Properties

Label 726.2.h.i.161.1
Level $726$
Weight $2$
Character 726.161
Analytic conductor $5.797$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [726,2,Mod(161,726)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(726, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("726.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 726 = 2 \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 726.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,2,2,-2,0,-2,0,2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.79713918674\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: 8.0.64000000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{6} + 4x^{4} - 8x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 66)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 161.1
Root \(0.831254 + 1.14412i\) of defining polynomial
Character \(\chi\) \(=\) 726.161
Dual form 726.2.h.i.239.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.809017 + 0.587785i) q^{2} +(-1.65401 + 0.514040i) q^{3} +(0.309017 + 0.951057i) q^{4} +(0.831254 + 1.14412i) q^{5} +(-1.64027 - 0.556338i) q^{6} +(4.03499 - 1.31105i) q^{7} +(-0.309017 + 0.951057i) q^{8} +(2.47152 - 1.70046i) q^{9} +1.41421i q^{10} +(-1.00000 - 1.41421i) q^{12} +(2.49376 - 3.43237i) q^{13} +(4.03499 + 1.31105i) q^{14} +(-1.96303 - 1.46510i) q^{15} +(-0.809017 + 0.587785i) q^{16} +(2.99901 + 0.0770245i) q^{18} +(-0.831254 + 1.14412i) q^{20} +(-6.00000 + 4.24264i) q^{21} -1.41421i q^{23} +(0.0222369 - 1.73191i) q^{24} +(0.927051 - 2.85317i) q^{25} +(4.03499 - 1.31105i) q^{26} +(-3.21383 + 4.08305i) q^{27} +(2.49376 + 3.43237i) q^{28} +(1.85410 + 5.70634i) q^{29} +(-0.726963 - 2.33913i) q^{30} +(3.23607 + 2.35114i) q^{31} -1.00000 q^{32} +(4.85410 + 3.52671i) q^{35} +(2.38098 + 1.82509i) q^{36} +(0.618034 + 1.90211i) q^{37} +(-2.36034 + 6.95908i) q^{39} +(-1.34500 + 0.437016i) q^{40} +(-1.85410 + 5.70634i) q^{41} +(-7.34786 - 0.0943431i) q^{42} +8.48528i q^{43} +(4.00000 + 1.41421i) q^{45} +(0.831254 - 1.14412i) q^{46} +(-9.41498 - 3.05911i) q^{47} +(1.03598 - 1.38807i) q^{48} +(8.89919 - 6.46564i) q^{49} +(2.42705 - 1.76336i) q^{50} +(4.03499 + 1.31105i) q^{52} +(4.15627 - 5.72061i) q^{53} +(-5.00000 + 1.41421i) q^{54} +4.24264i q^{56} +(-1.85410 + 5.70634i) q^{58} +(-10.7600 + 3.49613i) q^{59} +(0.786780 - 2.31969i) q^{60} +(2.49376 + 3.43237i) q^{61} +(1.23607 + 3.80423i) q^{62} +(7.74320 - 10.1016i) q^{63} +(-0.809017 - 0.587785i) q^{64} +6.00000 q^{65} -4.00000 q^{67} +(0.726963 + 2.33913i) q^{69} +(1.85410 + 5.70634i) q^{70} +(-4.15627 - 5.72061i) q^{71} +(0.853491 + 2.87603i) q^{72} +(-0.618034 + 1.90211i) q^{74} +(-0.0667106 + 5.19572i) q^{75} +(-6.00000 + 4.24264i) q^{78} +(-2.49376 + 3.43237i) q^{79} +(-1.34500 - 0.437016i) q^{80} +(3.21687 - 8.40546i) q^{81} +(-4.85410 + 3.52671i) q^{82} +(9.70820 - 7.05342i) q^{83} +(-5.88909 - 4.39529i) q^{84} +(-4.98752 + 6.86474i) q^{86} +(-6.00000 - 8.48528i) q^{87} -5.65685i q^{89} +(2.40481 + 3.49526i) q^{90} +(5.56231 - 17.1190i) q^{91} +(1.34500 - 0.437016i) q^{92} +(-6.56108 - 2.22535i) q^{93} +(-5.81878 - 8.00886i) q^{94} +(1.65401 - 0.514040i) q^{96} +(-6.47214 - 4.70228i) q^{97} +11.0000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 2 q^{3} - 2 q^{4} - 2 q^{6} + 2 q^{8} + 2 q^{9} - 8 q^{12} + 4 q^{15} - 2 q^{16} - 2 q^{18} - 48 q^{21} - 2 q^{24} - 6 q^{25} - 10 q^{27} - 12 q^{29} - 4 q^{30} + 8 q^{31} - 8 q^{32} + 12 q^{35}+ \cdots + 88 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/726\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(607\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.809017 + 0.587785i 0.572061 + 0.415627i
\(3\) −1.65401 + 0.514040i −0.954945 + 0.296781i
\(4\) 0.309017 + 0.951057i 0.154508 + 0.475528i
\(5\) 0.831254 + 1.14412i 0.371748 + 0.511667i 0.953375 0.301788i \(-0.0975836\pi\)
−0.581627 + 0.813456i \(0.697584\pi\)
\(6\) −1.64027 0.556338i −0.669638 0.227124i
\(7\) 4.03499 1.31105i 1.52508 0.495530i 0.577869 0.816130i \(-0.303885\pi\)
0.947215 + 0.320600i \(0.103885\pi\)
\(8\) −0.309017 + 0.951057i −0.109254 + 0.336249i
\(9\) 2.47152 1.70046i 0.823842 0.566820i
\(10\) 1.41421i 0.447214i
\(11\) 0 0
\(12\) −1.00000 1.41421i −0.288675 0.408248i
\(13\) 2.49376 3.43237i 0.691645 0.951968i −0.308355 0.951271i \(-0.599778\pi\)
1.00000 0.000696272i \(-0.000221630\pi\)
\(14\) 4.03499 + 1.31105i 1.07840 + 0.350392i
\(15\) −1.96303 1.46510i −0.506852 0.378286i
\(16\) −0.809017 + 0.587785i −0.202254 + 0.146946i
\(17\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(18\) 2.99901 + 0.0770245i 0.706874 + 0.0181548i
\(19\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(20\) −0.831254 + 1.14412i −0.185874 + 0.255834i
\(21\) −6.00000 + 4.24264i −1.30931 + 0.925820i
\(22\) 0 0
\(23\) 1.41421i 0.294884i −0.989071 0.147442i \(-0.952896\pi\)
0.989071 0.147442i \(-0.0471040\pi\)
\(24\) 0.0222369 1.73191i 0.00453908 0.353524i
\(25\) 0.927051 2.85317i 0.185410 0.570634i
\(26\) 4.03499 1.31105i 0.791327 0.257118i
\(27\) −3.21383 + 4.08305i −0.618502 + 0.785783i
\(28\) 2.49376 + 3.43237i 0.471277 + 0.648657i
\(29\) 1.85410 + 5.70634i 0.344298 + 1.05964i 0.961958 + 0.273196i \(0.0880806\pi\)
−0.617660 + 0.786445i \(0.711919\pi\)
\(30\) −0.726963 2.33913i −0.132725 0.427065i
\(31\) 3.23607 + 2.35114i 0.581215 + 0.422277i 0.839162 0.543882i \(-0.183046\pi\)
−0.257947 + 0.966159i \(0.583046\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 0 0
\(35\) 4.85410 + 3.52671i 0.820493 + 0.596123i
\(36\) 2.38098 + 1.82509i 0.396830 + 0.304181i
\(37\) 0.618034 + 1.90211i 0.101604 + 0.312705i 0.988918 0.148460i \(-0.0474315\pi\)
−0.887314 + 0.461165i \(0.847432\pi\)
\(38\) 0 0
\(39\) −2.36034 + 6.95908i −0.377957 + 1.11434i
\(40\) −1.34500 + 0.437016i −0.212663 + 0.0690983i
\(41\) −1.85410 + 5.70634i −0.289562 + 0.891180i 0.695432 + 0.718592i \(0.255213\pi\)
−0.984994 + 0.172588i \(0.944787\pi\)
\(42\) −7.34786 0.0943431i −1.13380 0.0145575i
\(43\) 8.48528i 1.29399i 0.762493 + 0.646997i \(0.223975\pi\)
−0.762493 + 0.646997i \(0.776025\pi\)
\(44\) 0 0
\(45\) 4.00000 + 1.41421i 0.596285 + 0.210819i
\(46\) 0.831254 1.14412i 0.122562 0.168692i
\(47\) −9.41498 3.05911i −1.37332 0.446217i −0.472850 0.881143i \(-0.656775\pi\)
−0.900466 + 0.434926i \(0.856775\pi\)
\(48\) 1.03598 1.38807i 0.149531 0.200351i
\(49\) 8.89919 6.46564i 1.27131 0.923663i
\(50\) 2.42705 1.76336i 0.343237 0.249376i
\(51\) 0 0
\(52\) 4.03499 + 1.31105i 0.559553 + 0.181810i
\(53\) 4.15627 5.72061i 0.570908 0.785787i −0.421754 0.906710i \(-0.638586\pi\)
0.992662 + 0.120923i \(0.0385855\pi\)
\(54\) −5.00000 + 1.41421i −0.680414 + 0.192450i
\(55\) 0 0
\(56\) 4.24264i 0.566947i
\(57\) 0 0
\(58\) −1.85410 + 5.70634i −0.243456 + 0.749279i
\(59\) −10.7600 + 3.49613i −1.40083 + 0.455157i −0.909459 0.415794i \(-0.863504\pi\)
−0.491371 + 0.870951i \(0.663504\pi\)
\(60\) 0.786780 2.31969i 0.101573 0.299471i
\(61\) 2.49376 + 3.43237i 0.319293 + 0.439470i 0.938251 0.345954i \(-0.112445\pi\)
−0.618958 + 0.785424i \(0.712445\pi\)
\(62\) 1.23607 + 3.80423i 0.156981 + 0.483137i
\(63\) 7.74320 10.1016i 0.975551 1.27269i
\(64\) −0.809017 0.587785i −0.101127 0.0734732i
\(65\) 6.00000 0.744208
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 0 0
\(69\) 0.726963 + 2.33913i 0.0875161 + 0.281598i
\(70\) 1.85410 + 5.70634i 0.221608 + 0.682038i
\(71\) −4.15627 5.72061i −0.493258 0.678912i 0.487726 0.872997i \(-0.337826\pi\)
−0.980985 + 0.194085i \(0.937826\pi\)
\(72\) 0.853491 + 2.87603i 0.100585 + 0.338943i
\(73\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(74\) −0.618034 + 1.90211i −0.0718450 + 0.221116i
\(75\) −0.0667106 + 5.19572i −0.00770308 + 0.599951i
\(76\) 0 0
\(77\) 0 0
\(78\) −6.00000 + 4.24264i −0.679366 + 0.480384i
\(79\) −2.49376 + 3.43237i −0.280570 + 0.386172i −0.925923 0.377713i \(-0.876710\pi\)
0.645353 + 0.763885i \(0.276710\pi\)
\(80\) −1.34500 0.437016i −0.150375 0.0488599i
\(81\) 3.21687 8.40546i 0.357430 0.933940i
\(82\) −4.85410 + 3.52671i −0.536046 + 0.389460i
\(83\) 9.70820 7.05342i 1.06561 0.774214i 0.0904951 0.995897i \(-0.471155\pi\)
0.975119 + 0.221683i \(0.0711551\pi\)
\(84\) −5.88909 4.39529i −0.642553 0.479566i
\(85\) 0 0
\(86\) −4.98752 + 6.86474i −0.537818 + 0.740244i
\(87\) −6.00000 8.48528i −0.643268 0.909718i
\(88\) 0 0
\(89\) 5.65685i 0.599625i −0.953998 0.299813i \(-0.903076\pi\)
0.953998 0.299813i \(-0.0969242\pi\)
\(90\) 2.40481 + 3.49526i 0.253490 + 0.368433i
\(91\) 5.56231 17.1190i 0.583088 1.79456i
\(92\) 1.34500 0.437016i 0.140226 0.0455621i
\(93\) −6.56108 2.22535i −0.680353 0.230758i
\(94\) −5.81878 8.00886i −0.600161 0.826051i
\(95\) 0 0
\(96\) 1.65401 0.514040i 0.168812 0.0524640i
\(97\) −6.47214 4.70228i −0.657146 0.477444i 0.208552 0.978011i \(-0.433125\pi\)
−0.865698 + 0.500567i \(0.833125\pi\)
\(98\) 11.0000 1.11117
\(99\) 0 0
\(100\) 3.00000 0.300000
\(101\) −4.85410 3.52671i −0.483001 0.350921i 0.319485 0.947591i \(-0.396490\pi\)
−0.802486 + 0.596670i \(0.796490\pi\)
\(102\) 0 0
\(103\) −1.23607 3.80423i −0.121793 0.374842i 0.871510 0.490378i \(-0.163141\pi\)
−0.993303 + 0.115536i \(0.963141\pi\)
\(104\) 2.49376 + 3.43237i 0.244533 + 0.336571i
\(105\) −9.84163 3.33803i −0.960444 0.325758i
\(106\) 6.72499 2.18508i 0.653188 0.212234i
\(107\) −5.56231 + 17.1190i −0.537728 + 1.65496i 0.199950 + 0.979806i \(0.435922\pi\)
−0.737679 + 0.675152i \(0.764078\pi\)
\(108\) −4.87634 1.79480i −0.469226 0.172705i
\(109\) 12.7279i 1.21911i −0.792742 0.609557i \(-0.791347\pi\)
0.792742 0.609557i \(-0.208653\pi\)
\(110\) 0 0
\(111\) −2.00000 2.82843i −0.189832 0.268462i
\(112\) −2.49376 + 3.43237i −0.235638 + 0.324328i
\(113\) 10.7600 + 3.49613i 1.01221 + 0.328888i 0.767736 0.640767i \(-0.221383\pi\)
0.244478 + 0.969655i \(0.421383\pi\)
\(114\) 0 0
\(115\) 1.61803 1.17557i 0.150882 0.109623i
\(116\) −4.85410 + 3.52671i −0.450692 + 0.327447i
\(117\) 0.326787 12.7237i 0.0302115 1.17631i
\(118\) −10.7600 3.49613i −0.990536 0.321845i
\(119\) 0 0
\(120\) 2.00000 1.41421i 0.182574 0.129099i
\(121\) 0 0
\(122\) 4.24264i 0.384111i
\(123\) 0.133421 10.3914i 0.0120302 0.936965i
\(124\) −1.23607 + 3.80423i −0.111002 + 0.341630i
\(125\) 10.7600 3.49613i 0.962402 0.312703i
\(126\) 12.2020 3.62105i 1.08704 0.322589i
\(127\) −7.48128 10.2971i −0.663857 0.913720i 0.335745 0.941953i \(-0.391012\pi\)
−0.999601 + 0.0282327i \(0.991012\pi\)
\(128\) −0.309017 0.951057i −0.0273135 0.0840623i
\(129\) −4.36178 14.0348i −0.384033 1.23569i
\(130\) 4.85410 + 3.52671i 0.425733 + 0.309313i
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −3.23607 2.35114i −0.279554 0.203108i
\(135\) −7.34302 0.282967i −0.631986 0.0243539i
\(136\) 0 0
\(137\) −1.66251 2.28825i −0.142038 0.195498i 0.732071 0.681228i \(-0.238554\pi\)
−0.874109 + 0.485730i \(0.838554\pi\)
\(138\) −0.786780 + 2.31969i −0.0669752 + 0.197465i
\(139\) −16.1400 + 5.24419i −1.36897 + 0.444807i −0.899029 0.437889i \(-0.855726\pi\)
−0.469945 + 0.882696i \(0.655726\pi\)
\(140\) −1.85410 + 5.70634i −0.156700 + 0.482274i
\(141\) 17.1450 + 0.220134i 1.44387 + 0.0185386i
\(142\) 7.07107i 0.593391i
\(143\) 0 0
\(144\) −1.00000 + 2.82843i −0.0833333 + 0.235702i
\(145\) −4.98752 + 6.86474i −0.414191 + 0.570085i
\(146\) 0 0
\(147\) −11.3958 + 15.2688i −0.939908 + 1.25935i
\(148\) −1.61803 + 1.17557i −0.133002 + 0.0966313i
\(149\) 4.85410 3.52671i 0.397664 0.288919i −0.370925 0.928663i \(-0.620959\pi\)
0.768589 + 0.639743i \(0.220959\pi\)
\(150\) −3.10794 + 4.16422i −0.253762 + 0.340007i
\(151\) −4.03499 1.31105i −0.328363 0.106692i 0.140196 0.990124i \(-0.455227\pi\)
−0.468559 + 0.883432i \(0.655227\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.65685i 0.454369i
\(156\) −7.34786 0.0943431i −0.588300 0.00755349i
\(157\) −6.79837 + 20.9232i −0.542569 + 1.66986i 0.184131 + 0.982902i \(0.441053\pi\)
−0.726700 + 0.686955i \(0.758947\pi\)
\(158\) −4.03499 + 1.31105i −0.321007 + 0.104301i
\(159\) −3.93390 + 11.5985i −0.311979 + 0.919818i
\(160\) −0.831254 1.14412i −0.0657164 0.0904508i
\(161\) −1.85410 5.70634i −0.146124 0.449723i
\(162\) 7.54311 4.90933i 0.592642 0.385714i
\(163\) −1.61803 1.17557i −0.126734 0.0920778i 0.522612 0.852570i \(-0.324958\pi\)
−0.649347 + 0.760493i \(0.724958\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) 12.0000 0.931381
\(167\) −9.70820 7.05342i −0.751243 0.545810i 0.144969 0.989436i \(-0.453692\pi\)
−0.896212 + 0.443626i \(0.853692\pi\)
\(168\) −2.18089 7.01739i −0.168259 0.541403i
\(169\) −1.54508 4.75528i −0.118853 0.365791i
\(170\) 0 0
\(171\) 0 0
\(172\) −8.06998 + 2.62210i −0.615330 + 0.199933i
\(173\) 1.85410 5.70634i 0.140965 0.433845i −0.855505 0.517794i \(-0.826753\pi\)
0.996470 + 0.0839492i \(0.0267533\pi\)
\(174\) 0.133421 10.3914i 0.0101146 0.787774i
\(175\) 12.7279i 0.962140i
\(176\) 0 0
\(177\) 16.0000 11.3137i 1.20263 0.850390i
\(178\) 3.32502 4.57649i 0.249220 0.343023i
\(179\) −5.37999 1.74806i −0.402119 0.130656i 0.100973 0.994889i \(-0.467804\pi\)
−0.503092 + 0.864233i \(0.667804\pi\)
\(180\) −0.108929 + 4.24124i −0.00811909 + 0.316124i
\(181\) −1.61803 + 1.17557i −0.120268 + 0.0873795i −0.646293 0.763089i \(-0.723682\pi\)
0.526026 + 0.850469i \(0.323682\pi\)
\(182\) 14.5623 10.5801i 1.07943 0.784252i
\(183\) −5.88909 4.39529i −0.435334 0.324909i
\(184\) 1.34500 + 0.437016i 0.0991545 + 0.0322172i
\(185\) −1.66251 + 2.28825i −0.122230 + 0.168235i
\(186\) −4.00000 5.65685i −0.293294 0.414781i
\(187\) 0 0
\(188\) 9.89949i 0.721995i
\(189\) −7.61471 + 20.6886i −0.553888 + 1.50487i
\(190\) 0 0
\(191\) 9.41498 3.05911i 0.681244 0.221350i 0.0521041 0.998642i \(-0.483407\pi\)
0.629140 + 0.777292i \(0.283407\pi\)
\(192\) 1.64027 + 0.556338i 0.118376 + 0.0401502i
\(193\) 4.98752 + 6.86474i 0.359010 + 0.494135i 0.949872 0.312638i \(-0.101213\pi\)
−0.590863 + 0.806772i \(0.701213\pi\)
\(194\) −2.47214 7.60845i −0.177489 0.546255i
\(195\) −9.92408 + 3.08424i −0.710678 + 0.220867i
\(196\) 8.89919 + 6.46564i 0.635656 + 0.461831i
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 2.42705 + 1.76336i 0.171618 + 0.124688i
\(201\) 6.61606 2.05616i 0.466661 0.145030i
\(202\) −1.85410 5.70634i −0.130454 0.401497i
\(203\) 14.9626 + 20.5942i 1.05017 + 1.44543i
\(204\) 0 0
\(205\) −8.06998 + 2.62210i −0.563632 + 0.183135i
\(206\) 1.23607 3.80423i 0.0861209 0.265053i
\(207\) −2.40481 3.49526i −0.167146 0.242938i
\(208\) 4.24264i 0.294174i
\(209\) 0 0
\(210\) −6.00000 8.48528i −0.414039 0.585540i
\(211\) −4.98752 + 6.86474i −0.343355 + 0.472588i −0.945418 0.325861i \(-0.894346\pi\)
0.602062 + 0.798449i \(0.294346\pi\)
\(212\) 6.72499 + 2.18508i 0.461874 + 0.150072i
\(213\) 9.81516 + 7.32549i 0.672523 + 0.501934i
\(214\) −14.5623 + 10.5801i −0.995459 + 0.723243i
\(215\) −9.70820 + 7.05342i −0.662094 + 0.481039i
\(216\) −2.89008 4.31827i −0.196645 0.293821i
\(217\) 16.1400 + 5.24419i 1.09565 + 0.355999i
\(218\) 7.48128 10.2971i 0.506697 0.697408i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0.0444738 3.46382i 0.00298488 0.232476i
\(223\) 2.47214 7.60845i 0.165546 0.509500i −0.833530 0.552475i \(-0.813684\pi\)
0.999076 + 0.0429750i \(0.0136836\pi\)
\(224\) −4.03499 + 1.31105i −0.269599 + 0.0875981i
\(225\) −2.56047 8.62809i −0.170698 0.575206i
\(226\) 6.65003 + 9.15298i 0.442353 + 0.608847i
\(227\) 1.85410 + 5.70634i 0.123061 + 0.378743i 0.993543 0.113458i \(-0.0361926\pi\)
−0.870482 + 0.492201i \(0.836193\pi\)
\(228\) 0 0
\(229\) −11.3262 8.22899i −0.748459 0.543787i 0.146890 0.989153i \(-0.453074\pi\)
−0.895349 + 0.445366i \(0.853074\pi\)
\(230\) 2.00000 0.131876
\(231\) 0 0
\(232\) −6.00000 −0.393919
\(233\) 14.5623 + 10.5801i 0.954008 + 0.693128i 0.951752 0.306870i \(-0.0992816\pi\)
0.00225687 + 0.999997i \(0.499282\pi\)
\(234\) 7.74320 10.1016i 0.506188 0.660364i
\(235\) −4.32624 13.3148i −0.282213 0.868561i
\(236\) −6.65003 9.15298i −0.432880 0.595808i
\(237\) 2.36034 6.95908i 0.153321 0.452041i
\(238\) 0 0
\(239\) 3.70820 11.4127i 0.239864 0.738225i −0.756575 0.653907i \(-0.773129\pi\)
0.996439 0.0843180i \(-0.0268712\pi\)
\(240\) 2.44929 + 0.0314477i 0.158101 + 0.00202994i
\(241\) 8.48528i 0.546585i 0.961931 + 0.273293i \(0.0881127\pi\)
−0.961931 + 0.273293i \(0.911887\pi\)
\(242\) 0 0
\(243\) −1.00000 + 15.5563i −0.0641500 + 0.997940i
\(244\) −2.49376 + 3.43237i −0.159647 + 0.219735i
\(245\) 14.7950 + 4.80718i 0.945216 + 0.307119i
\(246\) 6.21588 8.32844i 0.396310 0.531002i
\(247\) 0 0
\(248\) −3.23607 + 2.35114i −0.205491 + 0.149298i
\(249\) −12.4318 + 16.6569i −0.787831 + 1.05559i
\(250\) 10.7600 + 3.49613i 0.680521 + 0.221115i
\(251\) −3.32502 + 4.57649i −0.209873 + 0.288866i −0.900956 0.433910i \(-0.857134\pi\)
0.691083 + 0.722775i \(0.257134\pi\)
\(252\) 12.0000 + 4.24264i 0.755929 + 0.267261i
\(253\) 0 0
\(254\) 12.7279i 0.798621i
\(255\) 0 0
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) −10.7600 + 3.49613i −0.671189 + 0.218082i −0.624734 0.780838i \(-0.714792\pi\)
−0.0464552 + 0.998920i \(0.514792\pi\)
\(258\) 4.72068 13.9182i 0.293897 0.866507i
\(259\) 4.98752 + 6.86474i 0.309910 + 0.426554i
\(260\) 1.85410 + 5.70634i 0.114987 + 0.353892i
\(261\) 14.2859 + 10.9505i 0.884273 + 0.677821i
\(262\) 9.70820 + 7.05342i 0.599775 + 0.435762i
\(263\) −12.0000 −0.739952 −0.369976 0.929041i \(-0.620634\pi\)
−0.369976 + 0.929041i \(0.620634\pi\)
\(264\) 0 0
\(265\) 10.0000 0.614295
\(266\) 0 0
\(267\) 2.90785 + 9.35652i 0.177958 + 0.572609i
\(268\) −1.23607 3.80423i −0.0755049 0.232380i
\(269\) −4.15627 5.72061i −0.253412 0.348792i 0.663290 0.748362i \(-0.269159\pi\)
−0.916703 + 0.399570i \(0.869159\pi\)
\(270\) −5.77430 4.54504i −0.351413 0.276603i
\(271\) 12.1050 3.93314i 0.735325 0.238921i 0.0826700 0.996577i \(-0.473655\pi\)
0.652655 + 0.757655i \(0.273655\pi\)
\(272\) 0 0
\(273\) −0.400264 + 31.1743i −0.0242251 + 1.88676i
\(274\) 2.82843i 0.170872i
\(275\) 0 0
\(276\) −2.00000 + 1.41421i −0.120386 + 0.0851257i
\(277\) 12.4688 17.1618i 0.749178 1.03116i −0.248860 0.968540i \(-0.580056\pi\)
0.998038 0.0626156i \(-0.0199442\pi\)
\(278\) −16.1400 5.24419i −0.968011 0.314526i
\(279\) 11.9960 + 0.308098i 0.718184 + 0.0184453i
\(280\) −4.85410 + 3.52671i −0.290088 + 0.210761i
\(281\) 9.70820 7.05342i 0.579143 0.420772i −0.259272 0.965804i \(-0.583483\pi\)
0.838415 + 0.545032i \(0.183483\pi\)
\(282\) 13.7412 + 10.2557i 0.818278 + 0.610717i
\(283\) −8.06998 2.62210i −0.479711 0.155867i 0.0591728 0.998248i \(-0.481154\pi\)
−0.538883 + 0.842380i \(0.681154\pi\)
\(284\) 4.15627 5.72061i 0.246629 0.339456i
\(285\) 0 0
\(286\) 0 0
\(287\) 25.4558i 1.50261i
\(288\) −2.47152 + 1.70046i −0.145636 + 0.100201i
\(289\) −5.25329 + 16.1680i −0.309017 + 0.951057i
\(290\) −8.06998 + 2.62210i −0.473886 + 0.153975i
\(291\) 13.1222 + 4.45070i 0.769235 + 0.260905i
\(292\) 0 0
\(293\) −1.85410 5.70634i −0.108318 0.333368i 0.882177 0.470918i \(-0.156077\pi\)
−0.990495 + 0.137550i \(0.956077\pi\)
\(294\) −18.1942 + 5.65445i −1.06110 + 0.329774i
\(295\) −12.9443 9.40456i −0.753645 0.547555i
\(296\) −2.00000 −0.116248
\(297\) 0 0
\(298\) 6.00000 0.347571
\(299\) −4.85410 3.52671i −0.280720 0.203955i
\(300\) −4.96204 + 1.54212i −0.286484 + 0.0890344i
\(301\) 11.1246 + 34.2380i 0.641212 + 1.97345i
\(302\) −2.49376 3.43237i −0.143500 0.197511i
\(303\) 9.84163 + 3.33803i 0.565387 + 0.191765i
\(304\) 0 0
\(305\) −1.85410 + 5.70634i −0.106166 + 0.326744i
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 4.00000 + 5.65685i 0.227552 + 0.321807i
\(310\) −3.32502 + 4.57649i −0.188848 + 0.259927i
\(311\) −25.5549 8.30330i −1.44909 0.470837i −0.524370 0.851490i \(-0.675699\pi\)
−0.924718 + 0.380653i \(0.875699\pi\)
\(312\) −5.88909 4.39529i −0.333404 0.248834i
\(313\) 8.09017 5.87785i 0.457283 0.332236i −0.335181 0.942154i \(-0.608798\pi\)
0.792465 + 0.609918i \(0.208798\pi\)
\(314\) −17.7984 + 12.9313i −1.00442 + 0.729754i
\(315\) 17.9941 + 0.462147i 1.01385 + 0.0260390i
\(316\) −4.03499 1.31105i −0.226986 0.0737522i
\(317\) −5.81878 + 8.00886i −0.326815 + 0.449822i −0.940533 0.339703i \(-0.889673\pi\)
0.613718 + 0.789526i \(0.289673\pi\)
\(318\) −10.0000 + 7.07107i −0.560772 + 0.396526i
\(319\) 0 0
\(320\) 1.41421i 0.0790569i
\(321\) 0.400264 31.1743i 0.0223406 1.73998i
\(322\) 1.85410 5.70634i 0.103325 0.318002i
\(323\) 0 0
\(324\) 8.98813 + 0.461994i 0.499341 + 0.0256664i
\(325\) −7.48128 10.2971i −0.414987 0.571181i
\(326\) −0.618034 1.90211i −0.0342297 0.105348i
\(327\) 6.54267 + 21.0522i 0.361810 + 1.16419i
\(328\) −4.85410 3.52671i −0.268023 0.194730i
\(329\) −42.0000 −2.31553
\(330\) 0 0
\(331\) −10.0000 −0.549650 −0.274825 0.961494i \(-0.588620\pi\)
−0.274825 + 0.961494i \(0.588620\pi\)
\(332\) 9.70820 + 7.05342i 0.532807 + 0.387107i
\(333\) 4.76195 + 3.65018i 0.260953 + 0.200028i
\(334\) −3.70820 11.4127i −0.202904 0.624474i
\(335\) −3.32502 4.57649i −0.181665 0.250040i
\(336\) 2.36034 6.95908i 0.128767 0.379649i
\(337\) 32.2799 10.4884i 1.75840 0.571339i 0.761367 0.648321i \(-0.224528\pi\)
0.997032 + 0.0769821i \(0.0245284\pi\)
\(338\) 1.54508 4.75528i 0.0840415 0.258653i
\(339\) −19.5943 0.251582i −1.06422 0.0136640i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 9.97505 13.7295i 0.538602 0.741322i
\(344\) −8.06998 2.62210i −0.435104 0.141374i
\(345\) −2.07196 + 2.77615i −0.111551 + 0.149463i
\(346\) 4.85410 3.52671i 0.260958 0.189597i
\(347\) −9.70820 + 7.05342i −0.521164 + 0.378648i −0.817042 0.576578i \(-0.804388\pi\)
0.295878 + 0.955226i \(0.404388\pi\)
\(348\) 6.21588 8.32844i 0.333206 0.446451i
\(349\) −28.2449 9.17734i −1.51192 0.491252i −0.568450 0.822718i \(-0.692457\pi\)
−0.943467 + 0.331466i \(0.892457\pi\)
\(350\) 7.48128 10.2971i 0.399891 0.550403i
\(351\) 6.00000 + 21.2132i 0.320256 + 1.13228i
\(352\) 0 0
\(353\) 22.6274i 1.20434i −0.798369 0.602168i \(-0.794304\pi\)
0.798369 0.602168i \(-0.205696\pi\)
\(354\) 19.5943 + 0.251582i 1.04143 + 0.0133714i
\(355\) 3.09017 9.51057i 0.164009 0.504768i
\(356\) 5.37999 1.74806i 0.285139 0.0926472i
\(357\) 0 0
\(358\) −3.32502 4.57649i −0.175733 0.241875i
\(359\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(360\) −2.58107 + 3.36721i −0.136034 + 0.177468i
\(361\) −15.3713 11.1679i −0.809017 0.587785i
\(362\) −2.00000 −0.105118
\(363\) 0 0
\(364\) 18.0000 0.943456
\(365\) 0 0
\(366\) −2.18089 7.01739i −0.113997 0.366805i
\(367\) −8.65248 26.6296i −0.451656 1.39005i −0.875017 0.484092i \(-0.839150\pi\)
0.423362 0.905961i \(-0.360850\pi\)
\(368\) 0.831254 + 1.14412i 0.0433321 + 0.0596415i
\(369\) 5.12094 + 17.2562i 0.266586 + 0.898321i
\(370\) −2.68999 + 0.874032i −0.139846 + 0.0454388i
\(371\) 9.27051 28.5317i 0.481301 1.48129i
\(372\) 0.0889475 6.92763i 0.00461171 0.359181i
\(373\) 29.6985i 1.53773i 0.639412 + 0.768865i \(0.279178\pi\)
−0.639412 + 0.768865i \(0.720822\pi\)
\(374\) 0 0
\(375\) −16.0000 + 11.3137i −0.826236 + 0.584237i
\(376\) 5.81878 8.00886i 0.300081 0.413025i
\(377\) 24.2099 + 7.86629i 1.24688 + 0.405134i
\(378\) −18.3209 + 12.2616i −0.942323 + 0.630668i
\(379\) −1.61803 + 1.17557i −0.0831128 + 0.0603850i −0.628566 0.777756i \(-0.716358\pi\)
0.545453 + 0.838141i \(0.316358\pi\)
\(380\) 0 0
\(381\) 17.6673 + 13.1859i 0.905122 + 0.675533i
\(382\) 9.41498 + 3.05911i 0.481712 + 0.156518i
\(383\) −0.831254 + 1.14412i −0.0424751 + 0.0584619i −0.829726 0.558170i \(-0.811504\pi\)
0.787251 + 0.616632i \(0.211504\pi\)
\(384\) 1.00000 + 1.41421i 0.0510310 + 0.0721688i
\(385\) 0 0
\(386\) 8.48528i 0.431889i
\(387\) 14.4289 + 20.9716i 0.733461 + 1.06605i
\(388\) 2.47214 7.60845i 0.125504 0.386261i
\(389\) 9.41498 3.05911i 0.477358 0.155103i −0.0604483 0.998171i \(-0.519253\pi\)
0.537807 + 0.843068i \(0.319253\pi\)
\(390\) −9.84163 3.33803i −0.498350 0.169027i
\(391\) 0 0
\(392\) 3.39919 + 10.4616i 0.171685 + 0.528392i
\(393\) −19.8482 + 6.16849i −1.00121 + 0.311159i
\(394\) 14.5623 + 10.5801i 0.733638 + 0.533019i
\(395\) −6.00000 −0.301893
\(396\) 0 0
\(397\) −34.0000 −1.70641 −0.853206 0.521575i \(-0.825345\pi\)
−0.853206 + 0.521575i \(0.825345\pi\)
\(398\) −12.9443 9.40456i −0.648838 0.471408i
\(399\) 0 0
\(400\) 0.927051 + 2.85317i 0.0463525 + 0.142658i
\(401\) −21.6126 29.7472i −1.07928 1.48550i −0.860309 0.509773i \(-0.829729\pi\)
−0.218973 0.975731i \(-0.570271\pi\)
\(402\) 6.56108 + 2.22535i 0.327237 + 0.110990i
\(403\) 16.1400 5.24419i 0.803989 0.261232i
\(404\) 1.85410 5.70634i 0.0922450 0.283901i
\(405\) 12.2909 3.30658i 0.610740 0.164305i
\(406\) 25.4558i 1.26335i
\(407\) 0 0
\(408\) 0 0
\(409\) −4.98752 + 6.86474i −0.246617 + 0.339439i −0.914323 0.404986i \(-0.867276\pi\)
0.667706 + 0.744425i \(0.267276\pi\)
\(410\) −8.06998 2.62210i −0.398548 0.129496i
\(411\) 3.92606 + 2.93019i 0.193658 + 0.144536i
\(412\) 3.23607 2.35114i 0.159430 0.115832i
\(413\) −38.8328 + 28.2137i −1.91084 + 1.38831i
\(414\) 0.108929 4.24124i 0.00535357 0.208446i
\(415\) 16.1400 + 5.24419i 0.792280 + 0.257427i
\(416\) −2.49376 + 3.43237i −0.122267 + 0.168286i
\(417\) 24.0000 16.9706i 1.17529 0.831052i
\(418\) 0 0
\(419\) 11.3137i 0.552711i 0.961056 + 0.276355i \(0.0891267\pi\)
−0.961056 + 0.276355i \(0.910873\pi\)
\(420\) 0.133421 10.3914i 0.00651029 0.507051i
\(421\) −3.09017 + 9.51057i −0.150606 + 0.463517i −0.997689 0.0679432i \(-0.978356\pi\)
0.847084 + 0.531460i \(0.178356\pi\)
\(422\) −8.06998 + 2.62210i −0.392841 + 0.127642i
\(423\) −28.4713 + 8.44913i −1.38432 + 0.410811i
\(424\) 4.15627 + 5.72061i 0.201846 + 0.277818i
\(425\) 0 0
\(426\) 3.63482 + 11.6956i 0.176107 + 0.566656i
\(427\) 14.5623 + 10.5801i 0.704719 + 0.512009i
\(428\) −18.0000 −0.870063
\(429\) 0 0
\(430\) −12.0000 −0.578691
\(431\) 29.1246 + 21.1603i 1.40288 + 1.01925i 0.994310 + 0.106529i \(0.0339737\pi\)
0.408574 + 0.912725i \(0.366026\pi\)
\(432\) 0.200088 5.19230i 0.00962674 0.249815i
\(433\) 0.618034 + 1.90211i 0.0297008 + 0.0914097i 0.964808 0.262955i \(-0.0846971\pi\)
−0.935107 + 0.354365i \(0.884697\pi\)
\(434\) 9.97505 + 13.7295i 0.478818 + 0.659036i
\(435\) 4.72068 13.9182i 0.226339 0.667325i
\(436\) 12.1050 3.93314i 0.579723 0.188363i
\(437\) 0 0
\(438\) 0 0
\(439\) 21.2132i 1.01245i 0.862401 + 0.506225i \(0.168960\pi\)
−0.862401 + 0.506225i \(0.831040\pi\)
\(440\) 0 0
\(441\) 11.0000 31.1127i 0.523810 1.48156i
\(442\) 0 0
\(443\) 26.8999 + 8.74032i 1.27805 + 0.415265i 0.867895 0.496748i \(-0.165473\pi\)
0.410160 + 0.912014i \(0.365473\pi\)
\(444\) 2.07196 2.77615i 0.0983309 0.131750i
\(445\) 6.47214 4.70228i 0.306809 0.222910i
\(446\) 6.47214 4.70228i 0.306465 0.222660i
\(447\) −6.21588 + 8.32844i −0.294001 + 0.393921i
\(448\) −4.03499 1.31105i −0.190635 0.0619412i
\(449\) −18.2876 + 25.1707i −0.863045 + 1.18788i 0.117790 + 0.993038i \(0.462419\pi\)
−0.980835 + 0.194840i \(0.937581\pi\)
\(450\) 3.00000 8.48528i 0.141421 0.400000i
\(451\) 0 0
\(452\) 11.3137i 0.532152i
\(453\) 7.34786 + 0.0943431i 0.345233 + 0.00443263i
\(454\) −1.85410 + 5.70634i −0.0870173 + 0.267812i
\(455\) 24.2099 7.86629i 1.13498 0.368777i
\(456\) 0 0
\(457\) −4.98752 6.86474i −0.233306 0.321119i 0.676271 0.736653i \(-0.263595\pi\)
−0.909578 + 0.415534i \(0.863595\pi\)
\(458\) −4.32624 13.3148i −0.202152 0.622159i
\(459\) 0 0
\(460\) 1.61803 + 1.17557i 0.0754412 + 0.0548113i
\(461\) −30.0000 −1.39724 −0.698620 0.715493i \(-0.746202\pi\)
−0.698620 + 0.715493i \(0.746202\pi\)
\(462\) 0 0
\(463\) 32.0000 1.48717 0.743583 0.668644i \(-0.233125\pi\)
0.743583 + 0.668644i \(0.233125\pi\)
\(464\) −4.85410 3.52671i −0.225346 0.163723i
\(465\) −2.90785 9.35652i −0.134848 0.433898i
\(466\) 5.56231 + 17.1190i 0.257669 + 0.793023i
\(467\) 18.2876 + 25.1707i 0.846249 + 1.16476i 0.984677 + 0.174389i \(0.0557949\pi\)
−0.138428 + 0.990372i \(0.544205\pi\)
\(468\) 12.2020 3.62105i 0.564036 0.167383i
\(469\) −16.1400 + 5.24419i −0.745274 + 0.242154i
\(470\) 4.32624 13.3148i 0.199554 0.614166i
\(471\) 0.489211 38.1020i 0.0225417 1.75565i
\(472\) 11.3137i 0.520756i
\(473\) 0 0
\(474\) 6.00000 4.24264i 0.275589 0.194871i
\(475\) 0 0
\(476\) 0 0
\(477\) 0.544645 21.2062i 0.0249376 0.970966i
\(478\) 9.70820 7.05342i 0.444043 0.322616i
\(479\) 9.70820 7.05342i 0.443579 0.322279i −0.343476 0.939161i \(-0.611605\pi\)
0.787055 + 0.616882i \(0.211605\pi\)
\(480\) 1.96303 + 1.46510i 0.0895997 + 0.0668722i
\(481\) 8.06998 + 2.62210i 0.367960 + 0.119557i
\(482\) −4.98752 + 6.86474i −0.227175 + 0.312680i
\(483\) 6.00000 + 8.48528i 0.273009 + 0.386094i
\(484\) 0 0
\(485\) 11.3137i 0.513729i
\(486\) −9.95281 + 11.9976i −0.451469 + 0.544221i
\(487\) 6.18034 19.0211i 0.280058 0.861930i −0.707779 0.706434i \(-0.750303\pi\)
0.987837 0.155495i \(-0.0496974\pi\)
\(488\) −4.03499 + 1.31105i −0.182655 + 0.0593484i
\(489\) 3.28054 + 1.11268i 0.148351 + 0.0503169i
\(490\) 9.14379 + 12.5854i 0.413074 + 0.568548i
\(491\) −1.85410 5.70634i −0.0836745 0.257523i 0.900463 0.434934i \(-0.143228\pi\)
−0.984137 + 0.177410i \(0.943228\pi\)
\(492\) 9.92408 3.08424i 0.447412 0.139048i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) −24.2705 17.6336i −1.08868 0.790973i
\(498\) −19.8482 + 6.16849i −0.889418 + 0.276416i
\(499\) 4.32624 + 13.3148i 0.193669 + 0.596052i 0.999990 + 0.00457310i \(0.00145567\pi\)
−0.806321 + 0.591479i \(0.798544\pi\)
\(500\) 6.65003 + 9.15298i 0.297398 + 0.409334i
\(501\) 19.6833 + 6.67605i 0.879383 + 0.298264i
\(502\) −5.37999 + 1.74806i −0.240121 + 0.0780199i
\(503\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(504\) 7.21444 + 10.4858i 0.321357 + 0.467074i
\(505\) 8.48528i 0.377590i
\(506\) 0 0
\(507\) 5.00000 + 7.07107i 0.222058 + 0.314037i
\(508\) 7.48128 10.2971i 0.331928 0.456860i
\(509\) −1.34500 0.437016i −0.0596159 0.0193704i 0.279057 0.960274i \(-0.409978\pi\)
−0.338673 + 0.940904i \(0.609978\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.809017 0.587785i 0.0357538 0.0259767i
\(513\) 0 0
\(514\) −10.7600 3.49613i −0.474602 0.154208i
\(515\) 3.32502 4.57649i 0.146518 0.201664i
\(516\) 12.0000 8.48528i 0.528271 0.373544i
\(517\) 0 0
\(518\) 8.48528i 0.372822i
\(519\) −0.133421 + 10.3914i −0.00585654 + 0.456134i
\(520\) −1.85410 + 5.70634i −0.0813077 + 0.250240i
\(521\) −18.8300 + 6.11822i −0.824955 + 0.268044i −0.690919 0.722932i \(-0.742794\pi\)
−0.134036 + 0.990976i \(0.542794\pi\)
\(522\) 5.12094 + 17.2562i 0.224138 + 0.755283i
\(523\) 14.9626 + 20.5942i 0.654267 + 0.900522i 0.999275 0.0380781i \(-0.0121236\pi\)
−0.345007 + 0.938600i \(0.612124\pi\)
\(524\) 3.70820 + 11.4127i 0.161994 + 0.498565i
\(525\) 6.54267 + 21.0522i 0.285545 + 0.918792i
\(526\) −9.70820 7.05342i −0.423298 0.307544i
\(527\) 0 0
\(528\) 0 0
\(529\) 21.0000 0.913043
\(530\) 8.09017 + 5.87785i 0.351415 + 0.255318i
\(531\) −20.6485 + 26.9377i −0.896069 + 1.16900i
\(532\) 0 0
\(533\) 14.9626 + 20.5942i 0.648101 + 0.892034i
\(534\) −3.14712 + 9.27877i −0.136189 + 0.401532i
\(535\) −24.2099 + 7.86629i −1.04669 + 0.340089i
\(536\) 1.23607 3.80423i 0.0533900 0.164318i
\(537\) 9.79715 + 0.125791i 0.422778 + 0.00542827i
\(538\) 7.07107i 0.304855i
\(539\) 0 0
\(540\) −2.00000 7.07107i −0.0860663 0.304290i
\(541\) −7.48128 + 10.2971i −0.321646 + 0.442707i −0.938969 0.344003i \(-0.888217\pi\)
0.617323 + 0.786710i \(0.288217\pi\)
\(542\) 12.1050 + 3.93314i 0.519953 + 0.168943i
\(543\) 2.07196 2.77615i 0.0889163 0.119136i
\(544\) 0 0
\(545\) 14.5623 10.5801i 0.623781 0.453203i
\(546\) −18.6476 + 24.9853i −0.798045 + 1.06927i
\(547\) 32.2799 + 10.4884i 1.38019 + 0.448451i 0.902732 0.430204i \(-0.141558\pi\)
0.477458 + 0.878654i \(0.341558\pi\)
\(548\) 1.66251 2.28825i 0.0710188 0.0977490i
\(549\) 12.0000 + 4.24264i 0.512148 + 0.181071i
\(550\) 0 0
\(551\) 0 0
\(552\) −2.44929 0.0314477i −0.104249 0.00133850i
\(553\) −5.56231 + 17.1190i −0.236533 + 0.727975i
\(554\) 20.1750 6.55524i 0.857152 0.278505i
\(555\) 1.57356 4.63939i 0.0667939 0.196931i
\(556\) −9.97505 13.7295i −0.423036 0.582259i
\(557\) 5.56231 + 17.1190i 0.235682 + 0.725356i 0.997030 + 0.0770122i \(0.0245380\pi\)
−0.761348 + 0.648344i \(0.775462\pi\)
\(558\) 9.52391 + 7.30035i 0.403179 + 0.309049i
\(559\) 29.1246 + 21.1603i 1.23184 + 0.894984i
\(560\) −6.00000 −0.253546
\(561\) 0 0
\(562\) 12.0000 0.506189
\(563\) −24.2705 17.6336i −1.02288 0.743166i −0.0560088 0.998430i \(-0.517837\pi\)
−0.966871 + 0.255264i \(0.917837\pi\)
\(564\) 5.08874 + 16.3739i 0.214275 + 0.689466i
\(565\) 4.94427 + 15.2169i 0.208007 + 0.640180i
\(566\) −4.98752 6.86474i −0.209641 0.288546i
\(567\) 1.96008 38.1334i 0.0823155 1.60145i
\(568\) 6.72499 2.18508i 0.282174 0.0916839i
\(569\) 7.41641 22.8254i 0.310912 0.956889i −0.666493 0.745512i \(-0.732205\pi\)
0.977405 0.211377i \(-0.0677948\pi\)
\(570\) 0 0
\(571\) 33.9411i 1.42039i −0.704004 0.710196i \(-0.748606\pi\)
0.704004 0.710196i \(-0.251394\pi\)
\(572\) 0 0
\(573\) −14.0000 + 9.89949i −0.584858 + 0.413557i
\(574\) −14.9626 + 20.5942i −0.624526 + 0.859586i
\(575\) −4.03499 1.31105i −0.168271 0.0546745i
\(576\) −2.99901 0.0770245i −0.124959 0.00320935i
\(577\) −16.1803 + 11.7557i −0.673596 + 0.489396i −0.871227 0.490880i \(-0.836675\pi\)
0.197631 + 0.980277i \(0.436675\pi\)
\(578\) −13.7533 + 9.99235i −0.572061 + 0.415627i
\(579\) −11.7782 8.79058i −0.489485 0.365324i
\(580\) −8.06998 2.62210i −0.335088 0.108877i
\(581\) 29.9251 41.1884i 1.24150 1.70878i
\(582\) 8.00000 + 11.3137i 0.331611 + 0.468968i
\(583\) 0 0
\(584\) 0 0
\(585\) 14.8291 10.2028i 0.613110 0.421832i
\(586\) 1.85410 5.70634i 0.0765922 0.235727i
\(587\) −26.8999 + 8.74032i −1.11028 + 0.360752i −0.806050 0.591847i \(-0.798399\pi\)
−0.304229 + 0.952599i \(0.598399\pi\)
\(588\) −18.0430 6.11971i −0.744080 0.252373i
\(589\) 0 0
\(590\) −4.94427 15.2169i −0.203552 0.626470i
\(591\) −29.7723 + 9.25273i −1.22467 + 0.380606i
\(592\) −1.61803 1.17557i −0.0665008 0.0483157i
\(593\) 36.0000 1.47834 0.739171 0.673517i \(-0.235217\pi\)
0.739171 + 0.673517i \(0.235217\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 4.85410 + 3.52671i 0.198832 + 0.144460i
\(597\) 26.4642 8.22465i 1.08311 0.336612i
\(598\) −1.85410 5.70634i −0.0758199 0.233350i
\(599\) −14.1313 19.4501i −0.577390 0.794709i 0.416016 0.909357i \(-0.363426\pi\)
−0.993406 + 0.114648i \(0.963426\pi\)
\(600\) −4.92081 1.66901i −0.200891 0.0681372i
\(601\) −32.2799 + 10.4884i −1.31673 + 0.427830i −0.881369 0.472428i \(-0.843378\pi\)
−0.435356 + 0.900258i \(0.643378\pi\)
\(602\) −11.1246 + 34.2380i −0.453405 + 1.39544i
\(603\) −9.88610 + 6.80184i −0.402593 + 0.276992i
\(604\) 4.24264i 0.172631i
\(605\) 0 0
\(606\) 6.00000 + 8.48528i 0.243733 + 0.344691i
\(607\) 2.49376 3.43237i 0.101219 0.139316i −0.755403 0.655260i \(-0.772559\pi\)
0.856622 + 0.515945i \(0.172559\pi\)
\(608\) 0 0
\(609\) −35.3346 26.3717i −1.43183 1.06864i
\(610\) −4.85410 + 3.52671i −0.196537 + 0.142792i
\(611\) −33.9787 + 24.6870i −1.37463 + 0.998728i
\(612\) 0 0
\(613\) −12.1050 3.93314i −0.488915 0.158858i 0.0541768 0.998531i \(-0.482747\pi\)
−0.543092 + 0.839673i \(0.682747\pi\)
\(614\) 0 0
\(615\) 12.0000 8.48528i 0.483887 0.342160i
\(616\) 0 0
\(617\) 39.5980i 1.59415i −0.603877 0.797077i \(-0.706378\pi\)
0.603877 0.797077i \(-0.293622\pi\)
\(618\) −0.0889475 + 6.92763i −0.00357799 + 0.278670i
\(619\) 13.5967 41.8465i 0.546499 1.68195i −0.170898 0.985289i \(-0.554667\pi\)
0.717398 0.696664i \(-0.245333\pi\)
\(620\) −5.37999 + 1.74806i −0.216066 + 0.0702039i
\(621\) 5.77430 + 4.54504i 0.231715 + 0.182386i
\(622\) −15.7938 21.7383i −0.633275 0.871628i
\(623\) −7.41641 22.8254i −0.297132 0.914479i
\(624\) −2.18089 7.01739i −0.0873054 0.280920i
\(625\) 0.809017 + 0.587785i 0.0323607 + 0.0235114i
\(626\) 10.0000 0.399680
\(627\) 0 0
\(628\) −22.0000 −0.877896
\(629\) 0 0
\(630\) 14.2859 + 10.9505i 0.569162 + 0.436280i
\(631\) 6.18034 + 19.0211i 0.246035 + 0.757219i 0.995464 + 0.0951345i \(0.0303281\pi\)
−0.749429 + 0.662085i \(0.769672\pi\)
\(632\) −2.49376 3.43237i −0.0991965 0.136532i
\(633\) 4.72068 13.9182i 0.187630 0.553197i
\(634\) −9.41498 + 3.05911i −0.373917 + 0.121493i
\(635\) 5.56231 17.1190i 0.220733 0.679347i
\(636\) −12.2464 0.157238i −0.485603 0.00623491i
\(637\) 46.6690i 1.84909i
\(638\) 0 0
\(639\) −20.0000 7.07107i −0.791188 0.279727i
\(640\) 0.831254 1.14412i 0.0328582 0.0452254i
\(641\) −45.7299 14.8585i −1.80622 0.586877i −0.806234 0.591597i \(-0.798498\pi\)
−0.999989 + 0.00472015i \(0.998498\pi\)
\(642\) 18.6476 24.9853i 0.735964 0.986091i
\(643\) 3.23607 2.35114i 0.127618 0.0927200i −0.522145 0.852857i \(-0.674868\pi\)
0.649763 + 0.760137i \(0.274868\pi\)
\(644\) 4.85410 3.52671i 0.191278 0.138972i
\(645\) 12.4318 16.6569i 0.489500 0.655864i
\(646\) 0 0
\(647\) 4.15627 5.72061i 0.163400 0.224901i −0.719464 0.694530i \(-0.755612\pi\)
0.882864 + 0.469629i \(0.155612\pi\)
\(648\) 7.00000 + 5.65685i 0.274986 + 0.222222i
\(649\) 0 0
\(650\) 12.7279i 0.499230i
\(651\) −29.3915 0.377372i −1.15194 0.0147904i
\(652\) 0.618034 1.90211i 0.0242041 0.0744925i
\(653\) 25.5549 8.30330i 1.00004 0.324933i 0.237160 0.971471i \(-0.423784\pi\)
0.762882 + 0.646537i \(0.223784\pi\)
\(654\) −7.08102 + 20.8772i −0.276890 + 0.816365i
\(655\) 9.97505 + 13.7295i 0.389757 + 0.536455i
\(656\) −1.85410 5.70634i −0.0723905 0.222795i
\(657\) 0 0
\(658\) −33.9787 24.6870i −1.32463 0.962399i
\(659\) −30.0000 −1.16863 −0.584317 0.811525i \(-0.698638\pi\)
−0.584317 + 0.811525i \(0.698638\pi\)
\(660\) 0 0
\(661\) −22.0000 −0.855701 −0.427850 0.903850i \(-0.640729\pi\)
−0.427850 + 0.903850i \(0.640729\pi\)
\(662\) −8.09017 5.87785i −0.314433 0.228449i
\(663\) 0 0
\(664\) 3.70820 + 11.4127i 0.143906 + 0.442898i
\(665\) 0 0
\(666\) 1.70698 + 5.75206i 0.0661442 + 0.222888i
\(667\) 8.06998 2.62210i 0.312471 0.101528i
\(668\) 3.70820 11.4127i 0.143475 0.441570i
\(669\) −0.177895 + 13.8553i −0.00687782 + 0.535675i
\(670\) 5.65685i 0.218543i
\(671\) 0 0
\(672\) 6.00000 4.24264i 0.231455 0.163663i
\(673\) −24.9376 + 34.3237i −0.961274 + 1.32308i −0.0149412 + 0.999888i \(0.504756\pi\)
−0.946333 + 0.323192i \(0.895244\pi\)
\(674\) 32.2799 + 10.4884i 1.24338 + 0.403997i
\(675\) 8.67025 + 12.9548i 0.333718 + 0.498630i
\(676\) 4.04508 2.93893i 0.155580 0.113036i
\(677\) 24.2705 17.6336i 0.932791 0.677713i −0.0138832 0.999904i \(-0.504419\pi\)
0.946675 + 0.322191i \(0.104419\pi\)
\(678\) −15.7042 11.7208i −0.603118 0.450134i
\(679\) −32.2799 10.4884i −1.23879 0.402507i
\(680\) 0 0
\(681\) −6.00000 8.48528i −0.229920 0.325157i
\(682\) 0 0
\(683\) 5.65685i 0.216454i −0.994126 0.108227i \(-0.965483\pi\)
0.994126 0.108227i \(-0.0345173\pi\)
\(684\) 0 0
\(685\) 1.23607 3.80423i 0.0472277 0.145352i
\(686\) 16.1400 5.24419i 0.616227 0.200224i
\(687\) 22.9638 + 7.78873i 0.876123 + 0.297158i
\(688\) −4.98752 6.86474i −0.190148 0.261716i
\(689\) −9.27051 28.5317i −0.353178 1.08697i
\(690\) −3.30803 + 1.02808i −0.125934 + 0.0391384i
\(691\) 22.6525 + 16.4580i 0.861741 + 0.626091i 0.928358 0.371687i \(-0.121221\pi\)
−0.0666172 + 0.997779i \(0.521221\pi\)
\(692\) 6.00000 0.228086
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) −19.4164 14.1068i −0.736506 0.535103i
\(696\) 9.92408 3.08424i 0.376171 0.116908i
\(697\) 0 0
\(698\) −17.4563 24.0266i −0.660732 0.909419i
\(699\) −29.5249 10.0141i −1.11673 0.378767i
\(700\) 12.1050 3.93314i 0.457525 0.148659i
\(701\) 5.56231 17.1190i 0.210085 0.646576i −0.789381 0.613904i \(-0.789598\pi\)
0.999466 0.0326724i \(-0.0104018\pi\)
\(702\) −7.61471 + 20.6886i −0.287399 + 0.780839i
\(703\) 0 0
\(704\) 0 0
\(705\) 14.0000 + 19.7990i 0.527271 + 0.745673i
\(706\) 13.3001 18.3060i 0.500554 0.688954i
\(707\) −24.2099 7.86629i −0.910509 0.295842i
\(708\) 15.7042 + 11.7208i 0.590202 + 0.440494i
\(709\) 8.09017 5.87785i 0.303833 0.220747i −0.425413 0.904999i \(-0.639871\pi\)
0.729246 + 0.684252i \(0.239871\pi\)
\(710\) 8.09017 5.87785i 0.303619 0.220592i
\(711\) −0.326787 + 12.7237i −0.0122555 + 0.477177i
\(712\) 5.37999 + 1.74806i 0.201624 + 0.0655115i
\(713\) 3.32502 4.57649i 0.124523 0.171391i
\(714\) 0 0
\(715\) 0 0
\(716\) 5.65685i 0.211407i
\(717\) −0.266843 + 20.7829i −0.00996542 + 0.776151i
\(718\) 0 0
\(719\) −30.9349 + 10.0514i −1.15368 + 0.374853i −0.822528 0.568725i \(-0.807437\pi\)
−0.331151 + 0.943578i \(0.607437\pi\)
\(720\) −4.06732 + 1.20702i −0.151580 + 0.0449829i
\(721\) −9.97505 13.7295i −0.371490 0.511312i
\(722\) −5.87132 18.0701i −0.218508 0.672499i
\(723\) −4.36178 14.0348i −0.162216 0.521959i
\(724\) −1.61803 1.17557i −0.0601338 0.0436897i
\(725\) 18.0000 0.668503
\(726\) 0 0
\(727\) 44.0000 1.63187 0.815935 0.578144i \(-0.196223\pi\)
0.815935 + 0.578144i \(0.196223\pi\)
\(728\) 14.5623 + 10.5801i 0.539715 + 0.392126i
\(729\) −6.34258 26.2445i −0.234910 0.972017i
\(730\) 0 0
\(731\) 0 0
\(732\) 2.36034 6.95908i 0.0872407 0.257215i
\(733\) −4.03499 + 1.31105i −0.149036 + 0.0484247i −0.382585 0.923920i \(-0.624966\pi\)
0.233549 + 0.972345i \(0.424966\pi\)
\(734\) 8.65248 26.6296i 0.319369 0.982916i
\(735\) −26.9422 0.345925i −0.993777 0.0127596i
\(736\) 1.41421i 0.0521286i
\(737\) 0 0
\(738\) −6.00000 + 16.9706i −0.220863 + 0.624695i
\(739\) 14.9626 20.5942i 0.550407 0.757570i −0.439660 0.898164i \(-0.644901\pi\)
0.990067 + 0.140594i \(0.0449012\pi\)
\(740\) −2.68999 0.874032i −0.0988861 0.0321301i
\(741\) 0 0
\(742\) 24.2705 17.6336i 0.890998 0.647348i
\(743\) 19.4164 14.1068i 0.712319 0.517530i −0.171602 0.985166i \(-0.554894\pi\)
0.883921 + 0.467636i \(0.154894\pi\)
\(744\) 4.14392 5.55229i 0.151923 0.203557i
\(745\) 8.06998 + 2.62210i 0.295661 + 0.0960662i
\(746\) −17.4563 + 24.0266i −0.639122 + 0.879676i
\(747\) 12.0000 33.9411i 0.439057 1.24184i
\(748\) 0 0
\(749\) 76.3675i 2.79041i
\(750\) −19.5943 0.251582i −0.715483 0.00918646i
\(751\) −12.3607 + 38.0423i −0.451048 + 1.38818i 0.424666 + 0.905350i \(0.360392\pi\)
−0.875713 + 0.482832i \(0.839608\pi\)
\(752\) 9.41498 3.05911i 0.343329 0.111554i
\(753\) 3.14712 9.27877i 0.114687 0.338137i
\(754\) 14.9626 + 20.5942i 0.544905 + 0.749997i
\(755\) −1.85410 5.70634i −0.0674777 0.207675i
\(756\) −22.0291 0.848901i −0.801189 0.0308742i
\(757\) −1.61803 1.17557i −0.0588084 0.0427268i 0.557993 0.829846i \(-0.311572\pi\)
−0.616801 + 0.787119i \(0.711572\pi\)
\(758\) −2.00000 −0.0726433
\(759\) 0 0
\(760\) 0 0
\(761\) 19.4164 + 14.1068i 0.703844 + 0.511373i 0.881182 0.472777i \(-0.156748\pi\)
−0.177338 + 0.984150i \(0.556748\pi\)
\(762\) 6.54267 + 21.0522i 0.237016 + 0.762639i
\(763\) −16.6869 51.3571i −0.604107 1.85925i
\(764\) 5.81878 + 8.00886i 0.210516 + 0.289750i
\(765\) 0 0
\(766\) −1.34500 + 0.437016i −0.0485967 + 0.0157900i
\(767\) −14.8328 + 45.6507i −0.535582 + 1.64835i
\(768\) −0.0222369 + 1.73191i −0.000802404 + 0.0624948i
\(769\) 42.4264i 1.52994i 0.644069 + 0.764968i \(0.277245\pi\)
−0.644069 + 0.764968i \(0.722755\pi\)
\(770\) 0 0
\(771\) 16.0000 11.3137i 0.576226 0.407453i
\(772\) −4.98752 + 6.86474i −0.179505 + 0.247067i
\(773\) −17.4850 5.68121i −0.628890 0.204339i −0.0228069 0.999740i \(-0.507260\pi\)
−0.606083 + 0.795401i \(0.707260\pi\)
\(774\) −0.653574 + 25.4475i −0.0234922 + 0.914690i
\(775\) 9.70820 7.05342i 0.348729 0.253366i
\(776\) 6.47214 4.70228i 0.232336 0.168802i
\(777\) −11.7782 8.79058i −0.422540 0.315360i
\(778\) 9.41498 + 3.05911i 0.337543 + 0.109674i
\(779\) 0 0
\(780\) −6.00000 8.48528i −0.214834 0.303822i
\(781\) 0 0
\(782\) 0 0
\(783\) −29.2580 10.7688i −1.04560 0.384846i
\(784\) −3.39919 + 10.4616i −0.121400 + 0.373629i
\(785\) −29.5899 + 9.61435i −1.05611 + 0.343151i
\(786\) −19.6833 6.67605i −0.702078 0.238127i
\(787\) −24.9376 34.3237i −0.888930 1.22351i −0.973867 0.227121i \(-0.927069\pi\)
0.0849366 0.996386i \(-0.472931\pi\)
\(788\) 5.56231 + 17.1190i 0.198149 + 0.609840i
\(789\) 19.8482 6.16849i 0.706613 0.219604i
\(790\) −4.85410 3.52671i −0.172701 0.125475i
\(791\) 48.0000 1.70668
\(792\) 0 0
\(793\) 18.0000 0.639199
\(794\) −27.5066 19.9847i −0.976172 0.709230i
\(795\) −16.5401 + 5.14040i −0.586618 + 0.182311i
\(796\) −4.94427 15.2169i −0.175245 0.539349i
\(797\) 0.831254 + 1.14412i 0.0294445 + 0.0405269i 0.823485 0.567337i \(-0.192026\pi\)
−0.794041 + 0.607864i \(0.792026\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.927051 + 2.85317i −0.0327762 + 0.100875i
\(801\) −9.61926 13.9811i −0.339880 0.493996i
\(802\) 36.7696i 1.29838i
\(803\) 0 0
\(804\) 4.00000 + 5.65685i 0.141069 + 0.199502i
\(805\) 4.98752 6.86474i 0.175787 0.241950i
\(806\) 16.1400 + 5.24419i 0.568506 + 0.184719i
\(807\) 9.81516 + 7.32549i 0.345510 + 0.257869i
\(808\) 4.85410 3.52671i 0.170767 0.124069i
\(809\) −43.6869 + 31.7404i −1.53595 + 1.11593i −0.583138 + 0.812373i \(0.698175\pi\)
−0.952812 + 0.303560i \(0.901825\pi\)
\(810\) 11.8871 + 4.54934i 0.417671 + 0.159848i
\(811\) −24.2099 7.86629i −0.850126 0.276223i −0.148627 0.988893i \(-0.547485\pi\)
−0.701499 + 0.712671i \(0.747485\pi\)
\(812\) −14.9626 + 20.5942i −0.525083 + 0.722715i
\(813\) −18.0000 + 12.7279i −0.631288 + 0.446388i
\(814\) 0 0
\(815\) 2.82843i 0.0990755i
\(816\) 0 0
\(817\) 0 0
\(818\) −8.06998 + 2.62210i −0.282160 + 0.0916794i
\(819\) −15.3628 51.7686i −0.536821 1.80894i
\(820\) −4.98752 6.86474i −0.174172 0.239727i
\(821\) −9.27051 28.5317i −0.323543 0.995763i −0.972094 0.234592i \(-0.924625\pi\)
0.648551 0.761171i \(-0.275375\pi\)
\(822\) 1.45393 + 4.67826i 0.0507115 + 0.163173i
\(823\) 32.3607 + 23.5114i 1.12802 + 0.819556i 0.985406 0.170222i \(-0.0544484\pi\)
0.142617 + 0.989778i \(0.454448\pi\)
\(824\) 4.00000 0.139347
\(825\) 0 0
\(826\) −48.0000 −1.67013
\(827\) 29.1246 + 21.1603i 1.01276 + 0.735815i 0.964787 0.263034i \(-0.0847231\pi\)
0.0479754 + 0.998849i \(0.484723\pi\)
\(828\) 2.58107 3.36721i 0.0896982 0.117019i
\(829\) 0.618034 + 1.90211i 0.0214652 + 0.0660631i 0.961215 0.275799i \(-0.0889424\pi\)
−0.939750 + 0.341862i \(0.888942\pi\)
\(830\) 9.97505 + 13.7295i 0.346239 + 0.476557i
\(831\) −11.8017 + 34.7954i −0.409396 + 1.20704i
\(832\) −4.03499 + 1.31105i −0.139888 + 0.0454524i
\(833\) 0 0
\(834\) 29.3915 + 0.377372i 1.01774 + 0.0130673i
\(835\) 16.9706i 0.587291i
\(836\) 0 0
\(837\) −20.0000 + 5.65685i −0.691301 + 0.195529i
\(838\) −6.65003 + 9.15298i −0.229722 + 0.316185i
\(839\) 14.7950 + 4.80718i 0.510779 + 0.165962i 0.553056 0.833144i \(-0.313461\pi\)
−0.0422775 + 0.999106i \(0.513461\pi\)
\(840\) 6.21588 8.32844i 0.214468 0.287358i
\(841\) −5.66312 + 4.11450i −0.195280 + 0.141879i
\(842\) −8.09017 + 5.87785i −0.278806 + 0.202564i
\(843\) −12.4318 + 16.6569i −0.428173 + 0.573693i
\(844\) −8.06998 2.62210i −0.277780 0.0902563i
\(845\) 4.15627 5.72061i 0.142980 0.196795i
\(846\) −28.0000 9.89949i −0.962660 0.340352i
\(847\) 0 0
\(848\) 7.07107i 0.242821i
\(849\) 14.6957 + 0.188686i 0.504356 + 0.00647569i
\(850\) 0 0
\(851\) 2.68999 0.874032i 0.0922118 0.0299614i
\(852\) −3.93390 + 11.5985i −0.134773 + 0.397357i
\(853\) −12.4688 17.1618i −0.426924 0.587610i 0.540320 0.841460i \(-0.318303\pi\)
−0.967244 + 0.253849i \(0.918303\pi\)
\(854\) 5.56231 + 17.1190i 0.190338 + 0.585801i
\(855\) 0 0
\(856\) −14.5623 10.5801i −0.497729 0.361622i
\(857\) 6.00000 0.204956 0.102478 0.994735i \(-0.467323\pi\)
0.102478 + 0.994735i \(0.467323\pi\)
\(858\) 0 0
\(859\) −22.0000 −0.750630 −0.375315 0.926897i \(-0.622466\pi\)
−0.375315 + 0.926897i \(0.622466\pi\)
\(860\) −9.70820 7.05342i −0.331047 0.240520i
\(861\) −13.0853 42.1043i −0.445947 1.43491i
\(862\) 11.1246 + 34.2380i 0.378906 + 1.16615i
\(863\) −4.15627 5.72061i −0.141481 0.194732i 0.732396 0.680879i \(-0.238402\pi\)
−0.873877 + 0.486147i \(0.838402\pi\)
\(864\) 3.21383 4.08305i 0.109337 0.138908i
\(865\) 8.06998 2.62210i 0.274388 0.0891539i
\(866\) −0.618034 + 1.90211i −0.0210016 + 0.0646364i
\(867\) 0.378027 29.4424i 0.0128385 0.999918i
\(868\) 16.9706i 0.576018i
\(869\) 0 0
\(870\) 12.0000 8.48528i 0.406838 0.287678i
\(871\) −9.97505 + 13.7295i −0.337992 + 0.465205i
\(872\) 12.1050 + 3.93314i 0.409926 + 0.133193i
\(873\) −23.9921 0.616196i −0.812009 0.0208551i
\(874\) 0 0
\(875\) 38.8328 28.2137i 1.31279 0.953797i
\(876\) 0 0
\(877\) 28.2449 + 9.17734i 0.953764 + 0.309897i 0.744244 0.667908i \(-0.232810\pi\)
0.209520 + 0.977804i \(0.432810\pi\)
\(878\) −12.4688 + 17.1618i −0.420802 + 0.579184i
\(879\) 6.00000 + 8.48528i 0.202375 + 0.286201i
\(880\) 0 0
\(881\) 5.65685i 0.190584i −0.995449 0.0952921i \(-0.969621\pi\)
0.995449 0.0952921i \(-0.0303785\pi\)
\(882\) 27.1868 18.7051i 0.915426 0.629832i
\(883\) 6.18034 19.0211i 0.207985 0.640112i −0.791593 0.611049i \(-0.790748\pi\)
0.999578 0.0290628i \(-0.00925227\pi\)
\(884\) 0 0
\(885\) 26.2443 + 8.90140i 0.882194 + 0.299217i
\(886\) 16.6251 + 22.8825i 0.558530 + 0.768751i
\(887\) 14.8328 + 45.6507i 0.498037 + 1.53280i 0.812169 + 0.583422i \(0.198286\pi\)
−0.314132 + 0.949379i \(0.601714\pi\)
\(888\) 3.30803 1.02808i 0.111010 0.0345001i
\(889\) −43.6869 31.7404i −1.46521 1.06454i
\(890\) 8.00000 0.268161
\(891\) 0 0
\(892\) 8.00000 0.267860
\(893\) 0 0
\(894\) −9.92408 + 3.08424i −0.331911 + 0.103153i
\(895\) −2.47214 7.60845i −0.0826344 0.254323i
\(896\) −2.49376 3.43237i −0.0833107 0.114667i
\(897\) 9.84163 + 3.33803i 0.328602 + 0.111453i
\(898\) −29.5899 + 9.61435i −0.987429 + 0.320835i
\(899\) −7.41641 + 22.8254i −0.247351 + 0.761268i
\(900\) 7.41457 5.10138i 0.247152 0.170046i
\(901\) 0 0
\(902\) 0 0
\(903\) −36.0000 50.9117i −1.19800 1.69423i
\(904\) −6.65003 + 9.15298i −0.221177 + 0.304424i
\(905\) −2.68999 0.874032i −0.0894184 0.0290538i
\(906\) 5.88909 + 4.39529i 0.195652 + 0.146024i
\(907\) −35.5967 + 25.8626i −1.18197 + 0.858752i −0.992393 0.123114i \(-0.960712\pi\)
−0.189578 + 0.981866i \(0.560712\pi\)
\(908\) −4.85410 + 3.52671i −0.161089 + 0.117038i
\(909\) −17.9941 0.462147i −0.596826 0.0153284i
\(910\) 24.2099 + 7.86629i 0.802552 + 0.260765i
\(911\) −5.81878 + 8.00886i −0.192785 + 0.265345i −0.894457 0.447155i \(-0.852437\pi\)
0.701672 + 0.712500i \(0.252437\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 8.48528i 0.280668i
\(915\) 0.133421 10.3914i 0.00441077 0.343531i
\(916\) 4.32624 13.3148i 0.142943 0.439933i
\(917\) 48.4199 15.7326i 1.59897 0.519535i
\(918\) 0 0
\(919\) 22.4439 + 30.8913i 0.740354 + 1.01901i 0.998598 + 0.0529307i \(0.0168562\pi\)
−0.258244 + 0.966080i \(0.583144\pi\)
\(920\) 0.618034 + 1.90211i 0.0203760 + 0.0627108i
\(921\) 0 0
\(922\) −24.2705 17.6336i −0.799307 0.580730i
\(923\) −30.0000 −0.987462
\(924\) 0 0
\(925\) 6.00000 0.197279
\(926\) 25.8885 + 18.8091i 0.850750 + 0.618106i
\(927\) −9.52391 7.30035i −0.312806 0.239775i
\(928\) −1.85410 5.70634i −0.0608639 0.187320i
\(929\) −1.66251 2.28825i −0.0545451 0.0750749i 0.780873 0.624690i \(-0.214775\pi\)
−0.835418 + 0.549615i \(0.814775\pi\)
\(930\) 3.14712 9.27877i 0.103198 0.304263i
\(931\) 0 0
\(932\) −5.56231 + 17.1190i −0.182199 + 0.560752i
\(933\) 46.5365 + 0.597506i 1.52354 + 0.0195615i
\(934\) 31.1127i 1.01804i
\(935\) 0 0
\(936\) 12.0000 + 4.24264i 0.392232 + 0.138675i
\(937\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(938\) −16.1400 5.24419i −0.526989 0.171229i
\(939\) −10.3598 + 13.8807i −0.338079 + 0.452980i
\(940\) 11.3262 8.22899i 0.369421 0.268400i
\(941\) 33.9787 24.6870i 1.10767 0.804773i 0.125379 0.992109i \(-0.459985\pi\)
0.982296 + 0.187336i \(0.0599854\pi\)
\(942\) 22.7916 30.5376i 0.742589 0.994969i
\(943\) 8.06998 + 2.62210i 0.262795 + 0.0853872i
\(944\) 6.65003 9.15298i 0.216440 0.297904i
\(945\) −30.0000 + 8.48528i −0.975900 + 0.276026i
\(946\) 0 0
\(947\) 48.0833i 1.56250i −0.624221 0.781248i \(-0.714583\pi\)
0.624221 0.781248i \(-0.285417\pi\)
\(948\) 7.34786 + 0.0943431i 0.238648 + 0.00306412i
\(949\) 0 0
\(950\) 0 0
\(951\) 5.50746 16.2379i 0.178592 0.526548i
\(952\) 0 0
\(953\) 16.6869 + 51.3571i 0.540542 + 1.66362i 0.731359 + 0.681992i \(0.238886\pi\)
−0.190817 + 0.981626i \(0.561114\pi\)
\(954\) 12.9053 16.8361i 0.417825 0.545087i
\(955\) 11.3262 + 8.22899i 0.366508 + 0.266284i
\(956\) 12.0000 0.388108
\(957\) 0 0
\(958\) 12.0000 0.387702
\(959\) −9.70820 7.05342i −0.313494 0.227767i
\(960\) 0.726963 + 2.33913i 0.0234626 + 0.0754951i
\(961\) −4.63525 14.2658i −0.149524 0.460189i
\(962\) 4.98752 + 6.86474i 0.160804 + 0.221328i
\(963\) 15.3628 + 51.7686i 0.495060 + 1.66822i
\(964\) −8.06998 + 2.62210i −0.259917 + 0.0844520i
\(965\) −3.70820 + 11.4127i −0.119371 + 0.367387i
\(966\) −0.133421 + 10.3914i −0.00429276 + 0.334339i
\(967\) 4.24264i 0.136434i 0.997671 + 0.0682171i \(0.0217310\pi\)
−0.997671 + 0.0682171i \(0.978269\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 6.65003 9.15298i 0.213520 0.293885i
\(971\) 43.0399 + 13.9845i 1.38122 + 0.448784i 0.903069 0.429495i \(-0.141309\pi\)
0.478147 + 0.878280i \(0.341309\pi\)
\(972\) −15.1040 + 3.85612i −0.484461 + 0.123685i
\(973\) −58.2492 + 42.3205i −1.86738 + 1.35673i
\(974\) 16.1803 11.7557i 0.518452 0.376677i
\(975\) 17.6673 + 13.1859i 0.565806 + 0.422286i
\(976\) −4.03499 1.31105i −0.129157 0.0419656i
\(977\) −8.31254 + 11.4412i −0.265942 + 0.366037i −0.921014 0.389529i \(-0.872638\pi\)
0.655073 + 0.755566i \(0.272638\pi\)
\(978\) 2.00000 + 2.82843i 0.0639529 + 0.0904431i
\(979\) 0 0
\(980\) 15.5563i 0.496929i
\(981\) −21.6433 31.4574i −0.691018 1.00436i
\(982\) 1.85410 5.70634i 0.0591668 0.182097i
\(983\) 9.41498 3.05911i 0.300291 0.0975705i −0.154996 0.987915i \(-0.549537\pi\)
0.455287 + 0.890345i \(0.349537\pi\)
\(984\) 9.84163 + 3.33803i 0.313740 + 0.106412i
\(985\) 14.9626 + 20.5942i 0.476747 + 0.656186i
\(986\) 0 0
\(987\) 69.4686 21.5897i 2.21121 0.687208i
\(988\) 0 0
\(989\) 12.0000 0.381578
\(990\) 0 0
\(991\) 20.0000 0.635321 0.317660 0.948205i \(-0.397103\pi\)
0.317660 + 0.948205i \(0.397103\pi\)
\(992\) −3.23607 2.35114i −0.102745 0.0746488i
\(993\) 16.5401 5.14040i 0.524885 0.163126i
\(994\) −9.27051 28.5317i −0.294043 0.904970i
\(995\) −13.3001 18.3060i −0.421640 0.580338i
\(996\) −19.6833 6.67605i −0.623688 0.211539i
\(997\) 28.2449 9.17734i 0.894526 0.290649i 0.174550 0.984648i \(-0.444153\pi\)
0.719976 + 0.693999i \(0.244153\pi\)
\(998\) −4.32624 + 13.3148i −0.136945 + 0.421472i
\(999\) −9.75268 3.58961i −0.308561 0.113570i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 726.2.h.i.161.1 8
3.2 odd 2 726.2.h.e.161.2 8
11.2 odd 10 726.2.h.e.215.1 8
11.3 even 5 inner 726.2.h.i.239.2 8
11.4 even 5 inner 726.2.h.i.233.2 8
11.5 even 5 66.2.b.a.65.1 2
11.6 odd 10 66.2.b.b.65.1 yes 2
11.7 odd 10 726.2.h.e.233.2 8
11.8 odd 10 726.2.h.e.239.2 8
11.9 even 5 inner 726.2.h.i.215.1 8
11.10 odd 2 726.2.h.e.161.1 8
33.2 even 10 inner 726.2.h.i.215.2 8
33.5 odd 10 66.2.b.b.65.2 yes 2
33.8 even 10 inner 726.2.h.i.239.1 8
33.14 odd 10 726.2.h.e.239.1 8
33.17 even 10 66.2.b.a.65.2 yes 2
33.20 odd 10 726.2.h.e.215.2 8
33.26 odd 10 726.2.h.e.233.1 8
33.29 even 10 inner 726.2.h.i.233.1 8
33.32 even 2 inner 726.2.h.i.161.2 8
44.27 odd 10 528.2.b.b.65.2 2
44.39 even 10 528.2.b.c.65.2 2
55.17 even 20 1650.2.f.a.1649.3 4
55.27 odd 20 1650.2.f.b.1649.1 4
55.28 even 20 1650.2.f.a.1649.2 4
55.38 odd 20 1650.2.f.b.1649.4 4
55.39 odd 10 1650.2.d.a.1451.2 2
55.49 even 10 1650.2.d.b.1451.2 2
88.5 even 10 2112.2.b.g.65.2 2
88.27 odd 10 2112.2.b.d.65.1 2
88.61 odd 10 2112.2.b.i.65.2 2
88.83 even 10 2112.2.b.b.65.1 2
99.5 odd 30 1782.2.i.c.593.2 4
99.16 even 15 1782.2.i.f.1187.2 4
99.38 odd 30 1782.2.i.c.1187.1 4
99.49 even 15 1782.2.i.f.593.1 4
99.50 even 30 1782.2.i.f.593.2 4
99.61 odd 30 1782.2.i.c.1187.2 4
99.83 even 30 1782.2.i.f.1187.1 4
99.94 odd 30 1782.2.i.c.593.1 4
132.71 even 10 528.2.b.c.65.1 2
132.83 odd 10 528.2.b.b.65.1 2
165.17 odd 20 1650.2.f.b.1649.2 4
165.38 even 20 1650.2.f.a.1649.1 4
165.83 odd 20 1650.2.f.b.1649.3 4
165.104 odd 10 1650.2.d.a.1451.1 2
165.137 even 20 1650.2.f.a.1649.4 4
165.149 even 10 1650.2.d.b.1451.1 2
264.5 odd 10 2112.2.b.i.65.1 2
264.83 odd 10 2112.2.b.d.65.2 2
264.149 even 10 2112.2.b.g.65.1 2
264.203 even 10 2112.2.b.b.65.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
66.2.b.a.65.1 2 11.5 even 5
66.2.b.a.65.2 yes 2 33.17 even 10
66.2.b.b.65.1 yes 2 11.6 odd 10
66.2.b.b.65.2 yes 2 33.5 odd 10
528.2.b.b.65.1 2 132.83 odd 10
528.2.b.b.65.2 2 44.27 odd 10
528.2.b.c.65.1 2 132.71 even 10
528.2.b.c.65.2 2 44.39 even 10
726.2.h.e.161.1 8 11.10 odd 2
726.2.h.e.161.2 8 3.2 odd 2
726.2.h.e.215.1 8 11.2 odd 10
726.2.h.e.215.2 8 33.20 odd 10
726.2.h.e.233.1 8 33.26 odd 10
726.2.h.e.233.2 8 11.7 odd 10
726.2.h.e.239.1 8 33.14 odd 10
726.2.h.e.239.2 8 11.8 odd 10
726.2.h.i.161.1 8 1.1 even 1 trivial
726.2.h.i.161.2 8 33.32 even 2 inner
726.2.h.i.215.1 8 11.9 even 5 inner
726.2.h.i.215.2 8 33.2 even 10 inner
726.2.h.i.233.1 8 33.29 even 10 inner
726.2.h.i.233.2 8 11.4 even 5 inner
726.2.h.i.239.1 8 33.8 even 10 inner
726.2.h.i.239.2 8 11.3 even 5 inner
1650.2.d.a.1451.1 2 165.104 odd 10
1650.2.d.a.1451.2 2 55.39 odd 10
1650.2.d.b.1451.1 2 165.149 even 10
1650.2.d.b.1451.2 2 55.49 even 10
1650.2.f.a.1649.1 4 165.38 even 20
1650.2.f.a.1649.2 4 55.28 even 20
1650.2.f.a.1649.3 4 55.17 even 20
1650.2.f.a.1649.4 4 165.137 even 20
1650.2.f.b.1649.1 4 55.27 odd 20
1650.2.f.b.1649.2 4 165.17 odd 20
1650.2.f.b.1649.3 4 165.83 odd 20
1650.2.f.b.1649.4 4 55.38 odd 20
1782.2.i.c.593.1 4 99.94 odd 30
1782.2.i.c.593.2 4 99.5 odd 30
1782.2.i.c.1187.1 4 99.38 odd 30
1782.2.i.c.1187.2 4 99.61 odd 30
1782.2.i.f.593.1 4 99.49 even 15
1782.2.i.f.593.2 4 99.50 even 30
1782.2.i.f.1187.1 4 99.83 even 30
1782.2.i.f.1187.2 4 99.16 even 15
2112.2.b.b.65.1 2 88.83 even 10
2112.2.b.b.65.2 2 264.203 even 10
2112.2.b.d.65.1 2 88.27 odd 10
2112.2.b.d.65.2 2 264.83 odd 10
2112.2.b.g.65.1 2 264.149 even 10
2112.2.b.g.65.2 2 88.5 even 10
2112.2.b.i.65.1 2 264.5 odd 10
2112.2.b.i.65.2 2 88.61 odd 10