Defining parameters
Level: | \( N \) | \(=\) | \( 841 = 29^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 841.e (of order \(14\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 29 \) |
Character field: | \(\Q(\zeta_{14})\) | ||
Newform subspaces: | \( 13 \) | ||
Sturm bound: | \(145\) | ||
Trace bound: | \(8\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(841, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 528 | 480 | 48 |
Cusp forms | 348 | 324 | 24 |
Eisenstein series | 180 | 156 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(841, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(841, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(841, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(29, [\chi])\)\(^{\oplus 2}\)