Properties

Label 841.2.e.c.267.1
Level $841$
Weight $2$
Character 841.267
Analytic conductor $6.715$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [841,2,Mod(63,841)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("841.63"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(841, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([11])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.e (of order \(14\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,4,-16,6,16,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{14})\)
Coefficient field: \(\Q(\zeta_{28})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 29)
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 267.1
Root \(0.781831 + 0.623490i\) of defining polynomial
Character \(\chi\) \(=\) 841.267
Dual form 841.2.e.c.63.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.347948 - 0.277479i) q^{2} +(1.21572 + 0.277479i) q^{3} +(-0.400969 - 1.75676i) q^{4} +(-0.431468 + 0.541044i) q^{5} +(-0.346011 - 0.433884i) q^{6} +(-0.0794168 + 0.347948i) q^{7} +(-0.734141 + 1.52446i) q^{8} +(-1.30194 - 0.626980i) q^{9} +(0.300257 - 0.0685317i) q^{10} +(-2.14295 - 4.44989i) q^{11} -2.24698i q^{12} +(-5.09299 + 2.45265i) q^{13} +(0.124181 - 0.0990311i) q^{14} +(-0.674671 + 0.538032i) q^{15} +(-2.56853 + 1.23694i) q^{16} +4.49396i q^{17} +(0.279032 + 0.579417i) q^{18} +(-2.29780 + 0.524459i) q^{19} +(1.12349 + 0.541044i) q^{20} +(-0.193096 + 0.400969i) q^{21} +(-0.489115 + 2.14295i) q^{22} +(1.43147 + 1.79500i) q^{23} +(-1.31551 + 1.64960i) q^{24} +(1.00604 + 4.40775i) q^{25} +(2.45265 + 0.559802i) q^{26} +(-4.33360 - 3.45593i) q^{27} +0.643104 q^{28} +0.384043 q^{30} +(-5.23203 - 4.17241i) q^{31} +(4.53614 + 1.03534i) q^{32} +(-1.37047 - 6.00442i) q^{33} +(1.24698 - 1.56366i) q^{34} +(-0.153989 - 0.193096i) q^{35} +(-0.579417 + 2.53859i) q^{36} +(2.14295 - 4.44989i) q^{37} +(0.945042 + 0.455108i) q^{38} +(-6.87219 + 1.56853i) q^{39} +(-0.508041 - 1.05496i) q^{40} -3.10992i q^{41} +(0.178448 - 0.0859360i) q^{42} +(2.66277 - 2.12349i) q^{43} +(-6.95812 + 5.54892i) q^{44} +(0.900969 - 0.433884i) q^{45} -1.02177i q^{46} +(-2.79640 - 5.80678i) q^{47} +(-3.46583 + 0.791053i) q^{48} +(6.19202 + 2.98192i) q^{49} +(0.873009 - 1.81282i) q^{50} +(-1.24698 + 5.46337i) q^{51} +(6.35086 + 7.96372i) q^{52} +(-2.92543 + 3.66837i) q^{53} +(0.548917 + 2.40496i) q^{54} +(3.33220 + 0.760553i) q^{55} +(-0.472129 - 0.376510i) q^{56} -2.93900 q^{57} -12.4940 q^{59} +(1.21572 + 0.969501i) q^{60} +(1.60191 + 0.365625i) q^{61} +(0.662718 + 2.90356i) q^{62} +(0.321552 - 0.403214i) q^{63} +(2.26391 + 2.83885i) q^{64} +(0.870469 - 3.81378i) q^{65} +(-1.18925 + 2.46950i) q^{66} +(-2.09299 - 1.00793i) q^{67} +(7.89481 - 1.80194i) q^{68} +(1.24218 + 2.57942i) q^{69} +0.109916i q^{70} +(-6.60872 + 3.18259i) q^{71} +(1.91161 - 1.52446i) q^{72} +(4.39831 - 3.50753i) q^{73} +(-1.98039 + 0.953703i) q^{74} +5.63773i q^{75} +(1.84270 + 3.82640i) q^{76} +(1.71851 - 0.392240i) q^{77} +(2.82640 + 1.36112i) q^{78} +(-2.02401 + 4.20291i) q^{79} +(0.439001 - 1.92339i) q^{80} +(-1.60656 - 2.01457i) q^{81} +(-0.862937 + 1.08209i) q^{82} +(-0.991271 - 4.34304i) q^{83} +(0.781831 + 0.178448i) q^{84} +(-2.43143 - 1.93900i) q^{85} -1.51573 q^{86} +8.35690 q^{88} +(-4.44076 - 3.54138i) q^{89} +(-0.433884 - 0.0990311i) q^{90} +(-0.448927 - 1.96688i) q^{91} +(2.57942 - 3.23449i) q^{92} +(-5.20291 - 6.52424i) q^{93} +(-0.638260 + 2.79640i) q^{94} +(0.707674 - 1.46950i) q^{95} +(5.22737 + 2.51737i) q^{96} +(0.176076 - 0.0401881i) q^{97} +(-1.32708 - 2.75571i) q^{98} +7.13706i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{4} - 16 q^{5} + 6 q^{6} + 16 q^{7} + 2 q^{9} - 32 q^{13} - 20 q^{16} + 4 q^{20} - 12 q^{22} + 28 q^{23} + 14 q^{24} + 50 q^{25} + 24 q^{28} - 36 q^{30} + 12 q^{33} - 4 q^{34} - 12 q^{35} + 10 q^{36}+ \cdots + 18 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/841\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{3}{14}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.347948 0.277479i −0.246036 0.196207i 0.492705 0.870196i \(-0.336008\pi\)
−0.738741 + 0.673989i \(0.764580\pi\)
\(3\) 1.21572 + 0.277479i 0.701894 + 0.160203i 0.558551 0.829470i \(-0.311358\pi\)
0.143343 + 0.989673i \(0.454215\pi\)
\(4\) −0.400969 1.75676i −0.200484 0.878380i
\(5\) −0.431468 + 0.541044i −0.192959 + 0.241962i −0.868894 0.494999i \(-0.835168\pi\)
0.675935 + 0.736961i \(0.263740\pi\)
\(6\) −0.346011 0.433884i −0.141258 0.177132i
\(7\) −0.0794168 + 0.347948i −0.0300167 + 0.131512i −0.987716 0.156258i \(-0.950057\pi\)
0.957699 + 0.287770i \(0.0929139\pi\)
\(8\) −0.734141 + 1.52446i −0.259558 + 0.538978i
\(9\) −1.30194 0.626980i −0.433979 0.208993i
\(10\) 0.300257 0.0685317i 0.0949496 0.0216716i
\(11\) −2.14295 4.44989i −0.646124 1.34169i −0.924486 0.381215i \(-0.875506\pi\)
0.278362 0.960476i \(-0.410209\pi\)
\(12\) 2.24698i 0.648647i
\(13\) −5.09299 + 2.45265i −1.41254 + 0.680244i −0.975663 0.219276i \(-0.929630\pi\)
−0.436879 + 0.899520i \(0.643916\pi\)
\(14\) 0.124181 0.0990311i 0.0331888 0.0264672i
\(15\) −0.674671 + 0.538032i −0.174199 + 0.138919i
\(16\) −2.56853 + 1.23694i −0.642133 + 0.309235i
\(17\) 4.49396i 1.08995i 0.838454 + 0.544973i \(0.183460\pi\)
−0.838454 + 0.544973i \(0.816540\pi\)
\(18\) 0.279032 + 0.579417i 0.0657686 + 0.136570i
\(19\) −2.29780 + 0.524459i −0.527152 + 0.120319i −0.477811 0.878463i \(-0.658569\pi\)
−0.0493417 + 0.998782i \(0.515712\pi\)
\(20\) 1.12349 + 0.541044i 0.251220 + 0.120981i
\(21\) −0.193096 + 0.400969i −0.0421371 + 0.0874986i
\(22\) −0.489115 + 2.14295i −0.104280 + 0.456879i
\(23\) 1.43147 + 1.79500i 0.298482 + 0.374284i 0.908344 0.418223i \(-0.137347\pi\)
−0.609863 + 0.792507i \(0.708775\pi\)
\(24\) −1.31551 + 1.64960i −0.268528 + 0.336723i
\(25\) 1.00604 + 4.40775i 0.201208 + 0.881551i
\(26\) 2.45265 + 0.559802i 0.481005 + 0.109786i
\(27\) −4.33360 3.45593i −0.834001 0.665093i
\(28\) 0.643104 0.121535
\(29\) 0 0
\(30\) 0.384043 0.0701163
\(31\) −5.23203 4.17241i −0.939701 0.749386i 0.0284913 0.999594i \(-0.490930\pi\)
−0.968192 + 0.250208i \(0.919501\pi\)
\(32\) 4.53614 + 1.03534i 0.801883 + 0.183025i
\(33\) −1.37047 6.00442i −0.238568 1.04524i
\(34\) 1.24698 1.56366i 0.213855 0.268166i
\(35\) −0.153989 0.193096i −0.0260289 0.0326393i
\(36\) −0.579417 + 2.53859i −0.0965695 + 0.423098i
\(37\) 2.14295 4.44989i 0.352299 0.731557i −0.647228 0.762296i \(-0.724072\pi\)
0.999527 + 0.0307395i \(0.00978622\pi\)
\(38\) 0.945042 + 0.455108i 0.153306 + 0.0738283i
\(39\) −6.87219 + 1.56853i −1.10043 + 0.251166i
\(40\) −0.508041 1.05496i −0.0803283 0.166804i
\(41\) 3.10992i 0.485687i −0.970065 0.242844i \(-0.921920\pi\)
0.970065 0.242844i \(-0.0780802\pi\)
\(42\) 0.178448 0.0859360i 0.0275351 0.0132602i
\(43\) 2.66277 2.12349i 0.406069 0.323829i −0.399065 0.916923i \(-0.630665\pi\)
0.805133 + 0.593094i \(0.202094\pi\)
\(44\) −6.95812 + 5.54892i −1.04898 + 0.836531i
\(45\) 0.900969 0.433884i 0.134309 0.0646796i
\(46\) 1.02177i 0.150652i
\(47\) −2.79640 5.80678i −0.407897 0.847006i −0.999178 0.0405407i \(-0.987092\pi\)
0.591281 0.806465i \(-0.298622\pi\)
\(48\) −3.46583 + 0.791053i −0.500249 + 0.114179i
\(49\) 6.19202 + 2.98192i 0.884574 + 0.425989i
\(50\) 0.873009 1.81282i 0.123462 0.256372i
\(51\) −1.24698 + 5.46337i −0.174612 + 0.765025i
\(52\) 6.35086 + 7.96372i 0.880705 + 1.10437i
\(53\) −2.92543 + 3.66837i −0.401838 + 0.503889i −0.941044 0.338285i \(-0.890153\pi\)
0.539205 + 0.842174i \(0.318725\pi\)
\(54\) 0.548917 + 2.40496i 0.0746982 + 0.327274i
\(55\) 3.33220 + 0.760553i 0.449314 + 0.102553i
\(56\) −0.472129 0.376510i −0.0630909 0.0503133i
\(57\) −2.93900 −0.389280
\(58\) 0 0
\(59\) −12.4940 −1.62657 −0.813287 0.581862i \(-0.802324\pi\)
−0.813287 + 0.581862i \(0.802324\pi\)
\(60\) 1.21572 + 0.969501i 0.156948 + 0.125162i
\(61\) 1.60191 + 0.365625i 0.205103 + 0.0468135i 0.323838 0.946113i \(-0.395027\pi\)
−0.118735 + 0.992926i \(0.537884\pi\)
\(62\) 0.662718 + 2.90356i 0.0841653 + 0.368752i
\(63\) 0.321552 0.403214i 0.0405118 0.0508001i
\(64\) 2.26391 + 2.83885i 0.282988 + 0.354856i
\(65\) 0.870469 3.81378i 0.107968 0.473041i
\(66\) −1.18925 + 2.46950i −0.146386 + 0.303975i
\(67\) −2.09299 1.00793i −0.255699 0.123138i 0.301643 0.953421i \(-0.402465\pi\)
−0.557343 + 0.830282i \(0.688179\pi\)
\(68\) 7.89481 1.80194i 0.957386 0.218517i
\(69\) 1.24218 + 2.57942i 0.149541 + 0.310525i
\(70\) 0.109916i 0.0131375i
\(71\) −6.60872 + 3.18259i −0.784311 + 0.377704i −0.782783 0.622295i \(-0.786201\pi\)
−0.00152768 + 0.999999i \(0.500486\pi\)
\(72\) 1.91161 1.52446i 0.225285 0.179659i
\(73\) 4.39831 3.50753i 0.514783 0.410526i −0.331342 0.943511i \(-0.607501\pi\)
0.846125 + 0.532985i \(0.178930\pi\)
\(74\) −1.98039 + 0.953703i −0.230215 + 0.110866i
\(75\) 5.63773i 0.650989i
\(76\) 1.84270 + 3.82640i 0.211372 + 0.438918i
\(77\) 1.71851 0.392240i 0.195843 0.0446999i
\(78\) 2.82640 + 1.36112i 0.320026 + 0.154117i
\(79\) −2.02401 + 4.20291i −0.227719 + 0.472864i −0.983253 0.182246i \(-0.941663\pi\)
0.755534 + 0.655110i \(0.227378\pi\)
\(80\) 0.439001 1.92339i 0.0490818 0.215041i
\(81\) −1.60656 2.01457i −0.178507 0.223841i
\(82\) −0.862937 + 1.08209i −0.0952954 + 0.119497i
\(83\) −0.991271 4.34304i −0.108806 0.476711i −0.999745 0.0225872i \(-0.992810\pi\)
0.890939 0.454123i \(-0.150047\pi\)
\(84\) 0.781831 + 0.178448i 0.0853048 + 0.0194703i
\(85\) −2.43143 1.93900i −0.263726 0.210314i
\(86\) −1.51573 −0.163445
\(87\) 0 0
\(88\) 8.35690 0.890848
\(89\) −4.44076 3.54138i −0.470719 0.375386i 0.359208 0.933257i \(-0.383047\pi\)
−0.829927 + 0.557871i \(0.811618\pi\)
\(90\) −0.433884 0.0990311i −0.0457354 0.0104388i
\(91\) −0.448927 1.96688i −0.0470603 0.206185i
\(92\) 2.57942 3.23449i 0.268923 0.337219i
\(93\) −5.20291 6.52424i −0.539516 0.676532i
\(94\) −0.638260 + 2.79640i −0.0658315 + 0.288427i
\(95\) 0.707674 1.46950i 0.0726058 0.150768i
\(96\) 5.22737 + 2.51737i 0.533516 + 0.256928i
\(97\) 0.176076 0.0401881i 0.0178778 0.00408049i −0.213573 0.976927i \(-0.568510\pi\)
0.231450 + 0.972847i \(0.425653\pi\)
\(98\) −1.32708 2.75571i −0.134055 0.278369i
\(99\) 7.13706i 0.717302i
\(100\) 7.33997 3.53474i 0.733997 0.353474i
\(101\) −2.52494 + 2.01357i −0.251241 + 0.200358i −0.741010 0.671494i \(-0.765653\pi\)
0.489769 + 0.871853i \(0.337081\pi\)
\(102\) 1.94986 1.55496i 0.193064 0.153964i
\(103\) 12.3007 5.92372i 1.21203 0.583682i 0.284947 0.958543i \(-0.408024\pi\)
0.927081 + 0.374861i \(0.122310\pi\)
\(104\) 9.56465i 0.937891i
\(105\) −0.133627 0.277479i −0.0130406 0.0270792i
\(106\) 2.03579 0.464656i 0.197734 0.0451314i
\(107\) −14.6359 7.04826i −1.41490 0.681381i −0.438779 0.898595i \(-0.644589\pi\)
−0.976124 + 0.217214i \(0.930303\pi\)
\(108\) −4.33360 + 8.99880i −0.417000 + 0.865910i
\(109\) 1.21648 5.32975i 0.116518 0.510497i −0.882662 0.470008i \(-0.844251\pi\)
0.999180 0.0404895i \(-0.0128917\pi\)
\(110\) −0.948394 1.18925i −0.0904258 0.113390i
\(111\) 3.83997 4.81517i 0.364474 0.457036i
\(112\) −0.226406 0.991949i −0.0213933 0.0937303i
\(113\) −10.4069 2.37531i −0.979002 0.223451i −0.297061 0.954858i \(-0.596007\pi\)
−0.681940 + 0.731408i \(0.738864\pi\)
\(114\) 1.02262 + 0.815511i 0.0957770 + 0.0763796i
\(115\) −1.58881 −0.148157
\(116\) 0 0
\(117\) 8.16852 0.755180
\(118\) 4.34724 + 3.46681i 0.400196 + 0.319146i
\(119\) −1.56366 0.356896i −0.143341 0.0327166i
\(120\) −0.324904 1.42350i −0.0296596 0.129947i
\(121\) −8.35086 + 10.4716i −0.759169 + 0.951967i
\(122\) −0.455927 0.571714i −0.0412777 0.0517606i
\(123\) 0.862937 3.78077i 0.0778084 0.340901i
\(124\) −5.23203 + 10.8644i −0.469850 + 0.975654i
\(125\) −5.93631 2.85878i −0.530960 0.255697i
\(126\) −0.223767 + 0.0510733i −0.0199347 + 0.00454997i
\(127\) 0.449866 + 0.934157i 0.0399192 + 0.0828930i 0.919975 0.391978i \(-0.128209\pi\)
−0.880055 + 0.474871i \(0.842495\pi\)
\(128\) 10.9215i 0.965337i
\(129\) 3.82640 1.84270i 0.336895 0.162240i
\(130\) −1.36112 + 1.08546i −0.119378 + 0.0952009i
\(131\) 6.27167 5.00149i 0.547959 0.436982i −0.309974 0.950745i \(-0.600320\pi\)
0.857932 + 0.513763i \(0.171749\pi\)
\(132\) −9.99880 + 4.81517i −0.870284 + 0.419107i
\(133\) 0.841166i 0.0729384i
\(134\) 0.448572 + 0.931468i 0.0387507 + 0.0804666i
\(135\) 3.73962 0.853543i 0.321855 0.0734613i
\(136\) −6.85086 3.29920i −0.587456 0.282904i
\(137\) 7.47690 15.5260i 0.638795 1.32647i −0.290408 0.956903i \(-0.593791\pi\)
0.929203 0.369569i \(-0.120495\pi\)
\(138\) 0.283520 1.24218i 0.0241348 0.105742i
\(139\) −10.3922 13.0315i −0.881458 1.10531i −0.993749 0.111638i \(-0.964390\pi\)
0.112291 0.993675i \(-0.464181\pi\)
\(140\) −0.277479 + 0.347948i −0.0234513 + 0.0294070i
\(141\) −1.78836 7.83534i −0.150607 0.659854i
\(142\) 3.18259 + 0.726406i 0.267077 + 0.0609586i
\(143\) 21.8281 + 17.4073i 1.82535 + 1.45567i
\(144\) 4.11960 0.343300
\(145\) 0 0
\(146\) −2.50365 −0.207203
\(147\) 6.70031 + 5.34332i 0.552633 + 0.440710i
\(148\) −8.67664 1.98039i −0.713215 0.162787i
\(149\) 4.14042 + 18.1403i 0.339196 + 1.48612i 0.800748 + 0.599002i \(0.204436\pi\)
−0.461552 + 0.887113i \(0.652707\pi\)
\(150\) 1.56435 1.96163i 0.127729 0.160167i
\(151\) 4.69351 + 5.88548i 0.381953 + 0.478954i 0.935229 0.354045i \(-0.115194\pi\)
−0.553276 + 0.832998i \(0.686622\pi\)
\(152\) 0.887395 3.88793i 0.0719773 0.315353i
\(153\) 2.81762 5.85086i 0.227791 0.473014i
\(154\) −0.706791 0.340373i −0.0569549 0.0274280i
\(155\) 4.51491 1.03050i 0.362647 0.0827717i
\(156\) 5.51107 + 11.4438i 0.441238 + 0.916241i
\(157\) 18.2392i 1.45565i 0.685764 + 0.727824i \(0.259468\pi\)
−0.685764 + 0.727824i \(0.740532\pi\)
\(158\) 1.87047 0.900771i 0.148807 0.0716615i
\(159\) −4.57438 + 3.64795i −0.362772 + 0.289301i
\(160\) −2.51737 + 2.00753i −0.199015 + 0.158709i
\(161\) −0.738250 + 0.355523i −0.0581823 + 0.0280191i
\(162\) 1.14675i 0.0900973i
\(163\) 5.48460 + 11.3889i 0.429587 + 0.892046i 0.997614 + 0.0690367i \(0.0219926\pi\)
−0.568027 + 0.823010i \(0.692293\pi\)
\(164\) −5.46337 + 1.24698i −0.426618 + 0.0973727i
\(165\) 3.83997 + 1.84923i 0.298941 + 0.143963i
\(166\) −0.860193 + 1.78621i −0.0667639 + 0.138637i
\(167\) −0.177251 + 0.776589i −0.0137161 + 0.0600943i −0.981323 0.192368i \(-0.938383\pi\)
0.967607 + 0.252462i \(0.0812404\pi\)
\(168\) −0.469501 0.588735i −0.0362228 0.0454219i
\(169\) 11.8177 14.8189i 0.909051 1.13991i
\(170\) 0.307979 + 1.34934i 0.0236209 + 0.103490i
\(171\) 3.32042 + 0.757865i 0.253919 + 0.0579554i
\(172\) −4.79815 3.82640i −0.365855 0.291760i
\(173\) 9.15346 0.695924 0.347962 0.937509i \(-0.386874\pi\)
0.347962 + 0.937509i \(0.386874\pi\)
\(174\) 0 0
\(175\) −1.61356 −0.121974
\(176\) 11.0085 + 8.77897i 0.829796 + 0.661740i
\(177\) −15.1891 3.46681i −1.14168 0.260582i
\(178\) 0.562491 + 2.46443i 0.0421605 + 0.184717i
\(179\) −2.12349 + 2.66277i −0.158717 + 0.199025i −0.854831 0.518906i \(-0.826339\pi\)
0.696114 + 0.717931i \(0.254911\pi\)
\(180\) −1.12349 1.40881i −0.0837400 0.105007i
\(181\) −2.82036 + 12.3568i −0.209635 + 0.918473i 0.755174 + 0.655524i \(0.227552\pi\)
−0.964810 + 0.262949i \(0.915305\pi\)
\(182\) −0.389564 + 0.808938i −0.0288764 + 0.0599625i
\(183\) 1.84601 + 0.888992i 0.136461 + 0.0657162i
\(184\) −3.78731 + 0.864429i −0.279204 + 0.0637265i
\(185\) 1.48297 + 3.07942i 0.109030 + 0.226403i
\(186\) 3.71379i 0.272308i
\(187\) 19.9976 9.63034i 1.46237 0.704240i
\(188\) −9.07985 + 7.24094i −0.662216 + 0.528100i
\(189\) 1.54664 1.23341i 0.112502 0.0897171i
\(190\) −0.653989 + 0.314945i −0.0474454 + 0.0228485i
\(191\) 10.6703i 0.772072i −0.922484 0.386036i \(-0.873844\pi\)
0.922484 0.386036i \(-0.126156\pi\)
\(192\) 1.96454 + 4.07942i 0.141779 + 0.294407i
\(193\) 22.1590 5.05765i 1.59504 0.364057i 0.669531 0.742784i \(-0.266495\pi\)
0.925509 + 0.378727i \(0.123638\pi\)
\(194\) −0.0724165 0.0348740i −0.00519920 0.00250380i
\(195\) 2.11649 4.39493i 0.151565 0.314727i
\(196\) 2.75571 12.0735i 0.196836 0.862396i
\(197\) −12.1942 15.2910i −0.868799 1.08944i −0.995239 0.0974654i \(-0.968926\pi\)
0.126440 0.991974i \(-0.459645\pi\)
\(198\) 1.98039 2.48333i 0.140740 0.176482i
\(199\) 0.194710 + 0.853080i 0.0138026 + 0.0604732i 0.981360 0.192177i \(-0.0615549\pi\)
−0.967558 + 0.252650i \(0.918698\pi\)
\(200\) −7.45801 1.70224i −0.527361 0.120367i
\(201\) −2.26480 1.80612i −0.159747 0.127394i
\(202\) 1.43727 0.101126
\(203\) 0 0
\(204\) 10.0978 0.706990
\(205\) 1.68260 + 1.34183i 0.117518 + 0.0937175i
\(206\) −5.92372 1.35205i −0.412725 0.0942019i
\(207\) −0.738250 3.23449i −0.0513120 0.224812i
\(208\) 10.0477 12.5994i 0.696684 0.873614i
\(209\) 7.25786 + 9.10107i 0.502037 + 0.629534i
\(210\) −0.0304995 + 0.133627i −0.00210466 + 0.00922113i
\(211\) 7.92651 16.4596i 0.545684 1.13312i −0.427695 0.903923i \(-0.640674\pi\)
0.973379 0.229201i \(-0.0736113\pi\)
\(212\) 7.61745 + 3.66837i 0.523169 + 0.251945i
\(213\) −8.91742 + 2.03534i −0.611012 + 0.139459i
\(214\) 3.13677 + 6.51357i 0.214425 + 0.445259i
\(215\) 2.35690i 0.160739i
\(216\) 8.44989 4.06925i 0.574942 0.276877i
\(217\) 1.86729 1.48911i 0.126760 0.101088i
\(218\) −1.90216 + 1.51693i −0.128831 + 0.102739i
\(219\) 6.32036 3.04372i 0.427090 0.205676i
\(220\) 6.15883i 0.415228i
\(221\) −11.0221 22.8877i −0.741429 1.53959i
\(222\) −2.67222 + 0.609916i −0.179348 + 0.0409349i
\(223\) 1.63826 + 0.788944i 0.109706 + 0.0528316i 0.487932 0.872882i \(-0.337751\pi\)
−0.378226 + 0.925713i \(0.623466\pi\)
\(224\) −0.720491 + 1.49612i −0.0481398 + 0.0999634i
\(225\) 1.45377 6.36939i 0.0969181 0.424626i
\(226\) 2.96197 + 3.71419i 0.197027 + 0.247064i
\(227\) −8.63922 + 10.8332i −0.573405 + 0.719027i −0.980972 0.194148i \(-0.937806\pi\)
0.407567 + 0.913175i \(0.366377\pi\)
\(228\) 1.17845 + 5.16312i 0.0780446 + 0.341936i
\(229\) −12.4522 2.84213i −0.822862 0.187813i −0.209696 0.977767i \(-0.567247\pi\)
−0.613166 + 0.789954i \(0.710105\pi\)
\(230\) 0.552823 + 0.440862i 0.0364521 + 0.0290695i
\(231\) 2.19806 0.144622
\(232\) 0 0
\(233\) −8.86592 −0.580826 −0.290413 0.956901i \(-0.593793\pi\)
−0.290413 + 0.956901i \(0.593793\pi\)
\(234\) −2.84222 2.26659i −0.185802 0.148172i
\(235\) 4.34828 + 0.992467i 0.283651 + 0.0647414i
\(236\) 5.00969 + 21.9489i 0.326103 + 1.42875i
\(237\) −3.62684 + 4.54792i −0.235589 + 0.295419i
\(238\) 0.445042 + 0.558065i 0.0288478 + 0.0361740i
\(239\) 5.68867 24.9237i 0.367969 1.61218i −0.364380 0.931250i \(-0.618719\pi\)
0.732349 0.680929i \(-0.238424\pi\)
\(240\) 1.06740 2.21648i 0.0689004 0.143073i
\(241\) 8.76755 + 4.22223i 0.564768 + 0.271978i 0.694406 0.719584i \(-0.255667\pi\)
−0.129638 + 0.991561i \(0.541382\pi\)
\(242\) 5.81132 1.32640i 0.373566 0.0852640i
\(243\) 5.82077 + 12.0869i 0.373402 + 0.775378i
\(244\) 2.96077i 0.189544i
\(245\) −4.28501 + 2.06355i −0.273759 + 0.131836i
\(246\) −1.34934 + 1.07606i −0.0860309 + 0.0686074i
\(247\) 10.4164 8.30678i 0.662778 0.528548i
\(248\) 10.2017 4.91288i 0.647809 0.311968i
\(249\) 5.55496i 0.352031i
\(250\) 1.27228 + 2.64191i 0.0804658 + 0.167089i
\(251\) −9.51560 + 2.17187i −0.600620 + 0.137088i −0.512011 0.858979i \(-0.671099\pi\)
−0.0886088 + 0.996067i \(0.528242\pi\)
\(252\) −0.837282 0.403214i −0.0527438 0.0254001i
\(253\) 4.92000 10.2165i 0.309318 0.642305i
\(254\) 0.102679 0.449866i 0.00644265 0.0282271i
\(255\) −2.41789 3.03194i −0.151414 0.189868i
\(256\) 1.49731 1.87757i 0.0935820 0.117348i
\(257\) −3.63975 15.9468i −0.227041 0.994734i −0.952038 0.305981i \(-0.901016\pi\)
0.724996 0.688753i \(-0.241841\pi\)
\(258\) −1.84270 0.420583i −0.114721 0.0261844i
\(259\) 1.37814 + 1.09903i 0.0856335 + 0.0682905i
\(260\) −7.04892 −0.437155
\(261\) 0 0
\(262\) −3.57002 −0.220557
\(263\) 18.5478 + 14.7913i 1.14370 + 0.912074i 0.997023 0.0771102i \(-0.0245693\pi\)
0.146682 + 0.989184i \(0.453141\pi\)
\(264\) 10.1596 + 2.31886i 0.625280 + 0.142716i
\(265\) −0.722521 3.16557i −0.0443841 0.194459i
\(266\) −0.233406 + 0.292682i −0.0143110 + 0.0179455i
\(267\) −4.41603 5.53753i −0.270257 0.338891i
\(268\) −0.931468 + 4.08103i −0.0568985 + 0.249289i
\(269\) −11.0009 + 22.8436i −0.670737 + 1.39280i 0.236271 + 0.971687i \(0.424075\pi\)
−0.907008 + 0.421113i \(0.861640\pi\)
\(270\) −1.53803 0.740677i −0.0936017 0.0450762i
\(271\) 1.17327 0.267790i 0.0712709 0.0162671i −0.186737 0.982410i \(-0.559791\pi\)
0.258008 + 0.966143i \(0.416934\pi\)
\(272\) −5.55876 11.5429i −0.337049 0.699890i
\(273\) 2.51573i 0.152259i
\(274\) −6.90970 + 3.32754i −0.417430 + 0.201024i
\(275\) 17.4581 13.9224i 1.05276 0.839551i
\(276\) 4.03334 3.21648i 0.242778 0.193609i
\(277\) −9.60872 + 4.62732i −0.577332 + 0.278028i −0.699677 0.714459i \(-0.746673\pi\)
0.122345 + 0.992488i \(0.460959\pi\)
\(278\) 7.41789i 0.444896i
\(279\) 4.19576 + 8.71260i 0.251194 + 0.521609i
\(280\) 0.407417 0.0929903i 0.0243478 0.00555724i
\(281\) 14.6673 + 7.06341i 0.874979 + 0.421368i 0.816788 0.576938i \(-0.195752\pi\)
0.0581911 + 0.998305i \(0.481467\pi\)
\(282\) −1.55188 + 3.22252i −0.0924134 + 0.191898i
\(283\) −1.16756 + 5.11543i −0.0694044 + 0.304081i −0.997702 0.0677581i \(-0.978415\pi\)
0.928297 + 0.371839i \(0.121273\pi\)
\(284\) 8.24094 + 10.3338i 0.489010 + 0.613199i
\(285\) 1.26809 1.59013i 0.0751149 0.0941911i
\(286\) −2.76487 12.1137i −0.163490 0.716296i
\(287\) 1.08209 + 0.246980i 0.0638737 + 0.0145787i
\(288\) −5.25663 4.19202i −0.309750 0.247017i
\(289\) −3.19567 −0.187981
\(290\) 0 0
\(291\) 0.225209 0.0132020
\(292\) −7.92548 6.32036i −0.463803 0.369871i
\(293\) −6.59419 1.50508i −0.385237 0.0879278i 0.0255163 0.999674i \(-0.491877\pi\)
−0.410753 + 0.911747i \(0.634734\pi\)
\(294\) −0.848699 3.71839i −0.0494971 0.216861i
\(295\) 5.39075 6.75978i 0.313861 0.393570i
\(296\) 5.21044 + 6.53368i 0.302851 + 0.379763i
\(297\) −6.09179 + 26.6899i −0.353482 + 1.54870i
\(298\) 3.59292 7.46077i 0.208132 0.432191i
\(299\) −11.6930 5.63104i −0.676223 0.325652i
\(300\) 9.90413 2.26055i 0.571815 0.130513i
\(301\) 0.527395 + 1.09515i 0.0303985 + 0.0631232i
\(302\) 3.35019i 0.192782i
\(303\) −3.62833 + 1.74731i −0.208442 + 0.100381i
\(304\) 5.25326 4.18933i 0.301295 0.240275i
\(305\) −0.888992 + 0.708947i −0.0509035 + 0.0405942i
\(306\) −2.60388 + 1.25396i −0.148854 + 0.0716841i
\(307\) 4.51812i 0.257863i 0.991654 + 0.128931i \(0.0411547\pi\)
−0.991654 + 0.128931i \(0.958845\pi\)
\(308\) −1.37814 2.86174i −0.0785269 0.163063i
\(309\) 16.5979 3.78836i 0.944222 0.215513i
\(310\) −1.85690 0.894234i −0.105465 0.0507891i
\(311\) −5.47412 + 11.3671i −0.310409 + 0.644570i −0.996559 0.0828899i \(-0.973585\pi\)
0.686150 + 0.727460i \(0.259299\pi\)
\(312\) 2.65399 11.6279i 0.150253 0.658299i
\(313\) 11.9961 + 15.0427i 0.678061 + 0.850261i 0.995174 0.0981266i \(-0.0312850\pi\)
−0.317113 + 0.948388i \(0.602714\pi\)
\(314\) 5.06100 6.34629i 0.285609 0.358142i
\(315\) 0.0794168 + 0.347948i 0.00447463 + 0.0196046i
\(316\) 8.19506 + 1.87047i 0.461008 + 0.105222i
\(317\) −2.24254 1.78836i −0.125953 0.100445i 0.558487 0.829513i \(-0.311382\pi\)
−0.684441 + 0.729069i \(0.739953\pi\)
\(318\) 2.60388 0.146018
\(319\) 0 0
\(320\) −2.51275 −0.140467
\(321\) −15.8373 12.6298i −0.883952 0.704928i
\(322\) 0.355523 + 0.0811457i 0.0198125 + 0.00452207i
\(323\) −2.35690 10.3262i −0.131141 0.574567i
\(324\) −2.89493 + 3.63012i −0.160829 + 0.201674i
\(325\) −15.9345 19.9812i −0.883884 1.10836i
\(326\) 1.25182 5.48460i 0.0693321 0.303764i
\(327\) 2.95779 6.14191i 0.163566 0.339648i
\(328\) 4.74094 + 2.28312i 0.261775 + 0.126064i
\(329\) 2.24254 0.511845i 0.123635 0.0282189i
\(330\) −0.822986 1.70895i −0.0453039 0.0940745i
\(331\) 3.13408i 0.172265i −0.996284 0.0861323i \(-0.972549\pi\)
0.996284 0.0861323i \(-0.0274508\pi\)
\(332\) −7.23221 + 3.48285i −0.396919 + 0.191146i
\(333\) −5.57998 + 4.44989i −0.305781 + 0.243852i
\(334\) 0.277162 0.221029i 0.0151656 0.0120942i
\(335\) 1.44839 0.697510i 0.0791342 0.0381090i
\(336\) 1.26875i 0.0692160i
\(337\) 2.16184 + 4.48911i 0.117763 + 0.244538i 0.951515 0.307601i \(-0.0995262\pi\)
−0.833752 + 0.552139i \(0.813812\pi\)
\(338\) −8.22386 + 1.87704i −0.447319 + 0.102098i
\(339\) −11.9928 5.77541i −0.651357 0.313677i
\(340\) −2.43143 + 5.04892i −0.131863 + 0.273816i
\(341\) −7.35474 + 32.2232i −0.398281 + 1.74499i
\(342\) −0.945042 1.18505i −0.0511020 0.0640799i
\(343\) −3.08695 + 3.87091i −0.166680 + 0.209010i
\(344\) 1.28232 + 5.61823i 0.0691382 + 0.302914i
\(345\) −1.93154 0.440862i −0.103991 0.0237352i
\(346\) −3.18492 2.53989i −0.171223 0.136545i
\(347\) −20.1172 −1.07995 −0.539974 0.841682i \(-0.681566\pi\)
−0.539974 + 0.841682i \(0.681566\pi\)
\(348\) 0 0
\(349\) 20.4892 1.09676 0.548380 0.836229i \(-0.315245\pi\)
0.548380 + 0.836229i \(0.315245\pi\)
\(350\) 0.561436 + 0.447730i 0.0300100 + 0.0239322i
\(351\) 30.5472 + 6.97219i 1.63049 + 0.372148i
\(352\) −5.11356 22.4040i −0.272554 1.19414i
\(353\) −11.2213 + 14.0711i −0.597251 + 0.748929i −0.984947 0.172859i \(-0.944700\pi\)
0.387696 + 0.921787i \(0.373271\pi\)
\(354\) 4.32304 + 5.42093i 0.229767 + 0.288119i
\(355\) 1.12953 4.94880i 0.0599493 0.262655i
\(356\) −4.44076 + 9.22132i −0.235360 + 0.488729i
\(357\) −1.80194 0.867767i −0.0953687 0.0459271i
\(358\) 1.47773 0.337282i 0.0781003 0.0178259i
\(359\) −10.2521 21.2887i −0.541084 1.12357i −0.974915 0.222578i \(-0.928553\pi\)
0.433831 0.900994i \(-0.357162\pi\)
\(360\) 1.69202i 0.0891774i
\(361\) −12.1136 + 5.83359i −0.637556 + 0.307031i
\(362\) 4.41009 3.51693i 0.231789 0.184846i
\(363\) −13.0579 + 10.4133i −0.685363 + 0.546559i
\(364\) −3.27532 + 1.57731i −0.171674 + 0.0826736i
\(365\) 3.89307i 0.203772i
\(366\) −0.395639 0.821552i −0.0206804 0.0429432i
\(367\) −28.8999 + 6.59621i −1.50856 + 0.344319i −0.895265 0.445533i \(-0.853014\pi\)
−0.613297 + 0.789853i \(0.710157\pi\)
\(368\) −5.89708 2.83989i −0.307407 0.148039i
\(369\) −1.94986 + 4.04892i −0.101505 + 0.210778i
\(370\) 0.338478 1.48297i 0.0175966 0.0770959i
\(371\) −1.04407 1.30923i −0.0542056 0.0679716i
\(372\) −9.37531 + 11.7563i −0.486087 + 0.609534i
\(373\) 5.60483 + 24.5564i 0.290207 + 1.27148i 0.884237 + 0.467038i \(0.154679\pi\)
−0.594030 + 0.804443i \(0.702464\pi\)
\(374\) −9.63034 2.19806i −0.497973 0.113659i
\(375\) −6.42361 5.12266i −0.331714 0.264533i
\(376\) 10.9051 0.562390
\(377\) 0 0
\(378\) −0.880395 −0.0452826
\(379\) −21.0368 16.7763i −1.08059 0.861740i −0.0896379 0.995974i \(-0.528571\pi\)
−0.990950 + 0.134235i \(0.957142\pi\)
\(380\) −2.86531 0.653989i −0.146988 0.0335489i
\(381\) 0.287700 + 1.26050i 0.0147393 + 0.0645772i
\(382\) −2.96077 + 3.71269i −0.151486 + 0.189958i
\(383\) 12.2635 + 15.3780i 0.626637 + 0.785779i 0.989261 0.146157i \(-0.0466905\pi\)
−0.362624 + 0.931936i \(0.618119\pi\)
\(384\) 3.03050 13.2775i 0.154650 0.677564i
\(385\) −0.529265 + 1.09903i −0.0269739 + 0.0560118i
\(386\) −9.11356 4.38886i −0.463868 0.223387i
\(387\) −4.79815 + 1.09515i −0.243904 + 0.0556694i
\(388\) −0.141202 0.293209i −0.00716843 0.0148854i
\(389\) 24.8552i 1.26021i −0.776511 0.630103i \(-0.783012\pi\)
0.776511 0.630103i \(-0.216988\pi\)
\(390\) −1.95593 + 0.941925i −0.0990422 + 0.0476962i
\(391\) −8.06668 + 6.43296i −0.407949 + 0.325329i
\(392\) −9.09163 + 7.25033i −0.459197 + 0.366197i
\(393\) 9.01238 4.34013i 0.454614 0.218931i
\(394\) 8.70410i 0.438506i
\(395\) −1.40066 2.90850i −0.0704749 0.146343i
\(396\) 12.5381 2.86174i 0.630063 0.143808i
\(397\) 3.59903 + 1.73320i 0.180630 + 0.0869869i 0.522013 0.852937i \(-0.325181\pi\)
−0.341383 + 0.939924i \(0.610895\pi\)
\(398\) 0.168963 0.350855i 0.00846934 0.0175868i
\(399\) 0.233406 1.02262i 0.0116849 0.0511950i
\(400\) −8.03617 10.0770i −0.401809 0.503852i
\(401\) −15.5293 + 19.4731i −0.775496 + 0.972442i −0.999998 0.00203202i \(-0.999353\pi\)
0.224502 + 0.974474i \(0.427925\pi\)
\(402\) 0.286872 + 1.25687i 0.0143079 + 0.0626869i
\(403\) 36.8802 + 8.41766i 1.83713 + 0.419313i
\(404\) 4.54979 + 3.62833i 0.226360 + 0.180516i
\(405\) 1.78315 0.0886055
\(406\) 0 0
\(407\) −24.3937 −1.20915
\(408\) −7.41323 5.91185i −0.367010 0.292680i
\(409\) −0.276123 0.0630233i −0.0136534 0.00311630i 0.215689 0.976462i \(-0.430800\pi\)
−0.229342 + 0.973346i \(0.573657\pi\)
\(410\) −0.213128 0.933774i −0.0105256 0.0461158i
\(411\) 13.3979 16.8005i 0.660870 0.828705i
\(412\) −15.3388 19.2342i −0.755687 0.947602i
\(413\) 0.992230 4.34724i 0.0488245 0.213914i
\(414\) −0.640630 + 1.33028i −0.0314852 + 0.0653798i
\(415\) 2.77748 + 1.33756i 0.136341 + 0.0656584i
\(416\) −25.6418 + 5.85258i −1.25719 + 0.286947i
\(417\) −9.01805 18.7262i −0.441616 0.917024i
\(418\) 5.18060i 0.253392i
\(419\) −23.8654 + 11.4930i −1.16590 + 0.561468i −0.913773 0.406226i \(-0.866845\pi\)
−0.252128 + 0.967694i \(0.581130\pi\)
\(420\) −0.433884 + 0.346011i −0.0211714 + 0.0168836i
\(421\) −13.7462 + 10.9623i −0.669951 + 0.534268i −0.898339 0.439302i \(-0.855226\pi\)
0.228389 + 0.973570i \(0.426654\pi\)
\(422\) −7.32520 + 3.52763i −0.356585 + 0.171722i
\(423\) 9.31336i 0.452831i
\(424\) −3.44460 7.15279i −0.167285 0.347370i
\(425\) −19.8083 + 4.52111i −0.960842 + 0.219306i
\(426\) 3.66756 + 1.76621i 0.177694 + 0.0855729i
\(427\) −0.254437 + 0.528344i −0.0123131 + 0.0255683i
\(428\) −6.51357 + 28.5378i −0.314845 + 1.37943i
\(429\) 21.7066 + 27.2192i 1.04800 + 1.31415i
\(430\) 0.653989 0.820077i 0.0315382 0.0395476i
\(431\) 6.18502 + 27.0983i 0.297922 + 1.30528i 0.873215 + 0.487334i \(0.162031\pi\)
−0.575293 + 0.817947i \(0.695112\pi\)
\(432\) 15.4058 + 3.51626i 0.741210 + 0.169176i
\(433\) −4.59374 3.66338i −0.220761 0.176051i 0.506864 0.862026i \(-0.330805\pi\)
−0.727625 + 0.685975i \(0.759376\pi\)
\(434\) −1.06292 −0.0510217
\(435\) 0 0
\(436\) −9.85086 −0.471770
\(437\) −4.23064 3.37382i −0.202379 0.161392i
\(438\) −3.04372 0.694710i −0.145435 0.0331945i
\(439\) −3.50269 15.3463i −0.167174 0.732438i −0.987118 0.159994i \(-0.948853\pi\)
0.819944 0.572444i \(-0.194005\pi\)
\(440\) −3.60574 + 4.52145i −0.171897 + 0.215552i
\(441\) −6.19202 7.76455i −0.294858 0.369740i
\(442\) −2.51573 + 11.0221i −0.119661 + 0.524269i
\(443\) −2.92375 + 6.07122i −0.138911 + 0.288452i −0.958806 0.284062i \(-0.908318\pi\)
0.819894 + 0.572515i \(0.194032\pi\)
\(444\) −9.99880 4.81517i −0.474522 0.228518i
\(445\) 3.83209 0.874650i 0.181659 0.0414624i
\(446\) −0.351113 0.729094i −0.0166257 0.0345236i
\(447\) 23.2024i 1.09743i
\(448\) −1.16756 + 0.562269i −0.0551622 + 0.0265647i
\(449\) −9.63221 + 7.68143i −0.454572 + 0.362509i −0.823848 0.566811i \(-0.808177\pi\)
0.369276 + 0.929320i \(0.379606\pi\)
\(450\) −2.27321 + 1.81282i −0.107160 + 0.0854573i
\(451\) −13.8388 + 6.66440i −0.651642 + 0.313814i
\(452\) 19.2349i 0.904733i
\(453\) 4.07288 + 8.45742i 0.191361 + 0.397364i
\(454\) 6.01199 1.37220i 0.282157 0.0644005i
\(455\) 1.25786 + 0.605756i 0.0589696 + 0.0283983i
\(456\) 2.15764 4.48039i 0.101041 0.209813i
\(457\) 3.04019 13.3199i 0.142214 0.623080i −0.852704 0.522394i \(-0.825039\pi\)
0.994918 0.100686i \(-0.0321038\pi\)
\(458\) 3.54407 + 4.44413i 0.165604 + 0.207660i
\(459\) 15.5308 19.4750i 0.724915 0.909015i
\(460\) 0.637063 + 2.79116i 0.0297032 + 0.130138i
\(461\) 11.3171 + 2.58306i 0.527092 + 0.120305i 0.477782 0.878478i \(-0.341441\pi\)
0.0493096 + 0.998784i \(0.484298\pi\)
\(462\) −0.764811 0.609916i −0.0355822 0.0283759i
\(463\) 7.24267 0.336595 0.168298 0.985736i \(-0.446173\pi\)
0.168298 + 0.985736i \(0.446173\pi\)
\(464\) 0 0
\(465\) 5.77479 0.267800
\(466\) 3.08488 + 2.46011i 0.142904 + 0.113962i
\(467\) 2.01166 + 0.459148i 0.0930884 + 0.0212468i 0.268811 0.963193i \(-0.413369\pi\)
−0.175723 + 0.984440i \(0.556226\pi\)
\(468\) −3.27532 14.3501i −0.151402 0.663335i
\(469\) 0.516926 0.648205i 0.0238694 0.0299313i
\(470\) −1.23759 1.55188i −0.0570856 0.0715831i
\(471\) −5.06100 + 22.1737i −0.233199 + 1.02171i
\(472\) 9.17232 19.0465i 0.422190 0.876687i
\(473\) −15.1555 7.29850i −0.696850 0.335585i
\(474\) 2.52390 0.576064i 0.115927 0.0264595i
\(475\) −4.62337 9.60052i −0.212135 0.440502i
\(476\) 2.89008i 0.132467i
\(477\) 6.10872 2.94180i 0.279699 0.134696i
\(478\) −8.89516 + 7.09365i −0.406855 + 0.324456i
\(479\) −3.04056 + 2.42476i −0.138927 + 0.110790i −0.690487 0.723344i \(-0.742604\pi\)
0.551561 + 0.834135i \(0.314032\pi\)
\(480\) −3.61745 + 1.74207i −0.165113 + 0.0795143i
\(481\) 27.9191i 1.27300i
\(482\) −1.87907 3.90193i −0.0855893 0.177728i
\(483\) −0.996152 + 0.227365i −0.0453265 + 0.0103455i
\(484\) 21.7446 + 10.4716i 0.988390 + 0.475984i
\(485\) −0.0542276 + 0.112605i −0.00246235 + 0.00511311i
\(486\) 1.32855 5.82077i 0.0602644 0.264035i
\(487\) 6.13856 + 7.69750i 0.278164 + 0.348807i 0.901213 0.433376i \(-0.142678\pi\)
−0.623049 + 0.782183i \(0.714106\pi\)
\(488\) −1.73341 + 2.17362i −0.0784676 + 0.0983953i
\(489\) 3.50753 + 15.3675i 0.158616 + 0.694943i
\(490\) 2.06355 + 0.470992i 0.0932218 + 0.0212773i
\(491\) −6.09139 4.85772i −0.274901 0.219226i 0.476329 0.879267i \(-0.341967\pi\)
−0.751229 + 0.660041i \(0.770539\pi\)
\(492\) −6.98792 −0.315040
\(493\) 0 0
\(494\) −5.92931 −0.266772
\(495\) −3.86147 3.07942i −0.173560 0.138409i
\(496\) 18.5997 + 4.24525i 0.835149 + 0.190617i
\(497\) −0.582532 2.55224i −0.0261301 0.114484i
\(498\) −1.54138 + 1.93284i −0.0690711 + 0.0866124i
\(499\) 12.8222 + 16.0786i 0.574001 + 0.719775i 0.981077 0.193620i \(-0.0620228\pi\)
−0.407075 + 0.913395i \(0.633451\pi\)
\(500\) −2.64191 + 11.5750i −0.118150 + 0.517648i
\(501\) −0.430975 + 0.894928i −0.0192545 + 0.0399824i
\(502\) 3.91358 + 1.88468i 0.174672 + 0.0841175i
\(503\) −8.02843 + 1.83244i −0.357970 + 0.0817043i −0.397724 0.917505i \(-0.630200\pi\)
0.0397538 + 0.999210i \(0.487343\pi\)
\(504\) 0.378618 + 0.786208i 0.0168650 + 0.0350205i
\(505\) 2.23490i 0.0994517i
\(506\) −4.54676 + 2.18960i −0.202128 + 0.0973398i
\(507\) 18.4788 14.7364i 0.820674 0.654466i
\(508\) 1.46071 1.16487i 0.0648084 0.0516829i
\(509\) −7.13222 + 3.43470i −0.316130 + 0.152240i −0.585219 0.810875i \(-0.698992\pi\)
0.269089 + 0.963115i \(0.413277\pi\)
\(510\) 1.72587i 0.0764230i
\(511\) 0.871139 + 1.80894i 0.0385369 + 0.0800227i
\(512\) −22.3374 + 5.09837i −0.987183 + 0.225318i
\(513\) 11.7702 + 5.66825i 0.519669 + 0.250259i
\(514\) −3.15846 + 6.55861i −0.139314 + 0.289288i
\(515\) −2.10238 + 9.21114i −0.0926421 + 0.405892i
\(516\) −4.77144 5.98319i −0.210051 0.263395i
\(517\) −19.8470 + 24.8873i −0.872869 + 1.09454i
\(518\) −0.174563 0.764811i −0.00766986 0.0336039i
\(519\) 11.1280 + 2.53989i 0.488465 + 0.111489i
\(520\) 5.17490 + 4.12684i 0.226934 + 0.180974i
\(521\) 3.52542 0.154451 0.0772257 0.997014i \(-0.475394\pi\)
0.0772257 + 0.997014i \(0.475394\pi\)
\(522\) 0 0
\(523\) 10.0301 0.438587 0.219294 0.975659i \(-0.429625\pi\)
0.219294 + 0.975659i \(0.429625\pi\)
\(524\) −11.3012 9.01238i −0.493694 0.393708i
\(525\) −1.96163 0.447730i −0.0856127 0.0195406i
\(526\) −2.34936 10.2932i −0.102437 0.448806i
\(527\) 18.7506 23.5125i 0.816790 1.02422i
\(528\) 10.9472 + 13.7274i 0.476416 + 0.597406i
\(529\) 3.94504 17.2844i 0.171524 0.751494i
\(530\) −0.626980 + 1.30194i −0.0272343 + 0.0565526i
\(531\) 16.2664 + 7.83346i 0.705900 + 0.339943i
\(532\) −1.47773 + 0.337282i −0.0640676 + 0.0146230i
\(533\) 7.62755 + 15.8388i 0.330386 + 0.686053i
\(534\) 3.15213i 0.136406i
\(535\) 10.1283 4.87755i 0.437886 0.210875i
\(536\) 3.07310 2.45071i 0.132738 0.105855i
\(537\) −3.32042 + 2.64795i −0.143287 + 0.114267i
\(538\) 10.1664 4.89586i 0.438303 0.211076i
\(539\) 33.9439i 1.46207i
\(540\) −2.99894 6.22737i −0.129054 0.267983i
\(541\) 8.01795 1.83004i 0.344719 0.0786797i −0.0466566 0.998911i \(-0.514857\pi\)
0.391375 + 0.920231i \(0.372000\pi\)
\(542\) −0.482542 0.232380i −0.0207269 0.00998157i
\(543\) −6.85750 + 14.2397i −0.294283 + 0.611086i
\(544\) −4.65279 + 20.3852i −0.199487 + 0.874009i
\(545\) 2.35876 + 2.95779i 0.101038 + 0.126698i
\(546\) −0.698062 + 0.875342i −0.0298743 + 0.0374612i
\(547\) −5.75504 25.2145i −0.246068 1.07809i −0.935384 0.353633i \(-0.884946\pi\)
0.689316 0.724461i \(-0.257911\pi\)
\(548\) −30.2734 6.90970i −1.29321 0.295168i
\(549\) −1.85634 1.48039i −0.0792269 0.0631813i
\(550\) −9.93767 −0.423744
\(551\) 0 0
\(552\) −4.84415 −0.206181
\(553\) −1.30165 1.03803i −0.0553518 0.0441416i
\(554\) 4.62732 + 1.05615i 0.196596 + 0.0448717i
\(555\) 0.948394 + 4.15519i 0.0402571 + 0.176378i
\(556\) −18.7262 + 23.4819i −0.794166 + 0.995853i
\(557\) −14.3463 17.9897i −0.607873 0.762248i 0.378709 0.925516i \(-0.376368\pi\)
−0.986582 + 0.163268i \(0.947797\pi\)
\(558\) 0.957656 4.19576i 0.0405408 0.177621i
\(559\) −8.35328 + 17.3458i −0.353306 + 0.733648i
\(560\) 0.634375 + 0.305499i 0.0268072 + 0.0129097i
\(561\) 26.9836 6.15883i 1.13925 0.260026i
\(562\) −3.14351 6.52757i −0.132601 0.275349i
\(563\) 43.1159i 1.81712i −0.417757 0.908559i \(-0.637184\pi\)
0.417757 0.908559i \(-0.362816\pi\)
\(564\) −13.0477 + 6.28345i −0.549408 + 0.264581i
\(565\) 5.77541 4.60574i 0.242973 0.193765i
\(566\) 1.82567 1.45593i 0.0767388 0.0611972i
\(567\) 0.828552 0.399010i 0.0347959 0.0167568i
\(568\) 12.4112i 0.520762i
\(569\) −10.5487 21.9046i −0.442225 0.918289i −0.996310 0.0858292i \(-0.972646\pi\)
0.554085 0.832460i \(-0.313068\pi\)
\(570\) −0.882455 + 0.201415i −0.0369620 + 0.00843633i
\(571\) −16.6576 8.02190i −0.697100 0.335706i 0.0515504 0.998670i \(-0.483584\pi\)
−0.748651 + 0.662965i \(0.769298\pi\)
\(572\) 21.8281 45.3265i 0.912677 1.89519i
\(573\) 2.96077 12.9720i 0.123688 0.541913i
\(574\) −0.307979 0.386193i −0.0128548 0.0161194i
\(575\) −6.47182 + 8.11541i −0.269894 + 0.338436i
\(576\) −1.16756 5.11543i −0.0486485 0.213143i
\(577\) −36.9090 8.42423i −1.53654 0.350705i −0.631277 0.775557i \(-0.717469\pi\)
−0.905263 + 0.424852i \(0.860326\pi\)
\(578\) 1.11193 + 0.886731i 0.0462500 + 0.0368832i
\(579\) 28.3424 1.17787
\(580\) 0 0
\(581\) 1.58987 0.0659591
\(582\) −0.0783611 0.0624909i −0.00324817 0.00259033i
\(583\) 22.5929 + 5.15668i 0.935702 + 0.213568i
\(584\) 2.11811 + 9.28006i 0.0876481 + 0.384012i
\(585\) −3.52446 + 4.41953i −0.145718 + 0.182725i
\(586\) 1.87681 + 2.35344i 0.0775301 + 0.0972197i
\(587\) 3.21217 14.0734i 0.132580 0.580873i −0.864372 0.502854i \(-0.832283\pi\)
0.996952 0.0780188i \(-0.0248594\pi\)
\(588\) 6.70031 13.9133i 0.276316 0.573777i
\(589\) 14.2104 + 6.84339i 0.585531 + 0.281977i
\(590\) −3.75140 + 0.856232i −0.154443 + 0.0352505i
\(591\) −10.5817 21.9731i −0.435273 0.903855i
\(592\) 14.0804i 0.578700i
\(593\) −11.7143 + 5.64132i −0.481050 + 0.231661i −0.658662 0.752439i \(-0.728877\pi\)
0.177612 + 0.984101i \(0.443163\pi\)
\(594\) 9.52551 7.59634i 0.390837 0.311682i
\(595\) 0.867767 0.692021i 0.0355750 0.0283701i
\(596\) 30.2080 14.5474i 1.23737 0.595886i
\(597\) 1.09113i 0.0446570i
\(598\) 2.50605 + 5.20387i 0.102480 + 0.212802i
\(599\) 11.7903 2.69106i 0.481739 0.109954i 0.0252470 0.999681i \(-0.491963\pi\)
0.456492 + 0.889727i \(0.349106\pi\)
\(600\) −8.59448 4.13888i −0.350868 0.168969i
\(601\) −9.69609 + 20.1341i −0.395512 + 0.821289i 0.604189 + 0.796841i \(0.293497\pi\)
−0.999701 + 0.0244478i \(0.992217\pi\)
\(602\) 0.120374 0.527395i 0.00490609 0.0214950i
\(603\) 2.09299 + 2.62453i 0.0852332 + 0.106879i
\(604\) 8.45742 10.6053i 0.344127 0.431522i
\(605\) −2.06249 9.03636i −0.0838522 0.367380i
\(606\) 1.74731 + 0.398813i 0.0709798 + 0.0162007i
\(607\) −32.4216 25.8553i −1.31595 1.04944i −0.994740 0.102428i \(-0.967339\pi\)
−0.321210 0.947008i \(-0.604090\pi\)
\(608\) −10.9661 −0.444736
\(609\) 0 0
\(610\) 0.506041 0.0204890
\(611\) 28.4841 + 22.7153i 1.15234 + 0.918962i
\(612\) −11.4083 2.60388i −0.461154 0.105255i
\(613\) 5.73759 + 25.1380i 0.231739 + 1.01531i 0.948197 + 0.317684i \(0.102905\pi\)
−0.716458 + 0.697631i \(0.754238\pi\)
\(614\) 1.25368 1.57207i 0.0505946 0.0634436i
\(615\) 1.67324 + 2.09817i 0.0674714 + 0.0846064i
\(616\) −0.663678 + 2.90776i −0.0267403 + 0.117157i
\(617\) −3.84652 + 7.98739i −0.154855 + 0.321560i −0.963935 0.266139i \(-0.914252\pi\)
0.809079 + 0.587699i \(0.199966\pi\)
\(618\) −6.82640 3.28742i −0.274598 0.132239i
\(619\) −28.7129 + 6.55352i −1.15407 + 0.263408i −0.756393 0.654118i \(-0.773040\pi\)
−0.397675 + 0.917526i \(0.630183\pi\)
\(620\) −3.62068 7.51842i −0.145410 0.301947i
\(621\) 12.7259i 0.510672i
\(622\) 5.05884 2.43621i 0.202841 0.0976831i
\(623\) 1.58489 1.26391i 0.0634972 0.0506373i
\(624\) 15.7112 12.5293i 0.628953 0.501574i
\(625\) −16.2588 + 7.82984i −0.650353 + 0.313193i
\(626\) 8.56273i 0.342235i
\(627\) 6.29814 + 13.0782i 0.251523 + 0.522294i
\(628\) 32.0419 7.31336i 1.27861 0.291835i
\(629\) 19.9976 + 9.63034i 0.797357 + 0.383987i
\(630\) 0.0689153 0.143104i 0.00274565 0.00570141i
\(631\) 5.28956 23.1751i 0.210574 0.922585i −0.753604 0.657329i \(-0.771686\pi\)
0.964178 0.265256i \(-0.0854566\pi\)
\(632\) −4.92125 6.17105i −0.195757 0.245471i
\(633\) 14.2036 17.8107i 0.564541 0.707912i
\(634\) 0.284052 + 1.24451i 0.0112812 + 0.0494260i
\(635\) −0.699523 0.159662i −0.0277597 0.00633598i
\(636\) 8.24275 + 6.57338i 0.326846 + 0.260651i
\(637\) −38.8495 −1.53927
\(638\) 0 0
\(639\) 10.5996 0.419312
\(640\) 5.90904 + 4.71230i 0.233575 + 0.186270i
\(641\) −27.7518 6.33417i −1.09613 0.250185i −0.364034 0.931386i \(-0.618601\pi\)
−0.732096 + 0.681201i \(0.761458\pi\)
\(642\) 2.00604 + 8.78904i 0.0791721 + 0.346876i
\(643\) 12.0625 15.1259i 0.475698 0.596507i −0.484858 0.874593i \(-0.661129\pi\)
0.960556 + 0.278086i \(0.0897001\pi\)
\(644\) 0.920583 + 1.15437i 0.0362761 + 0.0454887i
\(645\) −0.653989 + 2.86531i −0.0257508 + 0.112822i
\(646\) −2.04524 + 4.24698i −0.0804688 + 0.167095i
\(647\) 20.4650 + 9.85540i 0.804560 + 0.387456i 0.790513 0.612446i \(-0.209814\pi\)
0.0140475 + 0.999901i \(0.495528\pi\)
\(648\) 4.25057 0.970165i 0.166978 0.0381117i
\(649\) 26.7740 + 55.5967i 1.05097 + 2.18236i
\(650\) 11.3739i 0.446120i
\(651\) 2.68329 1.29221i 0.105167 0.0506455i
\(652\) 17.8084 14.2017i 0.697430 0.556182i
\(653\) 17.9284 14.2974i 0.701591 0.559500i −0.206411 0.978465i \(-0.566179\pi\)
0.908002 + 0.418965i \(0.137607\pi\)
\(654\) −2.73341 + 1.31634i −0.106885 + 0.0514729i
\(655\) 5.55124i 0.216905i
\(656\) 3.84678 + 7.98792i 0.150191 + 0.311876i
\(657\) −7.92548 + 1.80894i −0.309202 + 0.0705734i
\(658\) −0.922312 0.444162i −0.0359555 0.0173152i
\(659\) −8.32111 + 17.2790i −0.324145 + 0.673093i −0.997824 0.0659303i \(-0.978998\pi\)
0.673680 + 0.739023i \(0.264713\pi\)
\(660\) 1.70895 7.48739i 0.0665207 0.291446i
\(661\) −2.11141 2.64762i −0.0821243 0.102981i 0.739072 0.673626i \(-0.235264\pi\)
−0.821196 + 0.570646i \(0.806693\pi\)
\(662\) −0.869641 + 1.09050i −0.0337996 + 0.0423833i
\(663\) −7.04892 30.8833i −0.273757 1.19941i
\(664\) 7.34852 + 1.67725i 0.285178 + 0.0650900i
\(665\) 0.455108 + 0.362937i 0.0176483 + 0.0140741i
\(666\) 3.17629 0.123079
\(667\) 0 0
\(668\) 1.43535 0.0555355
\(669\) 1.77274 + 1.41371i 0.0685382 + 0.0546574i
\(670\) −0.697510 0.159202i −0.0269472 0.00615051i
\(671\) −1.80582 7.91183i −0.0697130 0.305433i
\(672\) −1.29105 + 1.61893i −0.0498034 + 0.0624515i
\(673\) −2.97434 3.72971i −0.114653 0.143770i 0.721193 0.692734i \(-0.243594\pi\)
−0.835846 + 0.548964i \(0.815022\pi\)
\(674\) 0.493427 2.16184i 0.0190061 0.0832711i
\(675\) 10.8731 22.5782i 0.418506 0.869036i
\(676\) −30.7717 14.8189i −1.18353 0.569957i
\(677\) 42.0097 9.58844i 1.61456 0.368514i 0.682522 0.730865i \(-0.260883\pi\)
0.932042 + 0.362351i \(0.118026\pi\)
\(678\) 2.57030 + 5.33728i 0.0987118 + 0.204977i
\(679\) 0.0644568i 0.00247362i
\(680\) 4.74094 2.28312i 0.181807 0.0875535i
\(681\) −13.5088 + 10.7729i −0.517659 + 0.412820i
\(682\) 11.5003 9.17121i 0.440371 0.351184i
\(683\) −21.1124 + 10.1672i −0.807842 + 0.389036i −0.791758 0.610834i \(-0.790834\pi\)
−0.0160838 + 0.999871i \(0.505120\pi\)
\(684\) 6.13706i 0.234656i
\(685\) 5.17418 + 10.7443i 0.197695 + 0.410518i
\(686\) 2.14819 0.490311i 0.0820184 0.0187202i
\(687\) −14.3497 6.91043i −0.547474 0.263649i
\(688\) −4.21279 + 8.74794i −0.160611 + 0.333512i
\(689\) 5.90193 25.8580i 0.224846 0.985113i
\(690\) 0.549745 + 0.689359i 0.0209284 + 0.0262434i
\(691\) 26.8959 33.7264i 1.02317 1.28301i 0.0646716 0.997907i \(-0.479400\pi\)
0.958496 0.285105i \(-0.0920285\pi\)
\(692\) −3.67025 16.0804i −0.139522 0.611286i
\(693\) −2.48333 0.566803i −0.0943337 0.0215311i
\(694\) 6.99974 + 5.58211i 0.265706 + 0.211894i
\(695\) 11.5345 0.437529
\(696\) 0 0
\(697\) 13.9758 0.529373
\(698\) −7.12916 5.68532i −0.269843 0.215192i
\(699\) −10.7784 2.46011i −0.407678 0.0930498i
\(700\) 0.646989 + 2.83464i 0.0244539 + 0.107139i
\(701\) −2.63789 + 3.30781i −0.0996318 + 0.124934i −0.829148 0.559029i \(-0.811174\pi\)
0.729516 + 0.683964i \(0.239745\pi\)
\(702\) −8.69418 10.9022i −0.328141 0.411475i
\(703\) −2.59030 + 11.3489i −0.0976951 + 0.428030i
\(704\) 7.78111 16.1576i 0.293262 0.608964i
\(705\) 5.01089 + 2.41312i 0.188721 + 0.0908832i
\(706\) 7.80887 1.78232i 0.293891 0.0670786i
\(707\) −0.500096 1.03846i −0.0188080 0.0390553i
\(708\) 28.0737i 1.05507i
\(709\) 12.8872 6.20613i 0.483987 0.233076i −0.175946 0.984400i \(-0.556299\pi\)
0.659934 + 0.751324i \(0.270584\pi\)
\(710\) −1.76621 + 1.40850i −0.0662845 + 0.0528601i
\(711\) 5.27028 4.20291i 0.197651 0.157621i
\(712\) 8.65883 4.16987i 0.324504 0.156273i
\(713\) 15.3642i 0.575393i
\(714\) 0.386193 + 0.801938i 0.0144529 + 0.0300118i
\(715\) −18.8362 + 4.29925i −0.704436 + 0.160783i
\(716\) 5.52930 + 2.66277i 0.206640 + 0.0995125i
\(717\) 13.8316 28.7216i 0.516551 1.07263i
\(718\) −2.33997 + 10.2521i −0.0873269 + 0.382604i
\(719\) −14.6151 18.3267i −0.545050 0.683471i 0.430666 0.902511i \(-0.358279\pi\)
−0.975716 + 0.219041i \(0.929707\pi\)
\(720\) −1.77748 + 2.22889i −0.0662427 + 0.0830658i
\(721\) 1.08426 + 4.75046i 0.0403800 + 0.176916i
\(722\) 5.83359 + 1.33148i 0.217104 + 0.0495525i
\(723\) 9.48727 + 7.56584i 0.352835 + 0.281377i
\(724\) 22.8388 0.848796
\(725\) 0 0
\(726\) 7.43296 0.275863
\(727\) 40.6534 + 32.4200i 1.50775 + 1.20239i 0.919114 + 0.393992i \(0.128906\pi\)
0.588636 + 0.808398i \(0.299665\pi\)
\(728\) 3.32800 + 0.759594i 0.123344 + 0.0281524i
\(729\) 5.44265 + 23.8458i 0.201580 + 0.883178i
\(730\) 1.08024 1.35458i 0.0399817 0.0501354i
\(731\) 9.54288 + 11.9664i 0.352956 + 0.442593i
\(732\) 0.821552 3.59945i 0.0303654 0.133040i
\(733\) −14.8346 + 30.8044i −0.547929 + 1.13779i 0.424681 + 0.905343i \(0.360386\pi\)
−0.972610 + 0.232443i \(0.925328\pi\)
\(734\) 11.8860 + 5.72398i 0.438719 + 0.211276i
\(735\) −5.78195 + 1.31969i −0.213270 + 0.0486776i
\(736\) 4.63489 + 9.62445i 0.170844 + 0.354762i
\(737\) 11.4735i 0.422632i
\(738\) 1.80194 0.867767i 0.0663302 0.0319430i
\(739\) −31.0958 + 24.7981i −1.14388 + 0.912211i −0.997035 0.0769489i \(-0.975482\pi\)
−0.146842 + 0.989160i \(0.546911\pi\)
\(740\) 4.81517 3.83997i 0.177009 0.141160i
\(741\) 14.9683 7.20836i 0.549874 0.264806i
\(742\) 0.745251i 0.0273590i
\(743\) 3.11451 + 6.46734i 0.114260 + 0.237264i 0.950255 0.311474i \(-0.100823\pi\)
−0.835994 + 0.548738i \(0.815108\pi\)
\(744\) 13.7656 3.14191i 0.504671 0.115188i
\(745\) −11.6012 5.58684i −0.425035 0.204686i
\(746\) 4.86369 10.0996i 0.178072 0.369771i
\(747\) −1.43243 + 6.27588i −0.0524098 + 0.229622i
\(748\) −24.9366 31.2695i −0.911773 1.14333i
\(749\) 3.61476 4.53277i 0.132080 0.165624i
\(750\) 0.813651 + 3.56484i 0.0297103 + 0.130169i
\(751\) −26.4874 6.04556i −0.966537 0.220606i −0.290010 0.957024i \(-0.593659\pi\)
−0.676527 + 0.736418i \(0.736516\pi\)
\(752\) 14.3653 + 11.4559i 0.523848 + 0.417755i
\(753\) −12.1709 −0.443533
\(754\) 0 0
\(755\) −5.20941 −0.189590
\(756\) −2.78695 2.22252i −0.101361 0.0808323i
\(757\) −23.0986 5.27210i −0.839533 0.191618i −0.218927 0.975741i \(-0.570256\pi\)
−0.620605 + 0.784123i \(0.713113\pi\)
\(758\) 2.66464 + 11.6745i 0.0967840 + 0.424038i
\(759\) 8.81618 11.0551i 0.320007 0.401276i
\(760\) 1.72066 + 2.15764i 0.0624149 + 0.0782658i
\(761\) 3.17187 13.8969i 0.114980 0.503762i −0.884338 0.466847i \(-0.845390\pi\)
0.999318 0.0369148i \(-0.0117530\pi\)
\(762\) 0.249657 0.518418i 0.00904411 0.0187803i
\(763\) 1.75786 + 0.846543i 0.0636390 + 0.0306469i
\(764\) −18.7451 + 4.27844i −0.678173 + 0.154788i
\(765\) 1.94986 + 4.04892i 0.0704972 + 0.146389i
\(766\) 8.75361i 0.316281i
\(767\) 63.6316 30.6434i 2.29760 1.10647i
\(768\) 2.34129 1.86712i 0.0844841 0.0673738i
\(769\) −34.9530 + 27.8741i −1.26044 + 1.00517i −0.261235 + 0.965275i \(0.584130\pi\)
−0.999204 + 0.0398911i \(0.987299\pi\)
\(770\) 0.489115 0.235545i 0.0176265 0.00848846i
\(771\) 20.3967i 0.734570i
\(772\) −17.7701 36.9001i −0.639561 1.32806i
\(773\) 22.3733 5.10656i 0.804712 0.183670i 0.199670 0.979863i \(-0.436013\pi\)
0.605043 + 0.796193i \(0.293156\pi\)
\(774\) 1.97339 + 0.950332i 0.0709319 + 0.0341590i
\(775\) 13.1273 27.2591i 0.471547 0.979176i
\(776\) −0.0679992 + 0.297924i −0.00244103 + 0.0106948i
\(777\) 1.37047 + 1.71851i 0.0491653 + 0.0616514i
\(778\) −6.89679 + 8.64830i −0.247262 + 0.310057i
\(779\) 1.63102 + 7.14598i 0.0584374 + 0.256031i
\(780\) −8.56948 1.95593i −0.306836 0.0700334i
\(781\) 28.3243 + 22.5879i 1.01352 + 0.808259i
\(782\) 4.59179 0.164202
\(783\) 0 0
\(784\) −19.5929 −0.699745
\(785\) −9.86822 7.86964i −0.352212 0.280880i
\(786\) −4.34013 0.990607i −0.154807 0.0353338i
\(787\) 3.18933 + 13.9734i 0.113687 + 0.498097i 0.999425 + 0.0339106i \(0.0107962\pi\)
−0.885737 + 0.464187i \(0.846347\pi\)
\(788\) −21.9731 + 27.5535i −0.782761 + 0.981551i
\(789\) 18.4445 + 23.1287i 0.656642 + 0.823403i
\(790\) −0.319692 + 1.40066i −0.0113741 + 0.0498333i
\(791\) 1.65297 3.43243i 0.0587729 0.122043i
\(792\) −10.8802 5.23961i −0.386610 0.186181i
\(793\) −9.05525 + 2.06680i −0.321562 + 0.0733943i
\(794\) −0.771347 1.60172i −0.0273741 0.0568429i
\(795\) 4.04892i 0.143600i
\(796\) 1.42058 0.684117i 0.0503512 0.0242479i
\(797\) −7.96942 + 6.35540i −0.282291 + 0.225120i −0.754391 0.656425i \(-0.772068\pi\)
0.472100 + 0.881545i \(0.343496\pi\)
\(798\) −0.364968 + 0.291053i −0.0129197 + 0.0103032i
\(799\) 26.0954 12.5669i 0.923190 0.444585i
\(800\) 21.0358i 0.743727i
\(801\) 3.56121 + 7.39493i 0.125829 + 0.261287i
\(802\) 10.8068 2.46658i 0.381600 0.0870978i
\(803\) −25.0335 12.0555i −0.883412 0.425429i
\(804\) −2.26480 + 4.70291i −0.0798734 + 0.165859i
\(805\) 0.126178 0.552823i 0.00444720 0.0194844i
\(806\) −10.4966 13.1624i −0.369729 0.463625i
\(807\) −19.7126 + 24.7188i −0.693916 + 0.870143i
\(808\) −1.21595 5.32741i −0.0427769 0.187418i
\(809\) 8.74788 + 1.99665i 0.307559 + 0.0701984i 0.373515 0.927624i \(-0.378152\pi\)
−0.0659557 + 0.997823i \(0.521010\pi\)
\(810\) −0.620443 0.494787i −0.0218002 0.0173850i
\(811\) 28.5628 1.00298 0.501489 0.865164i \(-0.332786\pi\)
0.501489 + 0.865164i \(0.332786\pi\)
\(812\) 0 0
\(813\) 1.50066 0.0526306
\(814\) 8.48774 + 6.76875i 0.297495 + 0.237245i
\(815\) −8.52832 1.94653i −0.298734 0.0681841i
\(816\) −3.55496 15.5753i −0.124448 0.545244i
\(817\) −5.00484 + 6.27588i −0.175097 + 0.219565i
\(818\) 0.0785888 + 0.0985473i 0.00274779 + 0.00344562i
\(819\) −0.648718 + 2.84222i −0.0226680 + 0.0993152i
\(820\) 1.68260 3.49396i 0.0587590 0.122014i
\(821\) 10.2126 + 4.91813i 0.356422 + 0.171644i 0.603522 0.797346i \(-0.293763\pi\)
−0.247100 + 0.968990i \(0.579478\pi\)
\(822\) −9.32355 + 2.12804i −0.325196 + 0.0742239i
\(823\) −2.46106 5.11045i −0.0857872 0.178139i 0.853662 0.520828i \(-0.174377\pi\)
−0.939449 + 0.342689i \(0.888662\pi\)
\(824\) 23.1008i 0.804755i
\(825\) 25.0872 12.0814i 0.873426 0.420620i
\(826\) −1.55151 + 1.23729i −0.0539841 + 0.0430509i
\(827\) −2.26984 + 1.81013i −0.0789300 + 0.0629445i −0.662160 0.749363i \(-0.730360\pi\)
0.583230 + 0.812307i \(0.301789\pi\)
\(828\) −5.38620 + 2.59386i −0.187183 + 0.0901428i
\(829\) 45.2137i 1.57034i −0.619282 0.785169i \(-0.712576\pi\)
0.619282 0.785169i \(-0.287424\pi\)
\(830\) −0.595272 1.23609i −0.0206622 0.0429055i
\(831\) −12.9655 + 2.95928i −0.449766 + 0.102656i
\(832\) −18.4928 8.90565i −0.641121 0.308748i
\(833\) −13.4006 + 27.8267i −0.464304 + 0.964138i
\(834\) −2.05831 + 9.01805i −0.0712735 + 0.312269i
\(835\) −0.343691 0.430975i −0.0118939 0.0149145i
\(836\) 13.0782 16.3996i 0.452320 0.567191i
\(837\) 8.25398 + 36.1630i 0.285299 + 1.24998i
\(838\) 11.4930 + 2.62319i 0.397018 + 0.0906167i
\(839\) 35.6716 + 28.4471i 1.23152 + 0.982104i 0.999957 + 0.00928374i \(0.00295515\pi\)
0.231562 + 0.972820i \(0.425616\pi\)
\(840\) 0.521106 0.0179799
\(841\) 0 0
\(842\) 7.82477 0.269659
\(843\) 15.8713 + 12.6570i 0.546638 + 0.435929i
\(844\) −32.0938 7.32520i −1.10471 0.252144i
\(845\) 2.91872 + 12.7878i 0.100407 + 0.439912i
\(846\) 2.58426 3.24056i 0.0888487 0.111413i
\(847\) −2.98039 3.73729i −0.102407 0.128415i
\(848\) 2.97650 13.0409i 0.102213 0.447826i
\(849\) −2.83885 + 5.89493i −0.0974290 + 0.202313i
\(850\) 8.14675 + 3.92327i 0.279431 + 0.134567i
\(851\) 11.0551 2.52326i 0.378965 0.0864963i
\(852\) 7.15122 + 14.8497i 0.244997 + 0.508741i
\(853\) 36.9288i 1.26442i 0.774797 + 0.632210i \(0.217852\pi\)
−0.774797 + 0.632210i \(0.782148\pi\)
\(854\) 0.235135 0.113235i 0.00804615 0.00387482i
\(855\) −1.84270 + 1.46950i −0.0630189 + 0.0502559i
\(856\) 21.4896 17.1374i 0.734498 0.585743i
\(857\) −32.0296 + 15.4246i −1.09411 + 0.526896i −0.891802 0.452426i \(-0.850559\pi\)
−0.202308 + 0.979322i \(0.564844\pi\)
\(858\) 15.4940i 0.528955i
\(859\) 18.3885 + 38.1841i 0.627408 + 1.30283i 0.936124 + 0.351671i \(0.114386\pi\)
−0.308716 + 0.951154i \(0.599899\pi\)
\(860\) 4.14050 0.945042i 0.141190 0.0322257i
\(861\) 1.24698 + 0.600514i 0.0424970 + 0.0204655i
\(862\) 5.36716 11.1450i 0.182806 0.379601i
\(863\) 11.0770 48.5316i 0.377066 1.65204i −0.329327 0.944216i \(-0.606822\pi\)
0.706393 0.707819i \(-0.250321\pi\)
\(864\) −16.0797 20.1633i −0.547043 0.685970i
\(865\) −3.94943 + 4.95242i −0.134285 + 0.168387i
\(866\) 0.581868 + 2.54933i 0.0197727 + 0.0866298i
\(867\) −3.88502 0.886731i −0.131942 0.0301150i
\(868\) −3.36474 2.68329i −0.114207 0.0910769i
\(869\) 23.0398 0.781572
\(870\) 0 0
\(871\) 13.1317 0.444950
\(872\) 7.23191 + 5.76726i 0.244903 + 0.195304i
\(873\) −0.254437 0.0580735i −0.00861138 0.00196549i
\(874\) 0.535876 + 2.34783i 0.0181263 + 0.0794164i
\(875\) 1.46615 1.83849i 0.0495649 0.0621524i
\(876\) −7.88135 9.88291i −0.266286 0.333912i
\(877\) −4.87167 + 21.3442i −0.164504 + 0.720741i 0.823627 + 0.567132i \(0.191947\pi\)
−0.988132 + 0.153610i \(0.950910\pi\)
\(878\) −3.03952 + 6.31163i −0.102579 + 0.213007i
\(879\) −7.59903 3.65950i −0.256309 0.123432i
\(880\) −9.49962 + 2.16823i −0.320232 + 0.0730909i
\(881\) 14.5485 + 30.2102i 0.490150 + 1.01781i 0.988555 + 0.150863i \(0.0482052\pi\)
−0.498404 + 0.866945i \(0.666081\pi\)
\(882\) 4.41981i 0.148823i
\(883\) −14.5303 + 6.99741i −0.488982 + 0.235481i −0.662094 0.749421i \(-0.730332\pi\)
0.173112 + 0.984902i \(0.444618\pi\)
\(884\) −35.7886 + 28.5405i −1.20370 + 0.959920i
\(885\) 8.42931 6.72215i 0.283348 0.225963i
\(886\) 2.70195 1.30119i 0.0907737 0.0437143i
\(887\) 52.7391i 1.77081i 0.464823 + 0.885403i \(0.346118\pi\)
−0.464823 + 0.885403i \(0.653882\pi\)
\(888\) 4.52145 + 9.38889i 0.151730 + 0.315070i
\(889\) −0.360765 + 0.0823422i −0.0120997 + 0.00276167i
\(890\) −1.57606 0.758993i −0.0528298 0.0254415i
\(891\) −5.52181 + 11.4661i −0.184987 + 0.384130i
\(892\) 0.729094 3.19437i 0.0244119 0.106955i
\(893\) 9.47099 + 11.8762i 0.316935 + 0.397424i
\(894\) 6.43817 8.07321i 0.215325 0.270009i
\(895\) −0.524459 2.29780i −0.0175307 0.0768071i
\(896\) 3.80013 + 0.867354i 0.126953 + 0.0289763i
\(897\) −12.6528 10.0903i −0.422466 0.336905i
\(898\) 5.48294 0.182968
\(899\) 0 0
\(900\) −11.7724 −0.392413
\(901\) −16.4855 13.1468i −0.549212 0.437982i
\(902\) 6.66440 + 1.52111i 0.221900 + 0.0506473i
\(903\) 0.337282 + 1.47773i 0.0112240 + 0.0491757i
\(904\) 11.2612 14.1211i 0.374543 0.469661i
\(905\) −5.46867 6.85750i −0.181785 0.227951i
\(906\) 0.929608 4.07288i 0.0308842 0.135312i
\(907\) 12.9487 26.8882i 0.429954 0.892809i −0.567626 0.823286i \(-0.692138\pi\)
0.997580 0.0695225i \(-0.0221476\pi\)
\(908\) 22.4955 + 10.8332i 0.746538 + 0.359514i
\(909\) 4.54979 1.03846i 0.150907 0.0344435i
\(910\) −0.269587 0.559802i −0.00893671 0.0185573i
\(911\) 9.34050i 0.309465i 0.987956 + 0.154732i \(0.0494515\pi\)
−0.987956 + 0.154732i \(0.950548\pi\)
\(912\) 7.54892 3.63537i 0.249970 0.120379i
\(913\) −17.2018 + 13.7180i −0.569296 + 0.453999i
\(914\) −4.75383 + 3.79105i −0.157243 + 0.125397i
\(915\) −1.27748 + 0.615201i −0.0422322 + 0.0203379i
\(916\) 23.0151i 0.760439i
\(917\) 1.24218 + 2.57942i 0.0410205 + 0.0851798i
\(918\) −10.8078 + 2.46681i −0.356711 + 0.0814169i
\(919\) 16.5966 + 7.99252i 0.547473 + 0.263649i 0.687110 0.726554i \(-0.258879\pi\)
−0.139637 + 0.990203i \(0.544594\pi\)
\(920\) 1.16641 2.42208i 0.0384554 0.0798535i
\(921\) −1.25368 + 5.49275i −0.0413103 + 0.180992i
\(922\) −3.22103 4.03904i −0.106079 0.133019i
\(923\) 25.8523 32.4178i 0.850940 1.06705i
\(924\) −0.881355 3.86147i −0.0289944 0.127033i
\(925\) 21.7699 + 4.96884i 0.715790 + 0.163374i
\(926\) −2.52007 2.00969i −0.0828146 0.0660425i
\(927\) −19.7289 −0.647981
\(928\) 0 0
\(929\) −4.84654 −0.159010 −0.0795050 0.996834i \(-0.525334\pi\)
−0.0795050 + 0.996834i \(0.525334\pi\)
\(930\) −2.00933 1.60238i −0.0658884 0.0525442i
\(931\) −15.7919 3.60441i −0.517560 0.118130i
\(932\) 3.55496 + 15.5753i 0.116447 + 0.510186i
\(933\) −9.80910 + 12.3002i −0.321136 + 0.402691i
\(934\) −0.572548 0.717953i −0.0187343 0.0234921i
\(935\) −3.41789 + 14.9748i −0.111777 + 0.489728i
\(936\) −5.99684 + 12.4526i −0.196013 + 0.407025i
\(937\) −40.2863 19.4008i −1.31609 0.633798i −0.361686 0.932300i \(-0.617799\pi\)
−0.954409 + 0.298502i \(0.903513\pi\)
\(938\) −0.359726 + 0.0821052i −0.0117455 + 0.00268083i
\(939\) 10.4098 + 21.6163i 0.339712 + 0.705420i
\(940\) 8.03684i 0.262133i
\(941\) 12.2397 5.89435i 0.399004 0.192150i −0.223611 0.974678i \(-0.571785\pi\)
0.622615 + 0.782528i \(0.286070\pi\)
\(942\) 7.91370 6.31096i 0.257842 0.205622i
\(943\) 5.58231 4.45175i 0.181785 0.144969i
\(944\) 32.0911 15.4543i 1.04448 0.502994i
\(945\) 1.36898i 0.0445328i
\(946\) 3.24814 + 6.74482i 0.105606 + 0.219293i
\(947\) 14.6352 3.34040i 0.475581 0.108548i 0.0219901 0.999758i \(-0.493000\pi\)
0.453591 + 0.891210i \(0.350143\pi\)
\(948\) 9.44385 + 4.54792i 0.306722 + 0.147709i
\(949\) −13.7978 + 28.6514i −0.447894 + 0.930062i
\(950\) −1.05525 + 4.62337i −0.0342369 + 0.150002i
\(951\) −2.23005 2.79640i −0.0723144 0.0906794i
\(952\) 1.69202 2.12173i 0.0548387 0.0687656i
\(953\) −11.5365 50.5449i −0.373705 1.63731i −0.716276 0.697817i \(-0.754155\pi\)
0.342571 0.939492i \(-0.388702\pi\)
\(954\) −2.94180 0.671448i −0.0952444 0.0217389i
\(955\) 5.77308 + 4.60388i 0.186812 + 0.148978i
\(956\) −46.0659 −1.48988
\(957\) 0 0
\(958\) 1.73078 0.0559188
\(959\) 4.80843 + 3.83459i 0.155272 + 0.123825i
\(960\) −3.05478 0.697234i −0.0985927 0.0225031i
\(961\) 3.06704 + 13.4376i 0.0989368 + 0.433470i
\(962\) 7.74698 9.71441i 0.249773 0.313205i
\(963\) 14.6359 + 18.3528i 0.471634 + 0.591411i
\(964\) 3.90193 17.0955i 0.125673 0.550608i
\(965\) −6.82450 + 14.1712i −0.219688 + 0.456187i
\(966\) 0.409698 + 0.197300i 0.0131818 + 0.00634803i
\(967\) 40.5813 9.26241i 1.30501 0.297859i 0.487168 0.873308i \(-0.338030\pi\)
0.817838 + 0.575449i \(0.195173\pi\)
\(968\) −9.83288 20.4182i −0.316041 0.656265i
\(969\) 13.2078i 0.424294i
\(970\) 0.0501138 0.0241335i 0.00160906 0.000774881i
\(971\) 43.6051 34.7739i 1.39935 1.11595i 0.421459 0.906847i \(-0.361518\pi\)
0.977894 0.209100i \(-0.0670534\pi\)
\(972\) 18.8999 15.0722i 0.606215 0.483440i
\(973\) 5.35958 2.58104i 0.171820 0.0827443i
\(974\) 4.38165i 0.140397i
\(975\) −13.8274 28.7129i −0.442831 0.919548i
\(976\) −4.56681 + 1.04234i −0.146180 + 0.0333646i
\(977\) −44.1100 21.2422i −1.41120 0.679600i −0.435803 0.900042i \(-0.643536\pi\)
−0.975400 + 0.220442i \(0.929250\pi\)
\(978\) 3.04372 6.32036i 0.0973275 0.202103i
\(979\) −6.24243 + 27.3499i −0.199509 + 0.874106i
\(980\) 5.34332 + 6.70031i 0.170686 + 0.214034i
\(981\) −4.92543 + 6.17629i −0.157257 + 0.197194i
\(982\) 0.771570 + 3.38047i 0.0246218 + 0.107875i
\(983\) 5.04360 + 1.15117i 0.160866 + 0.0367166i 0.302195 0.953246i \(-0.402281\pi\)
−0.141329 + 0.989963i \(0.545138\pi\)
\(984\) 5.13011 + 4.09113i 0.163542 + 0.130420i
\(985\) 13.5345 0.431246
\(986\) 0 0
\(987\) 2.86831 0.0912994
\(988\) −18.7697 14.9683i −0.597142 0.476205i
\(989\) 7.62335 + 1.73998i 0.242408 + 0.0553281i
\(990\) 0.489115 + 2.14295i 0.0155451 + 0.0681075i
\(991\) 10.5075 13.1760i 0.333783 0.418550i −0.586411 0.810014i \(-0.699460\pi\)
0.920194 + 0.391463i \(0.128031\pi\)
\(992\) −19.4133 24.3436i −0.616374 0.772909i
\(993\) 0.869641 3.81015i 0.0275972 0.120911i
\(994\) −0.505503 + 1.04969i −0.0160336 + 0.0332940i
\(995\) −0.545565 0.262730i −0.0172956 0.00832911i
\(996\) −9.75872 + 2.22737i −0.309217 + 0.0705768i
\(997\) −16.5786 34.4257i −0.525048 1.09027i −0.979860 0.199686i \(-0.936008\pi\)
0.454812 0.890588i \(-0.349707\pi\)
\(998\) 9.15239i 0.289714i
\(999\) −24.6652 + 11.8781i −0.780371 + 0.375807i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.2.e.c.267.1 12
29.2 odd 28 841.2.d.b.778.1 6
29.3 odd 28 841.2.d.e.605.1 6
29.4 even 14 841.2.e.d.270.1 12
29.5 even 14 inner 841.2.e.c.63.1 12
29.6 even 14 841.2.e.d.651.2 12
29.7 even 7 841.2.e.b.236.2 12
29.8 odd 28 841.2.d.a.645.1 6
29.9 even 14 841.2.e.b.196.2 12
29.10 odd 28 841.2.d.d.571.1 6
29.11 odd 28 841.2.a.e.1.2 3
29.12 odd 4 841.2.d.c.574.1 6
29.13 even 14 841.2.b.c.840.4 6
29.14 odd 28 29.2.d.a.16.1 6
29.15 odd 28 841.2.d.d.190.1 6
29.16 even 7 841.2.b.c.840.3 6
29.17 odd 4 841.2.d.b.574.1 6
29.18 odd 28 841.2.a.f.1.2 3
29.19 odd 28 29.2.d.a.20.1 yes 6
29.20 even 7 841.2.e.b.196.1 12
29.21 odd 28 841.2.d.e.645.1 6
29.22 even 14 841.2.e.b.236.1 12
29.23 even 7 841.2.e.d.651.1 12
29.24 even 7 inner 841.2.e.c.63.2 12
29.25 even 7 841.2.e.d.270.2 12
29.26 odd 28 841.2.d.a.605.1 6
29.27 odd 28 841.2.d.c.778.1 6
29.28 even 2 inner 841.2.e.c.267.2 12
87.11 even 28 7569.2.a.r.1.2 3
87.14 even 28 261.2.k.a.190.1 6
87.47 even 28 7569.2.a.p.1.2 3
87.77 even 28 261.2.k.a.136.1 6
116.19 even 28 464.2.u.f.49.1 6
116.43 even 28 464.2.u.f.161.1 6
145.14 odd 28 725.2.l.b.451.1 6
145.19 odd 28 725.2.l.b.426.1 6
145.43 even 28 725.2.r.b.74.2 12
145.48 even 28 725.2.r.b.49.1 12
145.72 even 28 725.2.r.b.74.1 12
145.77 even 28 725.2.r.b.49.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.d.a.16.1 6 29.14 odd 28
29.2.d.a.20.1 yes 6 29.19 odd 28
261.2.k.a.136.1 6 87.77 even 28
261.2.k.a.190.1 6 87.14 even 28
464.2.u.f.49.1 6 116.19 even 28
464.2.u.f.161.1 6 116.43 even 28
725.2.l.b.426.1 6 145.19 odd 28
725.2.l.b.451.1 6 145.14 odd 28
725.2.r.b.49.1 12 145.48 even 28
725.2.r.b.49.2 12 145.77 even 28
725.2.r.b.74.1 12 145.72 even 28
725.2.r.b.74.2 12 145.43 even 28
841.2.a.e.1.2 3 29.11 odd 28
841.2.a.f.1.2 3 29.18 odd 28
841.2.b.c.840.3 6 29.16 even 7
841.2.b.c.840.4 6 29.13 even 14
841.2.d.a.605.1 6 29.26 odd 28
841.2.d.a.645.1 6 29.8 odd 28
841.2.d.b.574.1 6 29.17 odd 4
841.2.d.b.778.1 6 29.2 odd 28
841.2.d.c.574.1 6 29.12 odd 4
841.2.d.c.778.1 6 29.27 odd 28
841.2.d.d.190.1 6 29.15 odd 28
841.2.d.d.571.1 6 29.10 odd 28
841.2.d.e.605.1 6 29.3 odd 28
841.2.d.e.645.1 6 29.21 odd 28
841.2.e.b.196.1 12 29.20 even 7
841.2.e.b.196.2 12 29.9 even 14
841.2.e.b.236.1 12 29.22 even 14
841.2.e.b.236.2 12 29.7 even 7
841.2.e.c.63.1 12 29.5 even 14 inner
841.2.e.c.63.2 12 29.24 even 7 inner
841.2.e.c.267.1 12 1.1 even 1 trivial
841.2.e.c.267.2 12 29.28 even 2 inner
841.2.e.d.270.1 12 29.4 even 14
841.2.e.d.270.2 12 29.25 even 7
841.2.e.d.651.1 12 29.23 even 7
841.2.e.d.651.2 12 29.6 even 14
7569.2.a.p.1.2 3 87.47 even 28
7569.2.a.r.1.2 3 87.11 even 28