L(s) = 1 | + (−0.193 − 0.400i)2-s + (−0.974 + 0.777i)3-s + (1.12 − 1.40i)4-s + (0.623 − 0.300i)5-s + (0.5 + 0.240i)6-s + (0.222 + 0.279i)7-s + (−1.64 − 0.376i)8-s + (−0.321 + 1.40i)9-s + (−0.240 − 0.192i)10-s + (−4.81 + 1.09i)11-s + 2.24i·12-s + (−1.25 − 5.51i)13-s + (0.0689 − 0.143i)14-s + (−0.374 + 0.777i)15-s + (−0.634 − 2.77i)16-s − 4.49i·17-s + ⋯ |
L(s) = 1 | + (−0.136 − 0.283i)2-s + (−0.562 + 0.448i)3-s + (0.561 − 0.704i)4-s + (0.278 − 0.134i)5-s + (0.204 + 0.0983i)6-s + (0.0841 + 0.105i)7-s + (−0.583 − 0.133i)8-s + (−0.107 + 0.469i)9-s + (−0.0761 − 0.0607i)10-s + (−1.45 + 0.331i)11-s + 0.648i·12-s + (−0.348 − 1.52i)13-s + (0.0184 − 0.0382i)14-s + (−0.0966 + 0.200i)15-s + (−0.158 − 0.694i)16-s − 1.08i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.860 + 0.509i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.860 + 0.509i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.167201 - 0.610205i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.167201 - 0.610205i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 29 | \( 1 \) |
good | 2 | \( 1 + (0.193 + 0.400i)T + (-1.24 + 1.56i)T^{2} \) |
| 3 | \( 1 + (0.974 - 0.777i)T + (0.667 - 2.92i)T^{2} \) |
| 5 | \( 1 + (-0.623 + 0.300i)T + (3.11 - 3.90i)T^{2} \) |
| 7 | \( 1 + (-0.222 - 0.279i)T + (-1.55 + 6.82i)T^{2} \) |
| 11 | \( 1 + (4.81 - 1.09i)T + (9.91 - 4.77i)T^{2} \) |
| 13 | \( 1 + (1.25 + 5.51i)T + (-11.7 + 5.64i)T^{2} \) |
| 17 | \( 1 + 4.49iT - 17T^{2} \) |
| 19 | \( 1 + (-1.84 - 1.46i)T + (4.22 + 18.5i)T^{2} \) |
| 23 | \( 1 + (2.06 + 0.996i)T + (14.3 + 17.9i)T^{2} \) |
| 31 | \( 1 + (2.90 + 6.02i)T + (-19.3 + 24.2i)T^{2} \) |
| 37 | \( 1 + (-4.81 - 1.09i)T + (33.3 + 16.0i)T^{2} \) |
| 41 | \( 1 - 3.10iT - 41T^{2} \) |
| 43 | \( 1 + (-1.47 + 3.06i)T + (-26.8 - 33.6i)T^{2} \) |
| 47 | \( 1 + (6.28 - 1.43i)T + (42.3 - 20.3i)T^{2} \) |
| 53 | \( 1 + (-4.22 + 2.03i)T + (33.0 - 41.4i)T^{2} \) |
| 59 | \( 1 + 12.4T + 59T^{2} \) |
| 61 | \( 1 + (1.28 - 1.02i)T + (13.5 - 59.4i)T^{2} \) |
| 67 | \( 1 + (0.516 - 2.26i)T + (-60.3 - 29.0i)T^{2} \) |
| 71 | \( 1 + (1.63 + 7.15i)T + (-63.9 + 30.8i)T^{2} \) |
| 73 | \( 1 + (-2.44 + 5.06i)T + (-45.5 - 57.0i)T^{2} \) |
| 79 | \( 1 + (4.54 + 1.03i)T + (71.1 + 34.2i)T^{2} \) |
| 83 | \( 1 + (-2.77 + 3.48i)T + (-18.4 - 80.9i)T^{2} \) |
| 89 | \( 1 + (2.46 + 5.11i)T + (-55.4 + 69.5i)T^{2} \) |
| 97 | \( 1 + (0.141 + 0.112i)T + (21.5 + 94.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.06145370619828945359673824888, −9.457479295096845776474055015759, −7.941829029443197609870349692411, −7.46887898660728959004476984942, −5.96505820494676622432320559384, −5.41972183857653003870174965745, −4.85250168338350593602225879681, −3.01245053165992360767291516672, −2.13477209152695125186095799025, −0.31201918126235598848028139388,
1.85391432958332946431327488479, 3.00291655607918465600594840462, 4.23353432410333379559359219459, 5.61839133112306491369585817634, 6.31622031410905661784203635747, 7.07732265510674132850828186791, 7.83846889139999141297364228191, 8.705852441425647885028727062274, 9.663619772945368127765337205790, 10.77828730539887426660335017185