.510036 + 0.245621i
\(732\) 0 0
\(733\) −7.60806 33.3331i −0.281010 1.23119i −0.896501 0.443041i \(-0.853899\pi\)
0.615491 0.788144i \(-0.288958\pi\)
\(734\) 2.93559 + 12.8617i 0.108355 + 0.474733i
\(735\) 0 0
\(736\) 2.37704 10.4145i 0.0876190 0.383884i
\(737\) 11.4735 0.422632
\(738\) 0 0
\(739\) −35.8342 + 17.2569i −1.31818 + 0.634804i −0.954915 0.296881i \(-0.904054\pi\)
−0.363269 + 0.931684i \(0.618339\pi\)
\(740\) 5.54892 2.67222i 0.203982 0.0982327i
\(741\) 0 0
\(742\) 0.745251 0.0273590
\(743\) 1.59730 6.99824i 0.0585993 0.256740i −0.937140 0.348954i \(-0.886537\pi\)
0.995739 + 0.0922133i \(0.0293942\pi\)
\(744\) 0 0
\(745\) −2.86526 12.5535i −0.104975 0.459925i
\(746\) 2.49439 + 10.9286i 0.0913260 + 0.400125i
\(747\) 0 0
\(748\) 36.0344 17.3533i 1.31755 0.634499i
\(749\) 5.22348 + 2.51550i 0.190862 + 0.0919142i
\(750\) 0 0
\(751\) −16.9393 + 21.2412i −0.618124 + 0.775103i −0.988079 0.153947i \(-0.950802\pi\)
0.369955 + 0.929050i \(0.379373\pi\)
\(752\) −16.5543 7.97213i −0.603673 0.290714i
\(753\) 0 0
\(754\) −11.4097 + 7.30457i −0.415517 + 0.266017i
\(755\) 5.20941 0.189590
\(756\) 0 0
\(757\) 14.7721 18.5236i 0.536901 0.673253i −0.437200 0.899364i \(-0.644030\pi\)
0.974101 + 0.226111i \(0.0726013\pi\)
\(758\) −7.46615 9.36225i −0.271183 0.340052i
\(759\) 0 0
\(760\) 2.48643 1.19740i 0.0901922 0.0434343i
\(761\) 8.88740 11.1444i 0.322168 0.403986i −0.594204 0.804315i \(-0.702533\pi\)
0.916372 + 0.400329i \(0.131104\pi\)
\(762\) 0 0
\(763\) −0.434157 1.90216i −0.0157175 0.0688630i
\(764\) −11.9879 15.0324i −0.433708 0.543852i
\(765\) 0 0
\(766\) 8.75361 0.316281
\(767\) 15.7157 68.8550i 0.567461 2.48621i
\(768\) 0 0
\(769\) 40.2793 19.3975i 1.45251 0.699491i 0.469479 0.882944i \(-0.344442\pi\)
0.983029 + 0.183453i \(0.0587275\pi\)
\(770\) −0.120801 + 0.529265i −0.00435338 + 0.0190734i
\(771\) 0 0
\(772\) 9.11356 39.9291i 0.328004 1.43708i
\(773\) −14.3083 17.9420i −0.514633 0.645329i 0.454827 0.890580i \(-0.349701\pi\)
−0.969460 + 0.245251i \(0.921130\pi\)
\(774\) 0 0
\(775\) −6.73245 29.4968i −0.241837 1.05956i
\(776\) 0.190530 0.238916i 0.00683961 0.00857660i
\(777\) 0 0
\(778\) 9.96615 + 4.79944i 0.357304 + 0.172068i
\(779\) 4.57002 + 5.73063i 0.163738 + 0.205321i
\(780\) 0 0
\(781\) 32.6405 + 15.7188i 1.16797 + 0.562464i
\(782\) 4.59179 0.164202
\(783\) 0 0
\(784\) −19.5929 −0.699745
\(785\) −11.3720 5.47645i −0.405883 0.195463i
\(786\) 0 0
\(787\) 8.93631 + 11.2058i 0.318545 + 0.399443i 0.915164 0.403082i \(-0.132061\pi\)
−0.596619 + 0.802525i \(0.703490\pi\)
\(788\) 31.7521 + 15.2910i 1.13112 + 0.544720i
\(789\) 0 0
\(790\) 0.895756 1.12324i 0.0318696 0.0399632i
\(791\) −0.847740 3.71419i −0.0301422 0.132061i
\(792\) 0 0
\(793\) 5.79105 + 7.26175i 0.205646 + 0.257872i
\(794\) 0.395592 1.73320i 0.0140390 0.0615090i
\(795\) 0 0
\(796\) −0.350855 + 1.53720i −0.0124357 + 0.0544845i
\(797\) 9.18382 4.42270i 0.325308 0.156660i −0.264101 0.964495i \(-0.585075\pi\)
0.589409 + 0.807835i \(0.299361\pi\)
\(798\) 0 0
\(799\) 6.44504 28.2376i 0.228009 0.998974i
\(800\) −21.0358 −0.743727
\(801\) 0 0
\(802\) 6.91119 + 8.66636i 0.244043 + 0.306020i
\(803\) 6.18276 + 27.0884i 0.218185 + 0.955930i
\(804\) 0 0
\(805\) 0.353543 0.443330i 0.0124608 0.0156253i
\(806\) −15.1681 + 7.30457i −0.534273 + 0.257292i
\(807\) 0 0
\(808\) 3.40701 + 4.27225i 0.119858 + 0.150297i
\(809\) −5.59448 + 7.01526i −0.196692 + 0.246643i −0.870390 0.492363i \(-0.836133\pi\)
0.673698 + 0.739006i \(0.264705\pi\)
\(810\) 0 0
\(811\) −28.5628 −1.00298 −0.501489 0.865164i \(-0.667214\pi\)
−0.501489 + 0.865164i \(0.667214\pi\)
\(812\) −3.27844 1.11613i −0.115051 0.0391685i
\(813\) 0 0
\(814\) −9.78113 4.71034i −0.342828 0.165097i
\(815\) −5.45407 + 6.83918i −0.191048 + 0.239566i
\(816\) 0 0
\(817\) −7.23221 3.48285i −0.253023 0.121849i
\(818\) −0.113564 + 0.0546896i −0.00397068 + 0.00191218i
\(819\) 0 0
\(820\) 0.862937 + 3.78077i 0.0301351 + 0.132030i
\(821\) 2.52230 + 11.0509i 0.0880290 + 0.385680i 0.999680 0.0252844i \(-0.00804914\pi\)
−0.911651 + 0.410965i \(0.865192\pi\)
\(822\) 0 0
\(823\) −1.26218 + 5.52996i −0.0439967 + 0.192762i −0.992150 0.125050i \(-0.960091\pi\)
0.948154 + 0.317812i \(0.102948\pi\)
\(824\) 23.1008 0.804755
\(825\) 0 0
\(826\) −1.78794 + 0.861025i −0.0622103 + 0.0299589i
\(827\) −2.61572 + 1.25966i −0.0909575 + 0.0438028i −0.478809 0.877919i \(-0.658931\pi\)
0.387852 + 0.921722i \(0.373217\pi\)
\(828\) 0 0
\(829\) −45.2137 −1.57034 −0.785169 0.619282i \(-0.787424\pi\)
−0.785169 + 0.619282i \(0.787424\pi\)
\(830\) −0.305290 + 1.33756i −0.0105968 + 0.0464275i
\(831\) 0 0
\(832\) −4.56734 20.0108i −0.158344 0.693750i
\(833\) −6.87263 30.1109i −0.238122 1.04328i
\(834\) 0 0
\(835\) 0.496648 0.239173i 0.0171872 0.00827692i
\(836\) 18.8986 + 9.10107i 0.653621 + 0.314767i
\(837\) 0 0
\(838\) 7.35003 9.21664i 0.253902 0.318384i
\(839\) −41.1073 19.7962i −1.41918 0.683442i −0.442229 0.896902i \(-0.645812\pi\)
−0.976952 + 0.213460i \(0.931527\pi\)
\(840\) 0 0
\(841\) 22.9758 + 17.6949i 0.792270 + 0.610170i
\(842\) −7.82477 −0.269659
\(843\) 0 0
\(844\) 20.5248 25.7372i 0.706491 0.885912i
\(845\) −8.17808 10.2550i −0.281334 0.352782i
\(846\) 0 0
\(847\) −4.30678 + 2.07404i −0.147983 + 0.0712648i
\(848\) 8.33997 10.4580i 0.286396 0.359129i
\(849\) 0 0
\(850\) −2.01208 8.81551i −0.0690138 0.302369i
\(851\) 7.07002 + 8.86553i 0.242357 + 0.303906i
\(852\) 0 0
\(853\) −36.9288 −1.26442 −0.632210 0.774797i \(-0.717852\pi\)
−0.632210 + 0.774797i \(0.717852\pi\)
\(854\) 0.0580735 0.254437i 0.00198724 0.00870665i
\(855\) 0 0
\(856\) −24.7642 + 11.9258i −0.846423 + 0.407616i
\(857\) 7.91066 34.6589i 0.270223 1.18392i −0.639527 0.768768i \(-0.720870\pi\)
0.909750 0.415156i \(-0.136273\pi\)
\(858\) 0 0
\(859\) −9.43070 + 41.3186i −0.321771 + 1.40977i 0.512628 + 0.858611i \(0.328672\pi\)
−0.834399 + 0.551161i \(0.814185\pi\)
\(860\) −2.64795 3.32042i −0.0902943 0.113225i
\(861\) 0 0
\(862\) −2.75259 12.0599i −0.0937537 0.410762i
\(863\) −31.0371 + 38.9193i −1.05652 + 1.32483i −0.112966 + 0.993599i \(0.536035\pi\)
−0.943550 + 0.331231i \(0.892536\pi\)
\(864\) 0 0
\(865\) 5.70709 + 2.74839i 0.194047 + 0.0934480i
\(866\) 1.63036 + 2.04440i 0.0554018 + 0.0694717i
\(867\) 0 0
\(868\) −3.87747 1.86729i −0.131610 0.0633800i
\(869\) 23.0398 0.781572
\(870\) 0 0
\(871\) 13.1317 0.444950
\(872\) 8.33393 + 4.01341i 0.282222 + 0.135911i
\(873\) 0 0
\(874\) 1.50149 + 1.88281i 0.0507887 + 0.0636870i
\(875\) −2.11865 1.02029i −0.0716233 0.0344920i
\(876\) 0 0
\(877\) 13.6501 17.1167i 0.460931 0.577990i −0.495993 0.868326i \(-0.665196\pi\)
0.956925 + 0.290337i \(0.0937674\pi\)
\(878\) 1.55884 + 6.82974i 0.0526084 + 0.230492i
\(879\) 0 0
\(880\) 6.07524 + 7.61811i 0.204796 + 0.256806i
\(881\) −7.46130 + 32.6901i −0.251378 + 1.10136i 0.678822 + 0.734303i \(0.262491\pi\)
−0.930199 + 0.367055i \(0.880366\pi\)
\(882\) 0 0
\(883\) 3.58868 15.7230i 0.120769 0.529122i −0.877961 0.478732i \(-0.841096\pi\)
0.998730 0.0503898i \(-0.0160464\pi\)
\(884\) 41.2422 19.8612i 1.38713 0.668004i
\(885\) 0 0
\(886\) 0.667326 2.92375i 0.0224192 0.0982252i
\(887\) −52.7391 −1.77081 −0.885403 0.464823i \(-0.846118\pi\)
−0.885403 + 0.464823i \(0.846118\pi\)
\(888\) 0 0
\(889\) −0.230718 0.289311i −0.00773802 0.00970317i
\(890\) 0.389256 + 1.70544i 0.0130479 + 0.0571665i
\(891\) 0 0
\(892\) 2.04288 2.56169i 0.0684006 0.0857716i
\(893\) 13.6860 6.59082i 0.457984 0.220553i
\(894\) 0 0
\(895\) 1.46950 + 1.84270i 0.0491200 + 0.0615945i
\(896\) −2.43027 + 3.04746i −0.0811897 + 0.101809i
\(897\) 0 0
\(898\) −5.48294 −0.182968
\(899\) 25.6972 + 25.2659i 0.857048 + 0.842666i
\(900\) 0 0
\(901\) 18.9976 + 9.14877i 0.632902 + 0.304790i
\(902\) 4.26205 5.34444i 0.141911 0.177950i
\(903\) 0 0
\(904\) 16.2729 + 7.83663i 0.541230 + 0.260642i
\(905\) 7.90246 3.80562i 0.262687 0.126503i
\(906\) 0 0
\(907\) 6.64084 + 29.0954i 0.220506 + 0.966098i 0.957099 + 0.289762i \(0.0935761\pi\)
−0.736593 + 0.676336i \(0.763567\pi\)
\(908\) 5.55592 + 24.3421i 0.184380 + 0.807820i
\(909\) 0 0
\(910\) −0.138260 + 0.605756i −0.00458327 + 0.0200806i
\(911\) 9.34050 0.309465 0.154732 0.987956i \(-0.450548\pi\)
0.154732 + 0.987956i \(0.450548\pi\)
\(912\) 0 0
\(913\) −19.8230 + 9.54627i −0.656047 + 0.315936i
\(914\) −5.47823 + 2.63818i −0.181204 + 0.0872631i
\(915\) 0 0
\(916\) 23.0151 0.760439
\(917\) 0.637063 2.79116i 0.0210377 0.0921721i
\(918\) 0 0
\(919\) 4.09903 + 17.9590i 0.135215 + 0.592414i 0.996448 + 0.0842049i \(0.0268350\pi\)
−0.861234 + 0.508209i \(0.830308\pi\)
\(920\) 0.598203 + 2.62090i 0.0197222 + 0.0864085i
\(921\) 0 0
\(922\) 4.65452 2.24150i 0.153289 0.0738199i
\(923\) 37.3577 + 17.9905i 1.22964 + 0.592166i
\(924\) 0 0
\(925\) 13.9224 17.4581i 0.457765 0.574019i
\(926\) 2.90408 + 1.39853i 0.0954341 + 0.0459587i
\(927\) 0 0
\(928\) 21.1020 13.5097i 0.692708 0.443476i
\(929\) 4.84654 0.159010 0.0795050 0.996834i \(-0.474666\pi\)
0.0795050 + 0.996834i \(0.474666\pi\)
\(930\) 0 0
\(931\) 10.0993 12.6642i 0.330992 0.415051i
\(932\) −9.96077 12.4904i −0.326276 0.409137i
\(933\) 0 0
\(934\) −0.827356 + 0.398434i −0.0270719 + 0.0130371i
\(935\) −9.57673 + 12.0088i −0.313193 + 0.392731i
\(936\) 0 0
\(937\) 9.94989 + 43.5933i 0.325049 + 1.42413i 0.828443 + 0.560074i \(0.189227\pi\)
−0.503394 + 0.864057i \(0.667916\pi\)
\(938\) −0.230054 0.288478i −0.00751152 0.00941915i
\(939\) 0 0
\(940\) 8.03684 0.262133
\(941\) 3.02297 13.2445i 0.0985459 0.431758i −0.901453 0.432876i \(-0.857499\pi\)
0.999999 + 0.00111821i \(0.000355936\pi\)
\(942\) 0 0
\(943\) −6.43296 + 3.09795i −0.209486 + 0.100883i
\(944\) −7.92585 + 34.7254i −0.257965 + 1.13022i
\(945\) 0 0
\(946\) −1.66583 + 7.29850i −0.0541609 + 0.237295i
\(947\) −9.35958 11.7365i −0.304146 0.381387i 0.606147 0.795353i \(-0.292715\pi\)
−0.910292 + 0.413966i \(0.864143\pi\)
\(948\) 0 0
\(949\) 7.07630 + 31.0033i 0.229706 + 1.00641i
\(950\) 2.95675 3.70765i 0.0959298 0.120292i
\(951\) 0 0
\(952\) −2.44504 1.17747i −0.0792443 0.0381620i
\(953\) −32.3247 40.5339i −1.04710 1.31302i −0.948114 0.317931i \(-0.897012\pi\)
−0.0989849 0.995089i \(-0.531560\pi\)
\(954\) 0 0
\(955\) 6.65279 + 3.20382i 0.215279 + 0.103673i
\(956\) −46.0659 −1.48988
\(957\) 0 0
\(958\) 1.73078 0.0559188
\(959\) 5.54115 + 2.66848i 0.178933 + 0.0861696i
\(960\) 0 0
\(961\) 8.59365 + 10.7761i 0.277215 + 0.347616i
\(962\) −11.1947 5.39109i −0.360932 0.173816i
\(963\) 0 0
\(964\) −10.9330 + 13.7095i −0.352127 + 0.441553i
\(965\) 3.50000 + 15.3345i 0.112669 + 0.493635i
\(966\) 0 0
\(967\) −25.9527 32.5437i −0.834583 1.04653i −0.998198 0.0600094i \(-0.980887\pi\)
0.163615 0.986524i \(-0.447685\pi\)
\(968\) 5.04288 22.0943i 0.162084 0.710137i
\(969\) 0 0
\(970\) −0.0123771 + 0.0542276i −0.000397404 + 0.00174114i
\(971\) −50.2497 + 24.1990i −1.61259 + 0.776583i −0.999906 0.0137446i \(-0.995625\pi\)
−0.612685 + 0.790327i \(0.709911\pi\)
\(972\) 0 0
\(973\) 1.32371 5.79954i 0.0424361 0.185925i
\(974\) 4.38165 0.140397
\(975\) 0 0
\(976\) −2.92058 3.66230i −0.0934856 0.117227i
\(977\) 10.8943 + 47.7309i 0.348538 + 1.52705i 0.780501 + 0.625155i \(0.214964\pi\)
−0.431962 + 0.901892i \(0.642179\pi\)
\(978\) 0 0
\(979\) −17.4909 + 21.9329i −0.559012 + 0.700978i
\(980\) 7.72132 3.71839i 0.246649 0.118780i
\(981\) 0 0
\(982\) −2.16189 2.71092i −0.0689887 0.0865091i
\(983\) −3.22550 + 4.04466i −0.102878 + 0.129004i −0.830605 0.556862i \(-0.812005\pi\)
0.727727 + 0.685867i \(0.240577\pi\)
\(984\) 0 0
\(985\) −13.5345 −0.431246
\(986\) 7.67994 + 7.55106i 0.244579 + 0.240475i
\(987\) 0 0
\(988\) 21.6298 + 10.4164i 0.688136 + 0.331389i
\(989\) 4.87531 6.11345i 0.155026 0.194396i
\(990\) 0 0
\(991\) 15.1838 + 7.31214i 0.482330 + 0.232278i 0.659216 0.751953i \(-0.270888\pi\)
−0.176886 + 0.984231i \(0.556602\pi\)
\(992\) 28.0531 13.5097i 0.890687 0.428932i
\(993\) 0 0
\(994\) −0.259251 1.13585i −0.00822295 0.0360271i
\(995\) −0.134743 0.590349i −0.00427165 0.0187153i
\(996\) 0 0
\(997\) −8.50245 + 37.2517i −0.269275 + 1.17977i 0.641583 + 0.767054i \(0.278278\pi\)
−0.910858 + 0.412719i \(0.864579\pi\)
\(998\) −9.15239 −0.289714
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 261.2.k.a.190.1 6
3.2 odd 2 29.2.d.a.16.1 6
12.11 even 2 464.2.u.f.161.1 6
15.2 even 4 725.2.r.b.74.1 12
15.8 even 4 725.2.r.b.74.2 12
15.14 odd 2 725.2.l.b.451.1 6
29.7 even 7 7569.2.a.r.1.2 3
29.20 even 7 inner 261.2.k.a.136.1 6
29.22 even 14 7569.2.a.p.1.2 3
87.2 even 28 841.2.e.c.267.2 12
87.5 odd 14 841.2.d.c.574.1 6
87.8 even 28 841.2.e.d.270.2 12
87.11 even 28 841.2.e.b.196.2 12
87.14 even 28 841.2.e.b.236.1 12
87.17 even 4 841.2.e.d.651.2 12
87.20 odd 14 29.2.d.a.20.1 yes 6
87.23 odd 14 841.2.d.e.605.1 6
87.26 even 28 841.2.b.c.840.3 6
87.32 even 28 841.2.b.c.840.4 6
87.35 odd 14 841.2.d.a.605.1 6
87.38 odd 14 841.2.d.d.571.1 6
87.41 even 4 841.2.e.d.651.1 12
87.44 even 28 841.2.e.b.236.2 12
87.47 even 28 841.2.e.b.196.1 12
87.50 even 28 841.2.e.d.270.1 12
87.53 odd 14 841.2.d.b.574.1 6
87.56 even 28 841.2.e.c.267.1 12
87.62 odd 14 841.2.d.c.778.1 6
87.65 odd 14 841.2.a.e.1.2 3
87.68 even 28 841.2.e.c.63.2 12
87.71 odd 14 841.2.d.a.645.1 6
87.74 odd 14 841.2.d.e.645.1 6
87.77 even 28 841.2.e.c.63.1 12
87.80 odd 14 841.2.a.f.1.2 3
87.83 odd 14 841.2.d.b.778.1 6
87.86 odd 2 841.2.d.d.190.1 6
348.107 even 14 464.2.u.f.49.1 6
435.107 even 28 725.2.r.b.49.2 12
435.194 odd 14 725.2.l.b.426.1 6
435.368 even 28 725.2.r.b.49.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.d.a.16.1 6 3.2 odd 2
29.2.d.a.20.1 yes 6 87.20 odd 14
261.2.k.a.136.1 6 29.20 even 7 inner
261.2.k.a.190.1 6 1.1 even 1 trivial
464.2.u.f.49.1 6 348.107 even 14
464.2.u.f.161.1 6 12.11 even 2
725.2.l.b.426.1 6 435.194 odd 14
725.2.l.b.451.1 6 15.14 odd 2
725.2.r.b.49.1 12 435.368 even 28
725.2.r.b.49.2 12 435.107 even 28
725.2.r.b.74.1 12 15.2 even 4
725.2.r.b.74.2 12 15.8 even 4
841.2.a.e.1.2 3 87.65 odd 14
841.2.a.f.1.2 3 87.80 odd 14
841.2.b.c.840.3 6 87.26 even 28
841.2.b.c.840.4 6 87.32 even 28
841.2.d.a.605.1 6 87.35 odd 14
841.2.d.a.645.1 6 87.71 odd 14
841.2.d.b.574.1 6 87.53 odd 14
841.2.d.b.778.1 6 87.83 odd 14
841.2.d.c.574.1 6 87.5 odd 14
841.2.d.c.778.1 6 87.62 odd 14
841.2.d.d.190.1 6 87.86 odd 2
841.2.d.d.571.1 6 87.38 odd 14
841.2.d.e.605.1 6 87.23 odd 14
841.2.d.e.645.1 6 87.74 odd 14
841.2.e.b.196.1 12 87.47 even 28
841.2.e.b.196.2 12 87.11 even 28
841.2.e.b.236.1 12 87.14 even 28
841.2.e.b.236.2 12 87.44 even 28
841.2.e.c.63.1 12 87.77 even 28
841.2.e.c.63.2 12 87.68 even 28
841.2.e.c.267.1 12 87.56 even 28
841.2.e.c.267.2 12 87.2 even 28
841.2.e.d.270.1 12 87.50 even 28
841.2.e.d.270.2 12 87.8 even 28
841.2.e.d.651.1 12 87.41 even 4
841.2.e.d.651.2 12 87.17 even 4
7569.2.a.p.1.2 3 29.22 even 14
7569.2.a.r.1.2 3 29.7 even 7