Properties

Label 841.2.e
Level $841$
Weight $2$
Character orbit 841.e
Rep. character $\chi_{841}(63,\cdot)$
Character field $\Q(\zeta_{14})$
Dimension $324$
Newform subspaces $13$
Sturm bound $145$
Trace bound $8$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.e (of order \(14\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 29 \)
Character field: \(\Q(\zeta_{14})\)
Newform subspaces: \( 13 \)
Sturm bound: \(145\)
Trace bound: \(8\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(841, [\chi])\).

Total New Old
Modular forms 528 480 48
Cusp forms 348 324 24
Eisenstein series 180 156 24

Trace form

\( 324 q + 7 q^{2} + 7 q^{3} + 43 q^{4} + q^{5} + 3 q^{6} + 11 q^{7} - 14 q^{8} + 31 q^{9} + O(q^{10}) \) \( 324 q + 7 q^{2} + 7 q^{3} + 43 q^{4} + q^{5} + 3 q^{6} + 11 q^{7} - 14 q^{8} + 31 q^{9} + 7 q^{10} - 7 q^{11} - 9 q^{13} + 7 q^{14} - 7 q^{15} - 23 q^{16} - 42 q^{18} + 7 q^{19} + 11 q^{20} + 7 q^{21} + 10 q^{22} + 5 q^{23} + 19 q^{24} - 13 q^{25} + 21 q^{26} + 7 q^{27} - 48 q^{28} - 134 q^{30} + 21 q^{31} + 23 q^{33} + 19 q^{34} - 19 q^{35} + 54 q^{36} - 7 q^{37} - 22 q^{38} - 21 q^{39} - 35 q^{40} - 44 q^{42} - 7 q^{43} - 42 q^{44} - 22 q^{45} + 7 q^{47} + 14 q^{48} + 15 q^{49} + 28 q^{50} - 16 q^{51} + 6 q^{53} + 32 q^{54} + 35 q^{55} + 21 q^{56} - 10 q^{57} - 200 q^{59} + 28 q^{60} + 7 q^{61} - 91 q^{62} + 17 q^{63} - 10 q^{64} - 21 q^{66} + 39 q^{67} - 14 q^{68} - 21 q^{69} + 25 q^{71} - 35 q^{72} - 14 q^{73} - 2 q^{74} - 7 q^{76} + 7 q^{77} - 29 q^{78} - 49 q^{79} + 16 q^{80} + 51 q^{81} - 32 q^{82} - 7 q^{83} - 21 q^{84} - 14 q^{85} - 16 q^{86} - 30 q^{88} - 7 q^{89} - 28 q^{90} + 15 q^{91} + 16 q^{92} - 9 q^{93} - 74 q^{94} + 7 q^{95} - 102 q^{96} - 14 q^{97} + 42 q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(841, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
841.2.e.a 841.e 29.e $12$ $6.715$ 12.0.\(\cdots\).1 None 29.2.e.a \(-7\) \(0\) \(6\) \(-4\) $\mathrm{SU}(2)[C_{14}]$ \(q+(1+2\beta _{1}-\beta _{3}-\beta _{4}+\beta _{5}-\beta _{6}-\beta _{9}+\cdots)q^{2}+\cdots\)
841.2.e.b 841.e 29.e $12$ $6.715$ \(\Q(\zeta_{28})\) None 29.2.d.a \(0\) \(0\) \(12\) \(-12\) $\mathrm{SU}(2)[C_{14}]$ \(q+(-\zeta_{28}^{7}+\zeta_{28}^{9})q^{2}+(-\zeta_{28}-\zeta_{28}^{9}+\cdots)q^{3}+\cdots\)
841.2.e.c 841.e 29.e $12$ $6.715$ \(\Q(\zeta_{28})\) None 29.2.d.a \(0\) \(0\) \(-16\) \(16\) $\mathrm{SU}(2)[C_{14}]$ \(q+(-\zeta_{28}-\zeta_{28}^{5}+\zeta_{28}^{7}-\zeta_{28}^{9}+\cdots)q^{2}+\cdots\)
841.2.e.d 841.e 29.e $12$ $6.715$ \(\Q(\zeta_{28})\) None 29.2.d.a \(0\) \(0\) \(-2\) \(2\) $\mathrm{SU}(2)[C_{14}]$ \(q+(-\zeta_{28}^{3}+\zeta_{28}^{9})q^{2}+(\zeta_{28}^{7}+\zeta_{28}^{11})q^{3}+\cdots\)
841.2.e.e 841.e 29.e $12$ $6.715$ 12.0.\(\cdots\).1 None 29.2.e.a \(0\) \(0\) \(-1\) \(10\) $\mathrm{SU}(2)[C_{14}]$ \(q+(\beta _{4}-\beta _{10}+\beta _{11})q^{2}+(1+2\beta _{1}+\beta _{2}+\cdots)q^{3}+\cdots\)
841.2.e.f 841.e 29.e $12$ $6.715$ 12.0.\(\cdots\).1 None 29.2.e.a \(0\) \(0\) \(-1\) \(10\) $\mathrm{SU}(2)[C_{14}]$ \(q+(-\beta _{4}-\beta _{8}-\beta _{11})q^{2}+(-\beta _{1}-\beta _{2}+\cdots)q^{3}+\cdots\)
841.2.e.g 841.e 29.e $12$ $6.715$ 12.0.\(\cdots\).3 None 29.2.b.a \(0\) \(0\) \(6\) \(-4\) $\mathrm{SU}(2)[C_{14}]$ \(q+\beta _{1}q^{2}-\beta _{5}q^{3}+3\beta _{2}q^{4}-3\beta _{8}q^{5}+\cdots\)
841.2.e.h 841.e 29.e $12$ $6.715$ 12.0.\(\cdots\).1 None 29.2.e.a \(7\) \(0\) \(6\) \(-4\) $\mathrm{SU}(2)[C_{14}]$ \(q+(-1-2\beta _{1}+\beta _{3}+\beta _{4}-\beta _{5}+\beta _{6}+\cdots)q^{2}+\cdots\)
841.2.e.i 841.e 29.e $12$ $6.715$ 12.0.\(\cdots\).1 None 29.2.e.a \(7\) \(7\) \(-1\) \(-11\) $\mathrm{SU}(2)[C_{14}]$ \(q+(1-\beta _{3}-\beta _{7}-\beta _{9}-\beta _{10})q^{2}+(-1+\cdots)q^{3}+\cdots\)
841.2.e.j 841.e 29.e $24$ $6.715$ None 841.2.a.a \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{14}]$
841.2.e.k 841.e 29.e $24$ $6.715$ None 29.2.a.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{14}]$
841.2.e.l 841.e 29.e $72$ $6.715$ None 841.2.a.g \(0\) \(0\) \(-4\) \(8\) $\mathrm{SU}(2)[C_{14}]$
841.2.e.m 841.e 29.e $96$ $6.715$ None 841.2.a.i \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{14}]$

Decomposition of \(S_{2}^{\mathrm{old}}(841, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(841, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(29, [\chi])\)\(^{\oplus 2}\)