Properties

Label 726.2.h.i.233.1
Level $726$
Weight $2$
Character 726.233
Analytic conductor $5.797$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [726,2,Mod(161,726)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(726, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("726.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 726 = 2 \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 726.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,2,2,-2,0,-2,0,2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.79713918674\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: 8.0.64000000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{6} + 4x^{4} - 8x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 66)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 233.1
Root \(-1.34500 + 0.437016i\) of defining polynomial
Character \(\chi\) \(=\) 726.233
Dual form 726.2.h.i.215.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.309017 + 0.951057i) q^{2} +(-0.0222369 - 1.73191i) q^{3} +(-0.809017 - 0.587785i) q^{4} +(-1.34500 + 0.437016i) q^{5} +(1.65401 + 0.514040i) q^{6} +(2.49376 - 3.43237i) q^{7} +(0.809017 - 0.587785i) q^{8} +(-2.99901 + 0.0770245i) q^{9} -1.41421i q^{10} +(-1.00000 + 1.41421i) q^{12} +(-4.03499 - 1.31105i) q^{13} +(2.49376 + 3.43237i) q^{14} +(0.786780 + 2.31969i) q^{15} +(0.309017 + 0.951057i) q^{16} +(0.853491 - 2.87603i) q^{18} +(1.34500 + 0.437016i) q^{20} +(-6.00000 - 4.24264i) q^{21} +1.41421i q^{23} +(-1.03598 - 1.38807i) q^{24} +(-2.42705 + 1.76336i) q^{25} +(2.49376 - 3.43237i) q^{26} +(0.200088 + 5.19230i) q^{27} +(-4.03499 + 1.31105i) q^{28} +(-4.85410 - 3.52671i) q^{29} +(-2.44929 + 0.0314477i) q^{30} +(-1.23607 + 3.80423i) q^{31} -1.00000 q^{32} +(-1.85410 + 5.70634i) q^{35} +(2.47152 + 1.70046i) q^{36} +(-1.61803 - 1.17557i) q^{37} +(-2.18089 + 7.01739i) q^{39} +(-0.831254 + 1.14412i) q^{40} +(4.85410 - 3.52671i) q^{41} +(5.88909 - 4.39529i) q^{42} -8.48528i q^{43} +(4.00000 - 1.41421i) q^{45} +(-1.34500 - 0.437016i) q^{46} +(-5.81878 - 8.00886i) q^{47} +(1.64027 - 0.556338i) q^{48} +(-3.39919 - 10.4616i) q^{49} +(-0.927051 - 2.85317i) q^{50} +(2.49376 + 3.43237i) q^{52} +(-6.72499 - 2.18508i) q^{53} +(-5.00000 - 1.41421i) q^{54} -4.24264i q^{56} +(4.85410 - 3.52671i) q^{58} +(-6.65003 + 9.15298i) q^{59} +(0.726963 - 2.33913i) q^{60} +(-4.03499 + 1.31105i) q^{61} +(-3.23607 - 2.35114i) q^{62} +(-7.21444 + 10.4858i) q^{63} +(0.309017 - 0.951057i) q^{64} +6.00000 q^{65} -4.00000 q^{67} +(2.44929 - 0.0314477i) q^{69} +(-4.85410 - 3.52671i) q^{70} +(6.72499 - 2.18508i) q^{71} +(-2.38098 + 1.82509i) q^{72} +(1.61803 - 1.17557i) q^{74} +(3.10794 + 4.16422i) q^{75} +(-6.00000 - 4.24264i) q^{78} +(4.03499 + 1.31105i) q^{79} +(-0.831254 - 1.14412i) q^{80} +(8.98813 - 0.461994i) q^{81} +(1.85410 + 5.70634i) q^{82} +(-3.70820 - 11.4127i) q^{83} +(2.36034 + 6.95908i) q^{84} +(8.06998 + 2.62210i) q^{86} +(-6.00000 + 8.48528i) q^{87} +5.65685i q^{89} +(0.108929 + 4.24124i) q^{90} +(-14.5623 + 10.5801i) q^{91} +(0.831254 - 1.14412i) q^{92} +(6.61606 + 2.05616i) q^{93} +(9.41498 - 3.05911i) q^{94} +(0.0222369 + 1.73191i) q^{96} +(2.47214 - 7.60845i) q^{97} +11.0000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 2 q^{3} - 2 q^{4} - 2 q^{6} + 2 q^{8} + 2 q^{9} - 8 q^{12} + 4 q^{15} - 2 q^{16} - 2 q^{18} - 48 q^{21} - 2 q^{24} - 6 q^{25} - 10 q^{27} - 12 q^{29} - 4 q^{30} + 8 q^{31} - 8 q^{32} + 12 q^{35}+ \cdots + 88 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/726\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(607\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.309017 + 0.951057i −0.218508 + 0.672499i
\(3\) −0.0222369 1.73191i −0.0128385 0.999918i
\(4\) −0.809017 0.587785i −0.404508 0.293893i
\(5\) −1.34500 + 0.437016i −0.601501 + 0.195440i −0.593910 0.804532i \(-0.702416\pi\)
−0.00759122 + 0.999971i \(0.502416\pi\)
\(6\) 1.65401 + 0.514040i 0.675248 + 0.209856i
\(7\) 2.49376 3.43237i 0.942553 1.29731i −0.0122035 0.999926i \(-0.503885\pi\)
0.954757 0.297388i \(-0.0961154\pi\)
\(8\) 0.809017 0.587785i 0.286031 0.207813i
\(9\) −2.99901 + 0.0770245i −0.999670 + 0.0256748i
\(10\) 1.41421i 0.447214i
\(11\) 0 0
\(12\) −1.00000 + 1.41421i −0.288675 + 0.408248i
\(13\) −4.03499 1.31105i −1.11911 0.363619i −0.309679 0.950841i \(-0.600222\pi\)
−0.809426 + 0.587222i \(0.800222\pi\)
\(14\) 2.49376 + 3.43237i 0.666486 + 0.917339i
\(15\) 0.786780 + 2.31969i 0.203146 + 0.598942i
\(16\) 0.309017 + 0.951057i 0.0772542 + 0.237764i
\(17\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(18\) 0.853491 2.87603i 0.201170 0.677887i
\(19\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(20\) 1.34500 + 0.437016i 0.300750 + 0.0977198i
\(21\) −6.00000 4.24264i −1.30931 0.925820i
\(22\) 0 0
\(23\) 1.41421i 0.294884i 0.989071 + 0.147442i \(0.0471040\pi\)
−0.989071 + 0.147442i \(0.952896\pi\)
\(24\) −1.03598 1.38807i −0.211469 0.283339i
\(25\) −2.42705 + 1.76336i −0.485410 + 0.352671i
\(26\) 2.49376 3.43237i 0.489067 0.673143i
\(27\) 0.200088 + 5.19230i 0.0385069 + 0.999258i
\(28\) −4.03499 + 1.31105i −0.762542 + 0.247765i
\(29\) −4.85410 3.52671i −0.901384 0.654894i 0.0374370 0.999299i \(-0.488081\pi\)
−0.938821 + 0.344405i \(0.888081\pi\)
\(30\) −2.44929 + 0.0314477i −0.447177 + 0.00574154i
\(31\) −1.23607 + 3.80423i −0.222004 + 0.683259i 0.776578 + 0.630022i \(0.216954\pi\)
−0.998582 + 0.0532375i \(0.983046\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 0 0
\(35\) −1.85410 + 5.70634i −0.313400 + 0.964547i
\(36\) 2.47152 + 1.70046i 0.411921 + 0.283410i
\(37\) −1.61803 1.17557i −0.266003 0.193263i 0.446786 0.894641i \(-0.352568\pi\)
−0.712789 + 0.701378i \(0.752568\pi\)
\(38\) 0 0
\(39\) −2.18089 + 7.01739i −0.349222 + 1.12368i
\(40\) −0.831254 + 1.14412i −0.131433 + 0.180902i
\(41\) 4.85410 3.52671i 0.758083 0.550780i −0.140238 0.990118i \(-0.544787\pi\)
0.898322 + 0.439338i \(0.144787\pi\)
\(42\) 5.88909 4.39529i 0.908707 0.678208i
\(43\) 8.48528i 1.29399i −0.762493 0.646997i \(-0.776025\pi\)
0.762493 0.646997i \(-0.223975\pi\)
\(44\) 0 0
\(45\) 4.00000 1.41421i 0.596285 0.210819i
\(46\) −1.34500 0.437016i −0.198309 0.0644345i
\(47\) −5.81878 8.00886i −0.848756 1.16821i −0.984136 0.177418i \(-0.943225\pi\)
0.135380 0.990794i \(-0.456775\pi\)
\(48\) 1.64027 0.556338i 0.236753 0.0803004i
\(49\) −3.39919 10.4616i −0.485598 1.49452i
\(50\) −0.927051 2.85317i −0.131105 0.403499i
\(51\) 0 0
\(52\) 2.49376 + 3.43237i 0.345823 + 0.475984i
\(53\) −6.72499 2.18508i −0.923748 0.300144i −0.191744 0.981445i \(-0.561414\pi\)
−0.732003 + 0.681301i \(0.761414\pi\)
\(54\) −5.00000 1.41421i −0.680414 0.192450i
\(55\) 0 0
\(56\) 4.24264i 0.566947i
\(57\) 0 0
\(58\) 4.85410 3.52671i 0.637375 0.463080i
\(59\) −6.65003 + 9.15298i −0.865760 + 1.19162i 0.114405 + 0.993434i \(0.463504\pi\)
−0.980165 + 0.198183i \(0.936496\pi\)
\(60\) 0.726963 2.33913i 0.0938505 0.301980i
\(61\) −4.03499 + 1.31105i −0.516628 + 0.167863i −0.555714 0.831373i \(-0.687555\pi\)
0.0390866 + 0.999236i \(0.487555\pi\)
\(62\) −3.23607 2.35114i −0.410981 0.298595i
\(63\) −7.21444 + 10.4858i −0.908934 + 1.32109i
\(64\) 0.309017 0.951057i 0.0386271 0.118882i
\(65\) 6.00000 0.744208
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 0 0
\(69\) 2.44929 0.0314477i 0.294860 0.00378586i
\(70\) −4.85410 3.52671i −0.580176 0.421523i
\(71\) 6.72499 2.18508i 0.798109 0.259321i 0.118556 0.992947i \(-0.462174\pi\)
0.679553 + 0.733626i \(0.262174\pi\)
\(72\) −2.38098 + 1.82509i −0.280601 + 0.215089i
\(73\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(74\) 1.61803 1.17557i 0.188093 0.136657i
\(75\) 3.10794 + 4.16422i 0.358874 + 0.480842i
\(76\) 0 0
\(77\) 0 0
\(78\) −6.00000 4.24264i −0.679366 0.480384i
\(79\) 4.03499 + 1.31105i 0.453972 + 0.147504i 0.527073 0.849820i \(-0.323290\pi\)
−0.0731009 + 0.997325i \(0.523290\pi\)
\(80\) −0.831254 1.14412i −0.0929370 0.127917i
\(81\) 8.98813 0.461994i 0.998682 0.0513327i
\(82\) 1.85410 + 5.70634i 0.204751 + 0.630160i
\(83\) −3.70820 11.4127i −0.407028 1.25270i −0.919190 0.393815i \(-0.871155\pi\)
0.512161 0.858889i \(-0.328845\pi\)
\(84\) 2.36034 + 6.95908i 0.257534 + 0.759298i
\(85\) 0 0
\(86\) 8.06998 + 2.62210i 0.870209 + 0.282748i
\(87\) −6.00000 + 8.48528i −0.643268 + 0.909718i
\(88\) 0 0
\(89\) 5.65685i 0.599625i 0.953998 + 0.299813i \(0.0969242\pi\)
−0.953998 + 0.299813i \(0.903076\pi\)
\(90\) 0.108929 + 4.24124i 0.0114821 + 0.447066i
\(91\) −14.5623 + 10.5801i −1.52654 + 1.10910i
\(92\) 0.831254 1.14412i 0.0866642 0.119283i
\(93\) 6.61606 + 2.05616i 0.686053 + 0.213214i
\(94\) 9.41498 3.05911i 0.971081 0.315523i
\(95\) 0 0
\(96\) 0.0222369 + 1.73191i 0.00226954 + 0.176762i
\(97\) 2.47214 7.60845i 0.251007 0.772521i −0.743583 0.668644i \(-0.766875\pi\)
0.994590 0.103877i \(-0.0331249\pi\)
\(98\) 11.0000 1.11117
\(99\) 0 0
\(100\) 3.00000 0.300000
\(101\) 1.85410 5.70634i 0.184490 0.567802i −0.815449 0.578829i \(-0.803510\pi\)
0.999939 + 0.0110267i \(0.00350999\pi\)
\(102\) 0 0
\(103\) 3.23607 + 2.35114i 0.318859 + 0.231665i 0.735689 0.677320i \(-0.236859\pi\)
−0.416829 + 0.908985i \(0.636859\pi\)
\(104\) −4.03499 + 1.31105i −0.395663 + 0.128559i
\(105\) 9.92408 + 3.08424i 0.968491 + 0.300991i
\(106\) 4.15627 5.72061i 0.403693 0.555635i
\(107\) 14.5623 10.5801i 1.40779 1.02282i 0.414152 0.910208i \(-0.364078\pi\)
0.993639 0.112613i \(-0.0359219\pi\)
\(108\) 2.89008 4.31827i 0.278098 0.415525i
\(109\) 12.7279i 1.21911i 0.792742 + 0.609557i \(0.208653\pi\)
−0.792742 + 0.609557i \(0.791347\pi\)
\(110\) 0 0
\(111\) −2.00000 + 2.82843i −0.189832 + 0.268462i
\(112\) 4.03499 + 1.31105i 0.381271 + 0.123882i
\(113\) 6.65003 + 9.15298i 0.625582 + 0.861040i 0.997744 0.0671276i \(-0.0213835\pi\)
−0.372162 + 0.928168i \(0.621383\pi\)
\(114\) 0 0
\(115\) −0.618034 1.90211i −0.0576320 0.177373i
\(116\) 1.85410 + 5.70634i 0.172149 + 0.529820i
\(117\) 12.2020 + 3.62105i 1.12807 + 0.334767i
\(118\) −6.65003 9.15298i −0.612185 0.842600i
\(119\) 0 0
\(120\) 2.00000 + 1.41421i 0.182574 + 0.129099i
\(121\) 0 0
\(122\) 4.24264i 0.384111i
\(123\) −6.21588 8.32844i −0.560467 0.750950i
\(124\) 3.23607 2.35114i 0.290607 0.211139i
\(125\) 6.65003 9.15298i 0.594797 0.818668i
\(126\) −7.74320 10.1016i −0.689819 0.899925i
\(127\) 12.1050 3.93314i 1.07414 0.349010i 0.282043 0.959402i \(-0.408988\pi\)
0.792100 + 0.610392i \(0.208988\pi\)
\(128\) 0.809017 + 0.587785i 0.0715077 + 0.0519534i
\(129\) −14.6957 + 0.188686i −1.29389 + 0.0166129i
\(130\) −1.85410 + 5.70634i −0.162615 + 0.500479i
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 1.23607 3.80423i 0.106780 0.328635i
\(135\) −2.53824 6.89618i −0.218457 0.593529i
\(136\) 0 0
\(137\) 2.68999 0.874032i 0.229822 0.0746736i −0.191842 0.981426i \(-0.561446\pi\)
0.421664 + 0.906752i \(0.361446\pi\)
\(138\) −0.726963 + 2.33913i −0.0618832 + 0.199120i
\(139\) −9.97505 + 13.7295i −0.846072 + 1.16452i 0.138642 + 0.990343i \(0.455726\pi\)
−0.984715 + 0.174176i \(0.944274\pi\)
\(140\) 4.85410 3.52671i 0.410246 0.298062i
\(141\) −13.7412 + 10.2557i −1.15722 + 0.863684i
\(142\) 7.07107i 0.593391i
\(143\) 0 0
\(144\) −1.00000 2.82843i −0.0833333 0.235702i
\(145\) 8.06998 + 2.62210i 0.670176 + 0.217753i
\(146\) 0 0
\(147\) −18.0430 + 6.11971i −1.48816 + 0.504745i
\(148\) 0.618034 + 1.90211i 0.0508021 + 0.156353i
\(149\) −1.85410 5.70634i −0.151894 0.467482i 0.845939 0.533280i \(-0.179041\pi\)
−0.997833 + 0.0657982i \(0.979041\pi\)
\(150\) −4.92081 + 1.66901i −0.401783 + 0.136274i
\(151\) −2.49376 3.43237i −0.202939 0.279322i 0.695401 0.718622i \(-0.255227\pi\)
−0.898341 + 0.439300i \(0.855227\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.65685i 0.454369i
\(156\) 5.88909 4.39529i 0.471505 0.351905i
\(157\) 17.7984 12.9313i 1.42046 1.03203i 0.428770 0.903414i \(-0.358947\pi\)
0.991695 0.128615i \(-0.0410530\pi\)
\(158\) −2.49376 + 3.43237i −0.198393 + 0.273065i
\(159\) −3.63482 + 11.6956i −0.288260 + 0.927525i
\(160\) 1.34500 0.437016i 0.106331 0.0345492i
\(161\) 4.85410 + 3.52671i 0.382557 + 0.277944i
\(162\) −2.33810 + 8.69099i −0.183699 + 0.682829i
\(163\) 0.618034 1.90211i 0.0484082 0.148985i −0.923931 0.382560i \(-0.875042\pi\)
0.972339 + 0.233575i \(0.0750425\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) 12.0000 0.931381
\(167\) 3.70820 11.4127i 0.286949 0.883140i −0.698858 0.715260i \(-0.746308\pi\)
0.985808 0.167879i \(-0.0536919\pi\)
\(168\) −7.34786 + 0.0943431i −0.566900 + 0.00727873i
\(169\) 4.04508 + 2.93893i 0.311160 + 0.226071i
\(170\) 0 0
\(171\) 0 0
\(172\) −4.98752 + 6.86474i −0.380295 + 0.523431i
\(173\) −4.85410 + 3.52671i −0.369051 + 0.268131i −0.756817 0.653627i \(-0.773247\pi\)
0.387767 + 0.921758i \(0.373247\pi\)
\(174\) −6.21588 8.32844i −0.471225 0.631377i
\(175\) 12.7279i 0.962140i
\(176\) 0 0
\(177\) 16.0000 + 11.3137i 1.20263 + 0.850390i
\(178\) −5.37999 1.74806i −0.403247 0.131023i
\(179\) −3.32502 4.57649i −0.248523 0.342063i 0.666470 0.745532i \(-0.267804\pi\)
−0.914993 + 0.403469i \(0.867804\pi\)
\(180\) −4.06732 1.20702i −0.303160 0.0899658i
\(181\) 0.618034 + 1.90211i 0.0459381 + 0.141383i 0.971395 0.237471i \(-0.0763184\pi\)
−0.925457 + 0.378854i \(0.876318\pi\)
\(182\) −5.56231 17.1190i −0.412306 1.26895i
\(183\) 2.36034 + 6.95908i 0.174481 + 0.514430i
\(184\) 0.831254 + 1.14412i 0.0612808 + 0.0843459i
\(185\) 2.68999 + 0.874032i 0.197772 + 0.0642601i
\(186\) −4.00000 + 5.65685i −0.293294 + 0.414781i
\(187\) 0 0
\(188\) 9.89949i 0.721995i
\(189\) 18.3209 + 12.2616i 1.33265 + 0.891899i
\(190\) 0 0
\(191\) 5.81878 8.00886i 0.421032 0.579501i −0.544834 0.838544i \(-0.683407\pi\)
0.965866 + 0.259043i \(0.0834072\pi\)
\(192\) −1.65401 0.514040i −0.119368 0.0370977i
\(193\) −8.06998 + 2.62210i −0.580890 + 0.188743i −0.584699 0.811250i \(-0.698787\pi\)
0.00380923 + 0.999993i \(0.498787\pi\)
\(194\) 6.47214 + 4.70228i 0.464672 + 0.337604i
\(195\) −0.133421 10.3914i −0.00955450 0.744147i
\(196\) −3.39919 + 10.4616i −0.242799 + 0.747259i
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) −0.927051 + 2.85317i −0.0655524 + 0.201750i
\(201\) 0.0889475 + 6.92763i 0.00627387 + 0.488638i
\(202\) 4.85410 + 3.52671i 0.341533 + 0.248139i
\(203\) −24.2099 + 7.86629i −1.69921 + 0.552105i
\(204\) 0 0
\(205\) −4.98752 + 6.86474i −0.348344 + 0.479454i
\(206\) −3.23607 + 2.35114i −0.225468 + 0.163812i
\(207\) −0.108929 4.24124i −0.00757109 0.294787i
\(208\) 4.24264i 0.294174i
\(209\) 0 0
\(210\) −6.00000 + 8.48528i −0.414039 + 0.585540i
\(211\) 8.06998 + 2.62210i 0.555560 + 0.180513i 0.573323 0.819330i \(-0.305654\pi\)
−0.0177622 + 0.999842i \(0.505654\pi\)
\(212\) 4.15627 + 5.72061i 0.285454 + 0.392893i
\(213\) −3.93390 11.5985i −0.269546 0.794714i
\(214\) 5.56231 + 17.1190i 0.380231 + 1.17023i
\(215\) 3.70820 + 11.4127i 0.252897 + 0.778338i
\(216\) 3.21383 + 4.08305i 0.218674 + 0.277816i
\(217\) 9.97505 + 13.7295i 0.677150 + 0.932017i
\(218\) −12.1050 3.93314i −0.819852 0.266386i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) −2.07196 2.77615i −0.139061 0.186323i
\(223\) −6.47214 + 4.70228i −0.433406 + 0.314888i −0.783009 0.622010i \(-0.786316\pi\)
0.349603 + 0.936898i \(0.386316\pi\)
\(224\) −2.49376 + 3.43237i −0.166621 + 0.229335i
\(225\) 7.14293 5.47527i 0.476195 0.365018i
\(226\) −10.7600 + 3.49613i −0.715743 + 0.232559i
\(227\) −4.85410 3.52671i −0.322178 0.234076i 0.414926 0.909855i \(-0.363807\pi\)
−0.737104 + 0.675779i \(0.763807\pi\)
\(228\) 0 0
\(229\) 4.32624 13.3148i 0.285886 0.879866i −0.700246 0.713902i \(-0.746926\pi\)
0.986132 0.165964i \(-0.0530737\pi\)
\(230\) 2.00000 0.131876
\(231\) 0 0
\(232\) −6.00000 −0.393919
\(233\) −5.56231 + 17.1190i −0.364399 + 1.12150i 0.585958 + 0.810341i \(0.300718\pi\)
−0.950357 + 0.311163i \(0.899282\pi\)
\(234\) −7.21444 + 10.4858i −0.471623 + 0.685478i
\(235\) 11.3262 + 8.22899i 0.738842 + 0.536800i
\(236\) 10.7600 3.49613i 0.700415 0.227579i
\(237\) 2.18089 7.01739i 0.141664 0.455828i
\(238\) 0 0
\(239\) −9.70820 + 7.05342i −0.627972 + 0.456248i −0.855697 0.517477i \(-0.826871\pi\)
0.227725 + 0.973725i \(0.426871\pi\)
\(240\) −1.96303 + 1.46510i −0.126713 + 0.0945716i
\(241\) 8.48528i 0.546585i −0.961931 0.273293i \(-0.911887\pi\)
0.961931 0.273293i \(-0.0881127\pi\)
\(242\) 0 0
\(243\) −1.00000 15.5563i −0.0641500 0.997940i
\(244\) 4.03499 + 1.31105i 0.258314 + 0.0839313i
\(245\) 9.14379 + 12.5854i 0.584175 + 0.804049i
\(246\) 9.84163 3.33803i 0.627479 0.212825i
\(247\) 0 0
\(248\) 1.23607 + 3.80423i 0.0784904 + 0.241569i
\(249\) −19.6833 + 6.67605i −1.24738 + 0.423078i
\(250\) 6.65003 + 9.15298i 0.420585 + 0.578885i
\(251\) 5.37999 + 1.74806i 0.339582 + 0.110337i 0.473843 0.880609i \(-0.342866\pi\)
−0.134262 + 0.990946i \(0.542866\pi\)
\(252\) 12.0000 4.24264i 0.755929 0.267261i
\(253\) 0 0
\(254\) 12.7279i 0.798621i
\(255\) 0 0
\(256\) −0.809017 + 0.587785i −0.0505636 + 0.0367366i
\(257\) −6.65003 + 9.15298i −0.414818 + 0.570947i −0.964385 0.264502i \(-0.914792\pi\)
0.549568 + 0.835449i \(0.314792\pi\)
\(258\) 4.36178 14.0348i 0.271552 0.873767i
\(259\) −8.06998 + 2.62210i −0.501444 + 0.162929i
\(260\) −4.85410 3.52671i −0.301039 0.218717i
\(261\) 14.8291 + 10.2028i 0.917901 + 0.631535i
\(262\) −3.70820 + 11.4127i −0.229094 + 0.705078i
\(263\) −12.0000 −0.739952 −0.369976 0.929041i \(-0.620634\pi\)
−0.369976 + 0.929041i \(0.620634\pi\)
\(264\) 0 0
\(265\) 10.0000 0.614295
\(266\) 0 0
\(267\) 9.79715 0.125791i 0.599576 0.00769827i
\(268\) 3.23607 + 2.35114i 0.197674 + 0.143619i
\(269\) 6.72499 2.18508i 0.410030 0.133227i −0.0967370 0.995310i \(-0.530841\pi\)
0.506767 + 0.862083i \(0.330841\pi\)
\(270\) 7.34302 0.282967i 0.446882 0.0172208i
\(271\) 7.48128 10.2971i 0.454456 0.625505i −0.518892 0.854840i \(-0.673655\pi\)
0.973347 + 0.229335i \(0.0736552\pi\)
\(272\) 0 0
\(273\) 18.6476 + 24.9853i 1.12861 + 1.51218i
\(274\) 2.82843i 0.170872i
\(275\) 0 0
\(276\) −2.00000 1.41421i −0.120386 0.0851257i
\(277\) −20.1750 6.55524i −1.21220 0.393866i −0.367962 0.929841i \(-0.619944\pi\)
−0.844234 + 0.535975i \(0.819944\pi\)
\(278\) −9.97505 13.7295i −0.598264 0.823439i
\(279\) 3.41396 11.5041i 0.204389 0.688734i
\(280\) 1.85410 + 5.70634i 0.110804 + 0.341019i
\(281\) −3.70820 11.4127i −0.221213 0.680823i −0.998654 0.0518675i \(-0.983483\pi\)
0.777441 0.628956i \(-0.216517\pi\)
\(282\) −5.50746 16.2379i −0.327965 0.966950i
\(283\) −4.98752 6.86474i −0.296477 0.408066i 0.634627 0.772818i \(-0.281154\pi\)
−0.931105 + 0.364752i \(0.881154\pi\)
\(284\) −6.72499 2.18508i −0.399054 0.129661i
\(285\) 0 0
\(286\) 0 0
\(287\) 25.4558i 1.50261i
\(288\) 2.99901 0.0770245i 0.176718 0.00453871i
\(289\) 13.7533 9.99235i 0.809017 0.587785i
\(290\) −4.98752 + 6.86474i −0.292877 + 0.403111i
\(291\) −13.2321 4.11232i −0.775680 0.241069i
\(292\) 0 0
\(293\) 4.85410 + 3.52671i 0.283580 + 0.206033i 0.720477 0.693479i \(-0.243923\pi\)
−0.436898 + 0.899511i \(0.643923\pi\)
\(294\) −0.244606 19.0510i −0.0142657 1.11108i
\(295\) 4.94427 15.2169i 0.287867 0.885962i
\(296\) −2.00000 −0.116248
\(297\) 0 0
\(298\) 6.00000 0.347571
\(299\) 1.85410 5.70634i 0.107225 0.330006i
\(300\) −0.0667106 5.19572i −0.00385154 0.299975i
\(301\) −29.1246 21.1603i −1.67871 1.21966i
\(302\) 4.03499 1.31105i 0.232188 0.0754423i
\(303\) −9.92408 3.08424i −0.570124 0.177185i
\(304\) 0 0
\(305\) 4.85410 3.52671i 0.277945 0.201939i
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 4.00000 5.65685i 0.227552 0.321807i
\(310\) 5.37999 + 1.74806i 0.305563 + 0.0992834i
\(311\) −15.7938 21.7383i −0.895586 1.23267i −0.971855 0.235581i \(-0.924301\pi\)
0.0762693 0.997087i \(-0.475699\pi\)
\(312\) 2.36034 + 6.95908i 0.133628 + 0.393980i
\(313\) −3.09017 9.51057i −0.174667 0.537569i 0.824951 0.565204i \(-0.191202\pi\)
−0.999618 + 0.0276348i \(0.991202\pi\)
\(314\) 6.79837 + 20.9232i 0.383654 + 1.18077i
\(315\) 5.12094 17.2562i 0.288533 0.972276i
\(316\) −2.49376 3.43237i −0.140285 0.193086i
\(317\) 9.41498 + 3.05911i 0.528798 + 0.171817i 0.561234 0.827657i \(-0.310327\pi\)
−0.0324364 + 0.999474i \(0.510327\pi\)
\(318\) −10.0000 7.07107i −0.560772 0.396526i
\(319\) 0 0
\(320\) 1.41421i 0.0790569i
\(321\) −18.6476 24.9853i −1.04081 1.39454i
\(322\) −4.85410 + 3.52671i −0.270509 + 0.196536i
\(323\) 0 0
\(324\) −7.54311 4.90933i −0.419062 0.272741i
\(325\) 12.1050 3.93314i 0.671463 0.218172i
\(326\) 1.61803 + 1.17557i 0.0896146 + 0.0651088i
\(327\) 22.0436 0.283029i 1.21901 0.0156516i
\(328\) 1.85410 5.70634i 0.102376 0.315080i
\(329\) −42.0000 −2.31553
\(330\) 0 0
\(331\) −10.0000 −0.549650 −0.274825 0.961494i \(-0.588620\pi\)
−0.274825 + 0.961494i \(0.588620\pi\)
\(332\) −3.70820 + 11.4127i −0.203514 + 0.626352i
\(333\) 4.94305 + 3.40092i 0.270877 + 0.186369i
\(334\) 9.70820 + 7.05342i 0.531209 + 0.385946i
\(335\) 5.37999 1.74806i 0.293940 0.0955069i
\(336\) 2.18089 7.01739i 0.118977 0.382830i
\(337\) 19.9501 27.4589i 1.08675 1.49578i 0.234886 0.972023i \(-0.424528\pi\)
0.851865 0.523761i \(-0.175472\pi\)
\(338\) −4.04508 + 2.93893i −0.220024 + 0.159857i
\(339\) 15.7042 11.7208i 0.852938 0.636585i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −16.1400 5.24419i −0.871476 0.283160i
\(344\) −4.98752 6.86474i −0.268909 0.370122i
\(345\) −3.28054 + 1.11268i −0.176618 + 0.0599044i
\(346\) −1.85410 5.70634i −0.0996771 0.306775i
\(347\) 3.70820 + 11.4127i 0.199067 + 0.612665i 0.999905 + 0.0137839i \(0.00438768\pi\)
−0.800838 + 0.598881i \(0.795612\pi\)
\(348\) 9.84163 3.33803i 0.527566 0.178937i
\(349\) −17.4563 24.0266i −0.934416 1.28611i −0.958112 0.286394i \(-0.907543\pi\)
0.0236959 0.999719i \(-0.492457\pi\)
\(350\) −12.1050 3.93314i −0.647038 0.210235i
\(351\) 6.00000 21.2132i 0.320256 1.13228i
\(352\) 0 0
\(353\) 22.6274i 1.20434i 0.798369 + 0.602168i \(0.205696\pi\)
−0.798369 + 0.602168i \(0.794304\pi\)
\(354\) −15.7042 + 11.7208i −0.834671 + 0.622952i
\(355\) −8.09017 + 5.87785i −0.429382 + 0.311964i
\(356\) 3.32502 4.57649i 0.176225 0.242554i
\(357\) 0 0
\(358\) 5.37999 1.74806i 0.284341 0.0923881i
\(359\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(360\) 2.40481 3.49526i 0.126745 0.184217i
\(361\) 5.87132 18.0701i 0.309017 0.951057i
\(362\) −2.00000 −0.105118
\(363\) 0 0
\(364\) 18.0000 0.943456
\(365\) 0 0
\(366\) −7.34786 + 0.0943431i −0.384079 + 0.00493139i
\(367\) 22.6525 + 16.4580i 1.18245 + 0.859100i 0.992446 0.122683i \(-0.0391500\pi\)
0.190004 + 0.981783i \(0.439150\pi\)
\(368\) −1.34500 + 0.437016i −0.0701128 + 0.0227810i
\(369\) −14.2859 + 10.9505i −0.743692 + 0.570062i
\(370\) −1.66251 + 2.28825i −0.0864297 + 0.118960i
\(371\) −24.2705 + 17.6336i −1.26006 + 0.915489i
\(372\) −4.14392 5.55229i −0.214852 0.287873i
\(373\) 29.6985i 1.53773i −0.639412 0.768865i \(-0.720822\pi\)
0.639412 0.768865i \(-0.279178\pi\)
\(374\) 0 0
\(375\) −16.0000 11.3137i −0.826236 0.584237i
\(376\) −9.41498 3.05911i −0.485540 0.157762i
\(377\) 14.9626 + 20.5942i 0.770612 + 1.06066i
\(378\) −17.3229 + 13.6351i −0.890994 + 0.701315i
\(379\) 0.618034 + 1.90211i 0.0317463 + 0.0977050i 0.965674 0.259757i \(-0.0836423\pi\)
−0.933928 + 0.357462i \(0.883642\pi\)
\(380\) 0 0
\(381\) −7.08102 20.8772i −0.362772 1.06957i
\(382\) 5.81878 + 8.00886i 0.297715 + 0.409769i
\(383\) 1.34500 + 0.437016i 0.0687261 + 0.0223305i 0.343178 0.939270i \(-0.388496\pi\)
−0.274452 + 0.961601i \(0.588496\pi\)
\(384\) 1.00000 1.41421i 0.0510310 0.0721688i
\(385\) 0 0
\(386\) 8.48528i 0.431889i
\(387\) 0.653574 + 25.4475i 0.0332230 + 1.29357i
\(388\) −6.47214 + 4.70228i −0.328573 + 0.238722i
\(389\) 5.81878 8.00886i 0.295024 0.406065i −0.635614 0.772007i \(-0.719253\pi\)
0.930638 + 0.365942i \(0.119253\pi\)
\(390\) 9.92408 + 3.08424i 0.502526 + 0.156177i
\(391\) 0 0
\(392\) −8.89919 6.46564i −0.449477 0.326564i
\(393\) −0.266843 20.7829i −0.0134604 1.04836i
\(394\) −5.56231 + 17.1190i −0.280225 + 0.862444i
\(395\) −6.00000 −0.301893
\(396\) 0 0
\(397\) −34.0000 −1.70641 −0.853206 0.521575i \(-0.825345\pi\)
−0.853206 + 0.521575i \(0.825345\pi\)
\(398\) 4.94427 15.2169i 0.247834 0.762754i
\(399\) 0 0
\(400\) −2.42705 1.76336i −0.121353 0.0881678i
\(401\) 34.9699 11.3624i 1.74631 0.567412i 0.750673 0.660674i \(-0.229729\pi\)
0.995642 + 0.0932619i \(0.0297294\pi\)
\(402\) −6.61606 2.05616i −0.329979 0.102552i
\(403\) 9.97505 13.7295i 0.496892 0.683914i
\(404\) −4.85410 + 3.52671i −0.241501 + 0.175460i
\(405\) −11.8871 + 4.54934i −0.590675 + 0.226059i
\(406\) 25.4558i 1.26335i
\(407\) 0 0
\(408\) 0 0
\(409\) 8.06998 + 2.62210i 0.399035 + 0.129654i 0.501658 0.865066i \(-0.332724\pi\)
−0.102623 + 0.994720i \(0.532724\pi\)
\(410\) −4.98752 6.86474i −0.246316 0.339025i
\(411\) −1.57356 4.63939i −0.0776180 0.228844i
\(412\) −1.23607 3.80423i −0.0608967 0.187421i
\(413\) 14.8328 + 45.6507i 0.729875 + 2.24632i
\(414\) 4.06732 + 1.20702i 0.199898 + 0.0593217i
\(415\) 9.97505 + 13.7295i 0.489656 + 0.673953i
\(416\) 4.03499 + 1.31105i 0.197832 + 0.0642794i
\(417\) 24.0000 + 16.9706i 1.17529 + 0.831052i
\(418\) 0 0
\(419\) 11.3137i 0.552711i −0.961056 0.276355i \(-0.910873\pi\)
0.961056 0.276355i \(-0.0891267\pi\)
\(420\) −6.21588 8.32844i −0.303304 0.406386i
\(421\) 8.09017 5.87785i 0.394291 0.286469i −0.372921 0.927863i \(-0.621644\pi\)
0.767211 + 0.641394i \(0.221644\pi\)
\(422\) −4.98752 + 6.86474i −0.242789 + 0.334170i
\(423\) 18.0675 + 23.5705i 0.878470 + 1.14604i
\(424\) −6.72499 + 2.18508i −0.326594 + 0.106117i
\(425\) 0 0
\(426\) 12.2464 0.157238i 0.593342 0.00761823i
\(427\) −5.56231 + 17.1190i −0.269179 + 0.828447i
\(428\) −18.0000 −0.870063
\(429\) 0 0
\(430\) −12.0000 −0.578691
\(431\) −11.1246 + 34.2380i −0.535854 + 1.64919i 0.205944 + 0.978564i \(0.433974\pi\)
−0.741797 + 0.670624i \(0.766026\pi\)
\(432\) −4.87634 + 1.79480i −0.234613 + 0.0863525i
\(433\) −1.61803 1.17557i −0.0777578 0.0564943i 0.548227 0.836329i \(-0.315303\pi\)
−0.625985 + 0.779835i \(0.715303\pi\)
\(434\) −16.1400 + 5.24419i −0.774743 + 0.251729i
\(435\) 4.36178 14.0348i 0.209131 0.672916i
\(436\) 7.48128 10.2971i 0.358289 0.493142i
\(437\) 0 0
\(438\) 0 0
\(439\) 21.2132i 1.01245i −0.862401 0.506225i \(-0.831040\pi\)
0.862401 0.506225i \(-0.168960\pi\)
\(440\) 0 0
\(441\) 11.0000 + 31.1127i 0.523810 + 1.48156i
\(442\) 0 0
\(443\) 16.6251 + 22.8825i 0.789881 + 1.08718i 0.994123 + 0.108258i \(0.0345272\pi\)
−0.204242 + 0.978921i \(0.565473\pi\)
\(444\) 3.28054 1.11268i 0.155688 0.0528052i
\(445\) −2.47214 7.60845i −0.117190 0.360675i
\(446\) −2.47214 7.60845i −0.117059 0.360271i
\(447\) −9.84163 + 3.33803i −0.465493 + 0.157883i
\(448\) −2.49376 3.43237i −0.117819 0.162164i
\(449\) 29.5899 + 9.61435i 1.39644 + 0.453729i 0.908036 0.418891i \(-0.137581\pi\)
0.488399 + 0.872620i \(0.337581\pi\)
\(450\) 3.00000 + 8.48528i 0.141421 + 0.400000i
\(451\) 0 0
\(452\) 11.3137i 0.532152i
\(453\) −5.88909 + 4.39529i −0.276694 + 0.206509i
\(454\) 4.85410 3.52671i 0.227814 0.165517i
\(455\) 14.9626 20.5942i 0.701456 0.965471i
\(456\) 0 0
\(457\) 8.06998 2.62210i 0.377498 0.122656i −0.114121 0.993467i \(-0.536405\pi\)
0.491619 + 0.870810i \(0.336405\pi\)
\(458\) 11.3262 + 8.22899i 0.529240 + 0.384516i
\(459\) 0 0
\(460\) −0.618034 + 1.90211i −0.0288160 + 0.0886865i
\(461\) −30.0000 −1.39724 −0.698620 0.715493i \(-0.746202\pi\)
−0.698620 + 0.715493i \(0.746202\pi\)
\(462\) 0 0
\(463\) 32.0000 1.48717 0.743583 0.668644i \(-0.233125\pi\)
0.743583 + 0.668644i \(0.233125\pi\)
\(464\) 1.85410 5.70634i 0.0860745 0.264910i
\(465\) −9.79715 + 0.125791i −0.454332 + 0.00583341i
\(466\) −14.5623 10.5801i −0.674586 0.490115i
\(467\) −29.5899 + 9.61435i −1.36926 + 0.444899i −0.899123 0.437695i \(-0.855795\pi\)
−0.470135 + 0.882594i \(0.655795\pi\)
\(468\) −7.74320 10.1016i −0.357929 0.466948i
\(469\) −9.97505 + 13.7295i −0.460605 + 0.633968i
\(470\) −11.3262 + 8.22899i −0.522440 + 0.379575i
\(471\) −22.7916 30.5376i −1.05018 1.40710i
\(472\) 11.3137i 0.520756i
\(473\) 0 0
\(474\) 6.00000 + 4.24264i 0.275589 + 0.194871i
\(475\) 0 0
\(476\) 0 0
\(477\) 20.3366 + 6.03509i 0.931149 + 0.276328i
\(478\) −3.70820 11.4127i −0.169609 0.522004i
\(479\) −3.70820 11.4127i −0.169432 0.521459i 0.829903 0.557907i \(-0.188395\pi\)
−0.999336 + 0.0364486i \(0.988395\pi\)
\(480\) −0.786780 2.31969i −0.0359114 0.105879i
\(481\) 4.98752 + 6.86474i 0.227411 + 0.313005i
\(482\) 8.06998 + 2.62210i 0.367578 + 0.119433i
\(483\) 6.00000 8.48528i 0.273009 0.386094i
\(484\) 0 0
\(485\) 11.3137i 0.513729i
\(486\) 15.1040 + 3.85612i 0.685131 + 0.174917i
\(487\) −16.1803 + 11.7557i −0.733201 + 0.532702i −0.890575 0.454837i \(-0.849697\pi\)
0.157373 + 0.987539i \(0.449697\pi\)
\(488\) −2.49376 + 3.43237i −0.112887 + 0.155376i
\(489\) −3.30803 1.02808i −0.149594 0.0464914i
\(490\) −14.7950 + 4.80718i −0.668368 + 0.217166i
\(491\) 4.85410 + 3.52671i 0.219063 + 0.159158i 0.691905 0.721989i \(-0.256772\pi\)
−0.472842 + 0.881147i \(0.656772\pi\)
\(492\) 0.133421 + 10.3914i 0.00601510 + 0.468483i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) 9.27051 28.5317i 0.415839 1.27982i
\(498\) −0.266843 20.7829i −0.0119575 0.931304i
\(499\) −11.3262 8.22899i −0.507032 0.368380i 0.304664 0.952460i \(-0.401456\pi\)
−0.811697 + 0.584079i \(0.801456\pi\)
\(500\) −10.7600 + 3.49613i −0.481201 + 0.156352i
\(501\) −19.8482 6.16849i −0.886751 0.275588i
\(502\) −3.32502 + 4.57649i −0.148403 + 0.204259i
\(503\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(504\) 0.326787 + 12.7237i 0.0145563 + 0.566760i
\(505\) 8.48528i 0.377590i
\(506\) 0 0
\(507\) 5.00000 7.07107i 0.222058 0.314037i
\(508\) −12.1050 3.93314i −0.537071 0.174505i
\(509\) −0.831254 1.14412i −0.0368447 0.0507124i 0.790197 0.612853i \(-0.209978\pi\)
−0.827042 + 0.562140i \(0.809978\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.309017 0.951057i −0.0136568 0.0420312i
\(513\) 0 0
\(514\) −6.65003 9.15298i −0.293320 0.403721i
\(515\) −5.37999 1.74806i −0.237071 0.0770289i
\(516\) 12.0000 + 8.48528i 0.528271 + 0.373544i
\(517\) 0 0
\(518\) 8.48528i 0.372822i
\(519\) 6.21588 + 8.32844i 0.272847 + 0.365578i
\(520\) 4.85410 3.52671i 0.212866 0.154657i
\(521\) −11.6376 + 16.0177i −0.509851 + 0.701749i −0.983894 0.178752i \(-0.942794\pi\)
0.474044 + 0.880501i \(0.342794\pi\)
\(522\) −14.2859 + 10.9505i −0.625275 + 0.479292i
\(523\) −24.2099 + 7.86629i −1.05863 + 0.343969i −0.786049 0.618165i \(-0.787876\pi\)
−0.272578 + 0.962134i \(0.587876\pi\)
\(524\) −9.70820 7.05342i −0.424105 0.308130i
\(525\) 22.0436 0.283029i 0.962061 0.0123524i
\(526\) 3.70820 11.4127i 0.161685 0.497616i
\(527\) 0 0
\(528\) 0 0
\(529\) 21.0000 0.913043
\(530\) −3.09017 + 9.51057i −0.134228 + 0.413113i
\(531\) 19.2385 27.9621i 0.834880 1.21345i
\(532\) 0 0
\(533\) −24.2099 + 7.86629i −1.04865 + 0.340727i
\(534\) −2.90785 + 9.35652i −0.125835 + 0.404896i
\(535\) −14.9626 + 20.5942i −0.646888 + 0.890365i
\(536\) −3.23607 + 2.35114i −0.139777 + 0.101554i
\(537\) −7.85212 + 5.86039i −0.338844 + 0.252894i
\(538\) 7.07107i 0.304855i
\(539\) 0 0
\(540\) −2.00000 + 7.07107i −0.0860663 + 0.304290i
\(541\) 12.1050 + 3.93314i 0.520433 + 0.169099i 0.557442 0.830216i \(-0.311783\pi\)
−0.0370086 + 0.999315i \(0.511783\pi\)
\(542\) 7.48128 + 10.2971i 0.321349 + 0.442299i
\(543\) 3.28054 1.11268i 0.140782 0.0477495i
\(544\) 0 0
\(545\) −5.56231 17.1190i −0.238263 0.733298i
\(546\) −29.5249 + 10.0141i −1.26355 + 0.428563i
\(547\) 19.9501 + 27.4589i 0.853004 + 1.17406i 0.983193 + 0.182571i \(0.0584418\pi\)
−0.130188 + 0.991489i \(0.541558\pi\)
\(548\) −2.68999 0.874032i −0.114911 0.0373368i
\(549\) 12.0000 4.24264i 0.512148 0.181071i
\(550\) 0 0
\(551\) 0 0
\(552\) 1.96303 1.46510i 0.0835521 0.0623587i
\(553\) 14.5623 10.5801i 0.619252 0.449913i
\(554\) 12.4688 17.1618i 0.529749 0.729137i
\(555\) 1.45393 4.67826i 0.0617157 0.198581i
\(556\) 16.1400 5.24419i 0.684487 0.222403i
\(557\) −14.5623 10.5801i −0.617025 0.448295i 0.234856 0.972030i \(-0.424538\pi\)
−0.851881 + 0.523735i \(0.824538\pi\)
\(558\) 9.88610 + 6.80184i 0.418512 + 0.287945i
\(559\) −11.1246 + 34.2380i −0.470521 + 1.44811i
\(560\) −6.00000 −0.253546
\(561\) 0 0
\(562\) 12.0000 0.506189
\(563\) 9.27051 28.5317i 0.390705 1.20247i −0.541551 0.840668i \(-0.682163\pi\)
0.932256 0.361799i \(-0.117837\pi\)
\(564\) 17.1450 0.220134i 0.721935 0.00926931i
\(565\) −12.9443 9.40456i −0.544570 0.395653i
\(566\) 8.06998 2.62210i 0.339207 0.110215i
\(567\) 20.8285 32.0027i 0.874716 1.34399i
\(568\) 4.15627 5.72061i 0.174393 0.240032i
\(569\) −19.4164 + 14.1068i −0.813978 + 0.591390i −0.914981 0.403496i \(-0.867795\pi\)
0.101003 + 0.994886i \(0.467795\pi\)
\(570\) 0 0
\(571\) 33.9411i 1.42039i 0.704004 + 0.710196i \(0.251394\pi\)
−0.704004 + 0.710196i \(0.748606\pi\)
\(572\) 0 0
\(573\) −14.0000 9.89949i −0.584858 0.413557i
\(574\) 24.2099 + 7.86629i 1.01050 + 0.328333i
\(575\) −2.49376 3.43237i −0.103997 0.143140i
\(576\) −0.853491 + 2.87603i −0.0355621 + 0.119835i
\(577\) 6.18034 + 19.0211i 0.257291 + 0.791860i 0.993370 + 0.114964i \(0.0366753\pi\)
−0.736079 + 0.676896i \(0.763325\pi\)
\(578\) 5.25329 + 16.1680i 0.218508 + 0.672499i
\(579\) 4.72068 + 13.9182i 0.196185 + 0.578419i
\(580\) −4.98752 6.86474i −0.207096 0.285043i
\(581\) −48.4199 15.7326i −2.00880 0.652697i
\(582\) 8.00000 11.3137i 0.331611 0.468968i
\(583\) 0 0
\(584\) 0 0
\(585\) −17.9941 + 0.462147i −0.743963 + 0.0191074i
\(586\) −4.85410 + 3.52671i −0.200521 + 0.145687i
\(587\) −16.6251 + 22.8825i −0.686190 + 0.944460i −0.999987 0.00503007i \(-0.998399\pi\)
0.313797 + 0.949490i \(0.398399\pi\)
\(588\) 18.1942 + 5.65445i 0.750314 + 0.233185i
\(589\) 0 0
\(590\) 12.9443 + 9.40456i 0.532907 + 0.387180i
\(591\) −0.400264 31.1743i −0.0164647 1.28234i
\(592\) 0.618034 1.90211i 0.0254010 0.0781764i
\(593\) 36.0000 1.47834 0.739171 0.673517i \(-0.235217\pi\)
0.739171 + 0.673517i \(0.235217\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.85410 + 5.70634i −0.0759470 + 0.233741i
\(597\) 0.355790 + 27.7105i 0.0145615 + 1.13412i
\(598\) 4.85410 + 3.52671i 0.198499 + 0.144218i
\(599\) 22.8649 7.42927i 0.934237 0.303552i 0.197943 0.980214i \(-0.436574\pi\)
0.736294 + 0.676662i \(0.236574\pi\)
\(600\) 4.96204 + 1.54212i 0.202575 + 0.0629568i
\(601\) −19.9501 + 27.4589i −0.813781 + 1.12007i 0.176948 + 0.984220i \(0.443378\pi\)
−0.990729 + 0.135854i \(0.956622\pi\)
\(602\) 29.1246 21.1603i 1.18703 0.862428i
\(603\) 11.9960 0.308098i 0.488517 0.0125467i
\(604\) 4.24264i 0.172631i
\(605\) 0 0
\(606\) 6.00000 8.48528i 0.243733 0.344691i
\(607\) −4.03499 1.31105i −0.163775 0.0532138i 0.225982 0.974132i \(-0.427441\pi\)
−0.389757 + 0.920918i \(0.627441\pi\)
\(608\) 0 0
\(609\) 14.1620 + 41.7545i 0.573875 + 1.69198i
\(610\) 1.85410 + 5.70634i 0.0750704 + 0.231043i
\(611\) 12.9787 + 39.9444i 0.525063 + 1.61598i
\(612\) 0 0
\(613\) −7.48128 10.2971i −0.302166 0.415896i 0.630752 0.775985i \(-0.282747\pi\)
−0.932918 + 0.360088i \(0.882747\pi\)
\(614\) 0 0
\(615\) 12.0000 + 8.48528i 0.483887 + 0.342160i
\(616\) 0 0
\(617\) 39.5980i 1.59415i 0.603877 + 0.797077i \(0.293622\pi\)
−0.603877 + 0.797077i \(0.706378\pi\)
\(618\) 4.14392 + 5.55229i 0.166693 + 0.223346i
\(619\) −35.5967 + 25.8626i −1.43075 + 1.03950i −0.440878 + 0.897567i \(0.645333\pi\)
−0.989876 + 0.141937i \(0.954667\pi\)
\(620\) −3.32502 + 4.57649i −0.133536 + 0.183796i
\(621\) −7.34302 + 0.282967i −0.294665 + 0.0113551i
\(622\) 25.5549 8.30330i 1.02466 0.332932i
\(623\) 19.4164 + 14.1068i 0.777902 + 0.565179i
\(624\) −7.34786 + 0.0943431i −0.294150 + 0.00377675i
\(625\) −0.309017 + 0.951057i −0.0123607 + 0.0380423i
\(626\) 10.0000 0.399680
\(627\) 0 0
\(628\) −22.0000 −0.877896
\(629\) 0 0
\(630\) 14.8291 + 10.2028i 0.590807 + 0.406488i
\(631\) −16.1803 11.7557i −0.644129 0.467987i 0.217137 0.976141i \(-0.430328\pi\)
−0.861266 + 0.508154i \(0.830328\pi\)
\(632\) 4.03499 1.31105i 0.160503 0.0521507i
\(633\) 4.36178 14.0348i 0.173365 0.557832i
\(634\) −5.81878 + 8.00886i −0.231093 + 0.318072i
\(635\) −14.5623 + 10.5801i −0.577887 + 0.419860i
\(636\) 9.81516 7.32549i 0.389196 0.290474i
\(637\) 46.6690i 1.84909i
\(638\) 0 0
\(639\) −20.0000 + 7.07107i −0.791188 + 0.279727i
\(640\) −1.34500 0.437016i −0.0531657 0.0172746i
\(641\) −28.2626 38.9002i −1.11631 1.53646i −0.811782 0.583960i \(-0.801502\pi\)
−0.304524 0.952505i \(-0.598498\pi\)
\(642\) 29.5249 10.0141i 1.16525 0.395224i
\(643\) −1.23607 3.80423i −0.0487458 0.150024i 0.923721 0.383066i \(-0.125132\pi\)
−0.972467 + 0.233042i \(0.925132\pi\)
\(644\) −1.85410 5.70634i −0.0730619 0.224861i
\(645\) 19.6833 6.67605i 0.775027 0.262869i
\(646\) 0 0
\(647\) −6.72499 2.18508i −0.264386 0.0859044i 0.173824 0.984777i \(-0.444388\pi\)
−0.438211 + 0.898872i \(0.644388\pi\)
\(648\) 7.00000 5.65685i 0.274986 0.222222i
\(649\) 0 0
\(650\) 12.7279i 0.499230i
\(651\) 23.5564 17.5812i 0.923247 0.689060i
\(652\) −1.61803 + 1.17557i −0.0633671 + 0.0460389i
\(653\) 15.7938 21.7383i 0.618060 0.850687i −0.379150 0.925335i \(-0.623784\pi\)
0.997210 + 0.0746486i \(0.0237835\pi\)
\(654\) −6.54267 + 21.0522i −0.255839 + 0.823205i
\(655\) −16.1400 + 5.24419i −0.630641 + 0.204908i
\(656\) 4.85410 + 3.52671i 0.189521 + 0.137695i
\(657\) 0 0
\(658\) 12.9787 39.9444i 0.505963 1.55719i
\(659\) −30.0000 −1.16863 −0.584317 0.811525i \(-0.698638\pi\)
−0.584317 + 0.811525i \(0.698638\pi\)
\(660\) 0 0
\(661\) −22.0000 −0.855701 −0.427850 0.903850i \(-0.640729\pi\)
−0.427850 + 0.903850i \(0.640729\pi\)
\(662\) 3.09017 9.51057i 0.120103 0.369639i
\(663\) 0 0
\(664\) −9.70820 7.05342i −0.376751 0.273726i
\(665\) 0 0
\(666\) −4.76195 + 3.65018i −0.184522 + 0.141441i
\(667\) 4.98752 6.86474i 0.193118 0.265804i
\(668\) −9.70820 + 7.05342i −0.375622 + 0.272905i
\(669\) 8.28784 + 11.1046i 0.320426 + 0.429328i
\(670\) 5.65685i 0.218543i
\(671\) 0 0
\(672\) 6.00000 + 4.24264i 0.231455 + 0.163663i
\(673\) 40.3499 + 13.1105i 1.55537 + 0.505372i 0.955567 0.294773i \(-0.0952439\pi\)
0.599807 + 0.800144i \(0.295244\pi\)
\(674\) 19.9501 + 27.4589i 0.768449 + 1.05768i
\(675\) −9.64149 12.2491i −0.371101 0.471470i
\(676\) −1.54508 4.75528i −0.0594263 0.182895i
\(677\) −9.27051 28.5317i −0.356295 1.09656i −0.955255 0.295783i \(-0.904419\pi\)
0.598960 0.800779i \(-0.295581\pi\)
\(678\) 6.29424 + 18.5575i 0.241729 + 0.712698i
\(679\) −19.9501 27.4589i −0.765614 1.05378i
\(680\) 0 0
\(681\) −6.00000 + 8.48528i −0.229920 + 0.325157i
\(682\) 0 0
\(683\) 5.65685i 0.216454i 0.994126 + 0.108227i \(0.0345173\pi\)
−0.994126 + 0.108227i \(0.965483\pi\)
\(684\) 0 0
\(685\) −3.23607 + 2.35114i −0.123644 + 0.0898325i
\(686\) 9.97505 13.7295i 0.380849 0.524194i
\(687\) −23.1562 7.19657i −0.883464 0.274566i
\(688\) 8.06998 2.62210i 0.307665 0.0999665i
\(689\) 24.2705 + 17.6336i 0.924633 + 0.671785i
\(690\) −0.0444738 3.46382i −0.00169309 0.131865i
\(691\) −8.65248 + 26.6296i −0.329156 + 1.01304i 0.640374 + 0.768063i \(0.278779\pi\)
−0.969530 + 0.244974i \(0.921221\pi\)
\(692\) 6.00000 0.228086
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) 7.41641 22.8254i 0.281320 0.865815i
\(696\) 0.133421 + 10.3914i 0.00505732 + 0.393887i
\(697\) 0 0
\(698\) 28.2449 9.17734i 1.06909 0.347367i
\(699\) 29.7723 + 9.25273i 1.12609 + 0.349970i
\(700\) 7.48128 10.2971i 0.282766 0.389194i
\(701\) −14.5623 + 10.5801i −0.550011 + 0.399606i −0.827789 0.561039i \(-0.810402\pi\)
0.277779 + 0.960645i \(0.410402\pi\)
\(702\) 18.3209 + 12.2616i 0.691476 + 0.462783i
\(703\) 0 0
\(704\) 0 0
\(705\) 14.0000 19.7990i 0.527271 0.745673i
\(706\) −21.5200 6.99226i −0.809914 0.263157i
\(707\) −14.9626 20.5942i −0.562725 0.774525i
\(708\) −6.29424 18.5575i −0.236552 0.697435i
\(709\) −3.09017 9.51057i −0.116054 0.357177i 0.876112 0.482108i \(-0.160129\pi\)
−0.992165 + 0.124932i \(0.960129\pi\)
\(710\) −3.09017 9.51057i −0.115972 0.356925i
\(711\) −12.2020 3.62105i −0.457609 0.135800i
\(712\) 3.32502 + 4.57649i 0.124610 + 0.171511i
\(713\) −5.37999 1.74806i −0.201482 0.0654655i
\(714\) 0 0
\(715\) 0 0
\(716\) 5.65685i 0.211407i
\(717\) 12.4318 + 16.6569i 0.464273 + 0.622062i
\(718\) 0 0
\(719\) −19.1188 + 26.3148i −0.713012 + 0.981377i 0.286715 + 0.958016i \(0.407437\pi\)
−0.999727 + 0.0233613i \(0.992563\pi\)
\(720\) 2.58107 + 3.36721i 0.0961906 + 0.125489i
\(721\) 16.1400 5.24419i 0.601084 0.195304i
\(722\) 15.3713 + 11.1679i 0.572061 + 0.415627i
\(723\) −14.6957 + 0.188686i −0.546540 + 0.00701732i
\(724\) 0.618034 1.90211i 0.0229691 0.0706915i
\(725\) 18.0000 0.668503
\(726\) 0 0
\(727\) 44.0000 1.63187 0.815935 0.578144i \(-0.196223\pi\)
0.815935 + 0.578144i \(0.196223\pi\)
\(728\) −5.56231 + 17.1190i −0.206153 + 0.634473i
\(729\) −26.9199 + 2.07783i −0.997034 + 0.0769568i
\(730\) 0 0
\(731\) 0 0
\(732\) 2.18089 7.01739i 0.0806080 0.259370i
\(733\) −2.49376 + 3.43237i −0.0921092 + 0.126777i −0.852584 0.522590i \(-0.824966\pi\)
0.760475 + 0.649367i \(0.224966\pi\)
\(734\) −22.6525 + 16.4580i −0.836118 + 0.607475i
\(735\) 21.5933 16.1161i 0.796482 0.594450i
\(736\) 1.41421i 0.0521286i
\(737\) 0 0
\(738\) −6.00000 16.9706i −0.220863 0.624695i
\(739\) −24.2099 7.86629i −0.890577 0.289366i −0.172235 0.985056i \(-0.555099\pi\)
−0.718342 + 0.695690i \(0.755099\pi\)
\(740\) −1.66251 2.28825i −0.0611150 0.0841176i
\(741\) 0 0
\(742\) −9.27051 28.5317i −0.340331 1.04743i
\(743\) −7.41641 22.8254i −0.272082 0.837381i −0.989977 0.141230i \(-0.954894\pi\)
0.717895 0.696151i \(-0.245106\pi\)
\(744\) 6.56108 2.22535i 0.240541 0.0815853i
\(745\) 4.98752 + 6.86474i 0.182729 + 0.251504i
\(746\) 28.2449 + 9.17734i 1.03412 + 0.336006i
\(747\) 12.0000 + 33.9411i 0.439057 + 1.24184i
\(748\) 0 0
\(749\) 76.3675i 2.79041i
\(750\) 15.7042 11.7208i 0.573438 0.427982i
\(751\) 32.3607 23.5114i 1.18086 0.857944i 0.188590 0.982056i \(-0.439608\pi\)
0.992268 + 0.124112i \(0.0396083\pi\)
\(752\) 5.81878 8.00886i 0.212189 0.292053i
\(753\) 2.90785 9.35652i 0.105968 0.340970i
\(754\) −24.2099 + 7.86629i −0.881674 + 0.286473i
\(755\) 4.85410 + 3.52671i 0.176659 + 0.128350i
\(756\) −7.61471 20.6886i −0.276944 0.752435i
\(757\) 0.618034 1.90211i 0.0224628 0.0691335i −0.939197 0.343380i \(-0.888428\pi\)
0.961660 + 0.274246i \(0.0884283\pi\)
\(758\) −2.00000 −0.0726433
\(759\) 0 0
\(760\) 0 0
\(761\) −7.41641 + 22.8254i −0.268845 + 0.827419i 0.721938 + 0.691958i \(0.243252\pi\)
−0.990783 + 0.135461i \(0.956748\pi\)
\(762\) 22.0436 0.283029i 0.798555 0.0102531i
\(763\) 43.6869 + 31.7404i 1.58157 + 1.14908i
\(764\) −9.41498 + 3.05911i −0.340622 + 0.110675i
\(765\) 0 0
\(766\) −0.831254 + 1.14412i −0.0300344 + 0.0413388i
\(767\) 38.8328 28.2137i 1.40217 1.01874i
\(768\) 1.03598 + 1.38807i 0.0373827 + 0.0500878i
\(769\) 42.4264i 1.52994i −0.644069 0.764968i \(-0.722755\pi\)
0.644069 0.764968i \(-0.277245\pi\)
\(770\) 0 0
\(771\) 16.0000 + 11.3137i 0.576226 + 0.407453i
\(772\) 8.06998 + 2.62210i 0.290445 + 0.0943713i
\(773\) −10.8063 14.8736i −0.388676 0.534966i 0.569181 0.822212i \(-0.307260\pi\)
−0.957857 + 0.287246i \(0.907260\pi\)
\(774\) −24.4039 7.24211i −0.877181 0.260312i
\(775\) −3.70820 11.4127i −0.133203 0.409956i
\(776\) −2.47214 7.60845i −0.0887445 0.273128i
\(777\) 4.72068 + 13.9182i 0.169353 + 0.499311i
\(778\) 5.81878 + 8.00886i 0.208613 + 0.287132i
\(779\) 0 0
\(780\) −6.00000 + 8.48528i −0.214834 + 0.303822i
\(781\) 0 0
\(782\) 0 0
\(783\) 17.3405 25.9096i 0.619699 0.925934i
\(784\) 8.89919 6.46564i 0.317828 0.230916i
\(785\) −18.2876 + 25.1707i −0.652712 + 0.898381i
\(786\) 19.8482 + 6.16849i 0.707961 + 0.220023i
\(787\) 40.3499 13.1105i 1.43832 0.467338i 0.516946 0.856018i \(-0.327069\pi\)
0.921373 + 0.388680i \(0.127069\pi\)
\(788\) −14.5623 10.5801i −0.518761 0.376902i
\(789\) 0.266843 + 20.7829i 0.00949985 + 0.739891i
\(790\) 1.85410 5.70634i 0.0659660 0.203022i
\(791\) 48.0000 1.70668
\(792\) 0 0
\(793\) 18.0000 0.639199
\(794\) 10.5066 32.3359i 0.372864 1.14756i
\(795\) −0.222369 17.3191i −0.00788661 0.614244i
\(796\) 12.9443 + 9.40456i 0.458798 + 0.333336i
\(797\) −1.34500 + 0.437016i −0.0476422 + 0.0154799i −0.332741 0.943018i \(-0.607974\pi\)
0.285099 + 0.958498i \(0.407974\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 2.42705 1.76336i 0.0858092 0.0623440i
\(801\) −0.435716 16.9650i −0.0153953 0.599428i
\(802\) 36.7696i 1.29838i
\(803\) 0 0
\(804\) 4.00000 5.65685i 0.141069 0.199502i
\(805\) −8.06998 2.62210i −0.284429 0.0924167i
\(806\) 9.97505 + 13.7295i 0.351356 + 0.483600i
\(807\) −3.93390 11.5985i −0.138480 0.408285i
\(808\) −1.85410 5.70634i −0.0652271 0.200748i
\(809\) 16.6869 + 51.3571i 0.586681 + 1.80562i 0.592413 + 0.805634i \(0.298175\pi\)
−0.00573251 + 0.999984i \(0.501825\pi\)
\(810\) −0.653359 12.7111i −0.0229567 0.446624i
\(811\) −14.9626 20.5942i −0.525407 0.723161i 0.461015 0.887392i \(-0.347485\pi\)
−0.986422 + 0.164232i \(0.947485\pi\)
\(812\) 24.2099 + 7.86629i 0.849603 + 0.276053i
\(813\) −18.0000 12.7279i −0.631288 0.446388i
\(814\) 0 0
\(815\) 2.82843i 0.0990755i
\(816\) 0 0
\(817\) 0 0
\(818\) −4.98752 + 6.86474i −0.174385 + 0.240020i
\(819\) 42.8576 32.8516i 1.49757 1.14793i
\(820\) 8.06998 2.62210i 0.281816 0.0915676i
\(821\) 24.2705 + 17.6336i 0.847047 + 0.615415i 0.924330 0.381594i \(-0.124625\pi\)
−0.0772835 + 0.997009i \(0.524625\pi\)
\(822\) 4.89858 0.0628954i 0.170857 0.00219373i
\(823\) −12.3607 + 38.0423i −0.430866 + 1.32607i 0.466398 + 0.884575i \(0.345552\pi\)
−0.897264 + 0.441495i \(0.854448\pi\)
\(824\) 4.00000 0.139347
\(825\) 0 0
\(826\) −48.0000 −1.67013
\(827\) −11.1246 + 34.2380i −0.386841 + 1.19057i 0.548296 + 0.836285i \(0.315277\pi\)
−0.935136 + 0.354288i \(0.884723\pi\)
\(828\) −2.40481 + 3.49526i −0.0835731 + 0.121469i
\(829\) −1.61803 1.17557i −0.0561966 0.0408293i 0.559332 0.828944i \(-0.311058\pi\)
−0.615529 + 0.788114i \(0.711058\pi\)
\(830\) −16.1400 + 5.24419i −0.560226 + 0.182029i
\(831\) −10.9044 + 35.0869i −0.378271 + 1.21715i
\(832\) −2.49376 + 3.43237i −0.0864556 + 0.118996i
\(833\) 0 0
\(834\) −23.5564 + 17.5812i −0.815690 + 0.608786i
\(835\) 16.9706i 0.587291i
\(836\) 0 0
\(837\) −20.0000 5.65685i −0.691301 0.195529i
\(838\) 10.7600 + 3.49613i 0.371697 + 0.120772i
\(839\) 9.14379 + 12.5854i 0.315679 + 0.434495i 0.937142 0.348949i \(-0.113461\pi\)
−0.621463 + 0.783444i \(0.713461\pi\)
\(840\) 9.84163 3.33803i 0.339568 0.115173i
\(841\) 2.16312 + 6.65740i 0.0745903 + 0.229565i
\(842\) 3.09017 + 9.51057i 0.106494 + 0.327756i
\(843\) −19.6833 + 6.67605i −0.677927 + 0.229935i
\(844\) −4.98752 6.86474i −0.171678 0.236294i
\(845\) −6.72499 2.18508i −0.231347 0.0751690i
\(846\) −28.0000 + 9.89949i −0.962660 + 0.340352i
\(847\) 0 0
\(848\) 7.07107i 0.242821i
\(849\) −11.7782 + 8.79058i −0.404226 + 0.301692i
\(850\) 0 0
\(851\) 1.66251 2.28825i 0.0569900 0.0784400i
\(852\) −3.63482 + 11.6956i −0.124527 + 0.400686i
\(853\) 20.1750 6.55524i 0.690777 0.224447i 0.0574696 0.998347i \(-0.481697\pi\)
0.633308 + 0.773900i \(0.281697\pi\)
\(854\) −14.5623 10.5801i −0.498312 0.362045i
\(855\) 0 0
\(856\) 5.56231 17.1190i 0.190116 0.585116i
\(857\) 6.00000 0.204956 0.102478 0.994735i \(-0.467323\pi\)
0.102478 + 0.994735i \(0.467323\pi\)
\(858\) 0 0
\(859\) −22.0000 −0.750630 −0.375315 0.926897i \(-0.622466\pi\)
−0.375315 + 0.926897i \(0.622466\pi\)
\(860\) 3.70820 11.4127i 0.126449 0.389169i
\(861\) −44.0872 + 0.566059i −1.50249 + 0.0192912i
\(862\) −29.1246 21.1603i −0.991988 0.720722i
\(863\) 6.72499 2.18508i 0.228921 0.0743810i −0.192310 0.981334i \(-0.561598\pi\)
0.421231 + 0.906953i \(0.361598\pi\)
\(864\) −0.200088 5.19230i −0.00680713 0.176646i
\(865\) 4.98752 6.86474i 0.169581 0.233408i
\(866\) 1.61803 1.17557i 0.0549830 0.0399475i
\(867\) −17.6117 23.5972i −0.598123 0.801404i
\(868\) 16.9706i 0.576018i
\(869\) 0 0
\(870\) 12.0000 + 8.48528i 0.406838 + 0.287678i
\(871\) 16.1400 + 5.24419i 0.546882 + 0.177693i
\(872\) 7.48128 + 10.2971i 0.253348 + 0.348704i
\(873\) −6.82793 + 23.0082i −0.231090 + 0.778711i
\(874\) 0 0
\(875\) −14.8328 45.6507i −0.501441 1.54328i
\(876\) 0 0
\(877\) 17.4563 + 24.0266i 0.589458 + 0.811320i 0.994692 0.102893i \(-0.0328100\pi\)
−0.405234 + 0.914213i \(0.632810\pi\)
\(878\) 20.1750 + 6.55524i 0.680872 + 0.221229i
\(879\) 6.00000 8.48528i 0.202375 0.286201i
\(880\) 0 0
\(881\) 5.65685i 0.190584i 0.995449 + 0.0952921i \(0.0303785\pi\)
−0.995449 + 0.0952921i \(0.969621\pi\)
\(882\) −32.9891 + 0.847269i −1.11080 + 0.0285290i
\(883\) −16.1803 + 11.7557i −0.544512 + 0.395611i −0.825758 0.564025i \(-0.809252\pi\)
0.281246 + 0.959636i \(0.409252\pi\)
\(884\) 0 0
\(885\) −26.4642 8.22465i −0.889585 0.276469i
\(886\) −26.8999 + 8.74032i −0.903721 + 0.293637i
\(887\) −38.8328 28.2137i −1.30388 0.947323i −0.303893 0.952706i \(-0.598286\pi\)
−0.999986 + 0.00538315i \(0.998286\pi\)
\(888\) 0.0444738 + 3.46382i 0.00149244 + 0.116238i
\(889\) 16.6869 51.3571i 0.559661 1.72246i
\(890\) 8.00000 0.268161
\(891\) 0 0
\(892\) 8.00000 0.267860
\(893\) 0 0
\(894\) −0.133421 10.3914i −0.00446228 0.347542i
\(895\) 6.47214 + 4.70228i 0.216340 + 0.157180i
\(896\) 4.03499 1.31105i 0.134800 0.0437990i
\(897\) −9.92408 3.08424i −0.331356 0.102980i
\(898\) −18.2876 + 25.1707i −0.610265 + 0.839957i
\(899\) 19.4164 14.1068i 0.647573 0.470490i
\(900\) −8.99703 + 0.231073i −0.299901 + 0.00770245i
\(901\) 0 0
\(902\) 0 0
\(903\) −36.0000 + 50.9117i −1.19800 + 1.69423i
\(904\) 10.7600 + 3.49613i 0.357871 + 0.116279i
\(905\) −1.66251 2.28825i −0.0552636 0.0760639i
\(906\) −2.36034 6.95908i −0.0784171 0.231200i
\(907\) 13.5967 + 41.8465i 0.451473 + 1.38949i 0.875227 + 0.483713i \(0.160712\pi\)
−0.423754 + 0.905777i \(0.639288\pi\)
\(908\) 1.85410 + 5.70634i 0.0615305 + 0.189372i
\(909\) −5.12094 + 17.2562i −0.169851 + 0.572352i
\(910\) 14.9626 + 20.5942i 0.496004 + 0.682691i
\(911\) 9.41498 + 3.05911i 0.311932 + 0.101353i 0.460799 0.887504i \(-0.347563\pi\)
−0.148867 + 0.988857i \(0.547563\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 8.48528i 0.280668i
\(915\) −6.21588 8.32844i −0.205491 0.275330i
\(916\) −11.3262 + 8.22899i −0.374229 + 0.271894i
\(917\) 29.9251 41.1884i 0.988215 1.36016i
\(918\) 0 0
\(919\) −36.3149 + 11.7994i −1.19792 + 0.389227i −0.838995 0.544139i \(-0.816856\pi\)
−0.358924 + 0.933367i \(0.616856\pi\)
\(920\) −1.61803 1.17557i −0.0533450 0.0387574i
\(921\) 0 0
\(922\) 9.27051 28.5317i 0.305308 0.939641i
\(923\) −30.0000 −0.987462
\(924\) 0 0
\(925\) 6.00000 0.197279
\(926\) −9.88854 + 30.4338i −0.324958 + 1.00012i
\(927\) −9.88610 6.80184i −0.324702 0.223402i
\(928\) 4.85410 + 3.52671i 0.159344 + 0.115770i
\(929\) 2.68999 0.874032i 0.0882558 0.0286761i −0.264556 0.964370i \(-0.585225\pi\)
0.352812 + 0.935694i \(0.385225\pi\)
\(930\) 2.90785 9.35652i 0.0953522 0.306812i
\(931\) 0 0
\(932\) 14.5623 10.5801i 0.477004 0.346564i
\(933\) −37.2976 + 27.8368i −1.22107 + 0.911337i
\(934\) 31.1127i 1.01804i
\(935\) 0 0
\(936\) 12.0000 4.24264i 0.392232 0.138675i
\(937\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(938\) −9.97505 13.7295i −0.325697 0.448283i
\(939\) −16.4027 + 5.56338i −0.535282 + 0.181554i
\(940\) −4.32624 13.3148i −0.141106 0.434281i
\(941\) −12.9787 39.9444i −0.423094 1.30215i −0.904808 0.425821i \(-0.859985\pi\)
0.481714 0.876329i \(-0.340015\pi\)
\(942\) 36.0860 12.2394i 1.17574 0.398782i
\(943\) 4.98752 + 6.86474i 0.162416 + 0.223547i
\(944\) −10.7600 3.49613i −0.350207 0.113789i
\(945\) −30.0000 8.48528i −0.975900 0.276026i
\(946\) 0 0
\(947\) 48.0833i 1.56250i 0.624221 + 0.781248i \(0.285417\pi\)
−0.624221 + 0.781248i \(0.714583\pi\)
\(948\) −5.88909 + 4.39529i −0.191269 + 0.142752i
\(949\) 0 0
\(950\) 0 0
\(951\) 5.08874 16.3739i 0.165014 0.530960i
\(952\) 0 0
\(953\) −43.6869 31.7404i −1.41516 1.02817i −0.992547 0.121861i \(-0.961114\pi\)
−0.422611 0.906311i \(-0.638886\pi\)
\(954\) −12.0241 + 17.4763i −0.389294 + 0.565817i
\(955\) −4.32624 + 13.3148i −0.139994 + 0.430857i
\(956\) 12.0000 0.388108
\(957\) 0 0
\(958\) 12.0000 0.387702
\(959\) 3.70820 11.4127i 0.119744 0.368535i
\(960\) 2.44929 0.0314477i 0.0790504 0.00101497i
\(961\) 12.1353 + 8.81678i 0.391460 + 0.284412i
\(962\) −8.06998 + 2.62210i −0.260187 + 0.0845398i
\(963\) −42.8576 + 32.8516i −1.38107 + 1.05863i
\(964\) −4.98752 + 6.86474i −0.160637 + 0.221098i
\(965\) 9.70820 7.05342i 0.312518 0.227058i
\(966\) 6.21588 + 8.32844i 0.199993 + 0.267963i
\(967\) 4.24264i 0.136434i −0.997671 0.0682171i \(-0.978269\pi\)
0.997671 0.0682171i \(-0.0217310\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −10.7600 3.49613i −0.345482 0.112254i
\(971\) 26.6001 + 36.6119i 0.853639 + 1.17493i 0.983049 + 0.183342i \(0.0586915\pi\)
−0.129411 + 0.991591i \(0.541309\pi\)
\(972\) −8.33478 + 13.1731i −0.267338 + 0.422529i
\(973\) 22.2492 + 68.4761i 0.713277 + 2.19524i
\(974\) −6.18034 19.0211i −0.198031 0.609476i
\(975\) −7.08102 20.8772i −0.226774 0.668607i
\(976\) −2.49376 3.43237i −0.0798234 0.109867i
\(977\) 13.4500 + 4.37016i 0.430303 + 0.139814i 0.516157 0.856494i \(-0.327362\pi\)
−0.0858545 + 0.996308i \(0.527362\pi\)
\(978\) 2.00000 2.82843i 0.0639529 0.0904431i
\(979\) 0 0
\(980\) 15.5563i 0.496929i
\(981\) −0.980361 38.1712i −0.0313005 1.21871i
\(982\) −4.85410 + 3.52671i −0.154901 + 0.112542i
\(983\) 5.81878 8.00886i 0.185590 0.255443i −0.706076 0.708136i \(-0.749537\pi\)
0.891667 + 0.452693i \(0.149537\pi\)
\(984\) −9.92408 3.08424i −0.316368 0.0983221i
\(985\) −24.2099 + 7.86629i −0.771393 + 0.250641i
\(986\) 0 0
\(987\) 0.933949 + 72.7401i 0.0297279 + 2.31534i
\(988\) 0 0
\(989\) 12.0000 0.381578
\(990\) 0 0
\(991\) 20.0000 0.635321 0.317660 0.948205i \(-0.397103\pi\)
0.317660 + 0.948205i \(0.397103\pi\)
\(992\) 1.23607 3.80423i 0.0392452 0.120784i
\(993\) 0.222369 + 17.3191i 0.00705666 + 0.549604i
\(994\) 24.2705 + 17.6336i 0.769814 + 0.559302i
\(995\) 21.5200 6.99226i 0.682228 0.221669i
\(996\) 19.8482 + 6.16849i 0.628913 + 0.195456i
\(997\) 17.4563 24.0266i 0.552848 0.760929i −0.437548 0.899195i \(-0.644153\pi\)
0.990395 + 0.138266i \(0.0441528\pi\)
\(998\) 11.3262 8.22899i 0.358526 0.260484i
\(999\) 5.78016 8.63653i 0.182876 0.273248i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 726.2.h.i.233.1 8
3.2 odd 2 726.2.h.e.233.2 8
11.2 odd 10 726.2.h.e.239.1 8
11.3 even 5 inner 726.2.h.i.161.2 8
11.4 even 5 66.2.b.a.65.2 yes 2
11.5 even 5 inner 726.2.h.i.215.2 8
11.6 odd 10 726.2.h.e.215.2 8
11.7 odd 10 66.2.b.b.65.2 yes 2
11.8 odd 10 726.2.h.e.161.2 8
11.9 even 5 inner 726.2.h.i.239.1 8
11.10 odd 2 726.2.h.e.233.1 8
33.2 even 10 inner 726.2.h.i.239.2 8
33.5 odd 10 726.2.h.e.215.1 8
33.8 even 10 inner 726.2.h.i.161.1 8
33.14 odd 10 726.2.h.e.161.1 8
33.17 even 10 inner 726.2.h.i.215.1 8
33.20 odd 10 726.2.h.e.239.2 8
33.26 odd 10 66.2.b.b.65.1 yes 2
33.29 even 10 66.2.b.a.65.1 2
33.32 even 2 inner 726.2.h.i.233.2 8
44.7 even 10 528.2.b.c.65.1 2
44.15 odd 10 528.2.b.b.65.1 2
55.4 even 10 1650.2.d.b.1451.1 2
55.7 even 20 1650.2.f.a.1649.4 4
55.18 even 20 1650.2.f.a.1649.1 4
55.29 odd 10 1650.2.d.a.1451.1 2
55.37 odd 20 1650.2.f.b.1649.2 4
55.48 odd 20 1650.2.f.b.1649.3 4
88.29 odd 10 2112.2.b.i.65.1 2
88.37 even 10 2112.2.b.g.65.1 2
88.51 even 10 2112.2.b.b.65.2 2
88.59 odd 10 2112.2.b.d.65.2 2
99.4 even 15 1782.2.i.f.593.2 4
99.7 odd 30 1782.2.i.c.1187.1 4
99.29 even 30 1782.2.i.f.1187.2 4
99.40 odd 30 1782.2.i.c.593.2 4
99.59 odd 30 1782.2.i.c.593.1 4
99.70 even 15 1782.2.i.f.1187.1 4
99.92 odd 30 1782.2.i.c.1187.2 4
99.95 even 30 1782.2.i.f.593.1 4
132.59 even 10 528.2.b.c.65.2 2
132.95 odd 10 528.2.b.b.65.2 2
165.29 even 10 1650.2.d.b.1451.2 2
165.59 odd 10 1650.2.d.a.1451.2 2
165.62 odd 20 1650.2.f.b.1649.1 4
165.92 even 20 1650.2.f.a.1649.3 4
165.128 odd 20 1650.2.f.b.1649.4 4
165.158 even 20 1650.2.f.a.1649.2 4
264.29 even 10 2112.2.b.g.65.2 2
264.59 even 10 2112.2.b.b.65.1 2
264.125 odd 10 2112.2.b.i.65.2 2
264.227 odd 10 2112.2.b.d.65.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
66.2.b.a.65.1 2 33.29 even 10
66.2.b.a.65.2 yes 2 11.4 even 5
66.2.b.b.65.1 yes 2 33.26 odd 10
66.2.b.b.65.2 yes 2 11.7 odd 10
528.2.b.b.65.1 2 44.15 odd 10
528.2.b.b.65.2 2 132.95 odd 10
528.2.b.c.65.1 2 44.7 even 10
528.2.b.c.65.2 2 132.59 even 10
726.2.h.e.161.1 8 33.14 odd 10
726.2.h.e.161.2 8 11.8 odd 10
726.2.h.e.215.1 8 33.5 odd 10
726.2.h.e.215.2 8 11.6 odd 10
726.2.h.e.233.1 8 11.10 odd 2
726.2.h.e.233.2 8 3.2 odd 2
726.2.h.e.239.1 8 11.2 odd 10
726.2.h.e.239.2 8 33.20 odd 10
726.2.h.i.161.1 8 33.8 even 10 inner
726.2.h.i.161.2 8 11.3 even 5 inner
726.2.h.i.215.1 8 33.17 even 10 inner
726.2.h.i.215.2 8 11.5 even 5 inner
726.2.h.i.233.1 8 1.1 even 1 trivial
726.2.h.i.233.2 8 33.32 even 2 inner
726.2.h.i.239.1 8 11.9 even 5 inner
726.2.h.i.239.2 8 33.2 even 10 inner
1650.2.d.a.1451.1 2 55.29 odd 10
1650.2.d.a.1451.2 2 165.59 odd 10
1650.2.d.b.1451.1 2 55.4 even 10
1650.2.d.b.1451.2 2 165.29 even 10
1650.2.f.a.1649.1 4 55.18 even 20
1650.2.f.a.1649.2 4 165.158 even 20
1650.2.f.a.1649.3 4 165.92 even 20
1650.2.f.a.1649.4 4 55.7 even 20
1650.2.f.b.1649.1 4 165.62 odd 20
1650.2.f.b.1649.2 4 55.37 odd 20
1650.2.f.b.1649.3 4 55.48 odd 20
1650.2.f.b.1649.4 4 165.128 odd 20
1782.2.i.c.593.1 4 99.59 odd 30
1782.2.i.c.593.2 4 99.40 odd 30
1782.2.i.c.1187.1 4 99.7 odd 30
1782.2.i.c.1187.2 4 99.92 odd 30
1782.2.i.f.593.1 4 99.95 even 30
1782.2.i.f.593.2 4 99.4 even 15
1782.2.i.f.1187.1 4 99.70 even 15
1782.2.i.f.1187.2 4 99.29 even 30
2112.2.b.b.65.1 2 264.59 even 10
2112.2.b.b.65.2 2 88.51 even 10
2112.2.b.d.65.1 2 264.227 odd 10
2112.2.b.d.65.2 2 88.59 odd 10
2112.2.b.g.65.1 2 88.37 even 10
2112.2.b.g.65.2 2 264.29 even 10
2112.2.b.i.65.1 2 88.29 odd 10
2112.2.b.i.65.2 2 264.125 odd 10