Properties

Label 1650.2.f.a.1649.3
Level $1650$
Weight $2$
Character 1650.1649
Analytic conductor $13.175$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1650,2,Mod(1649,1650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1650, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1650.1649"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1650 = 2 \cdot 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1650.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.1753163335\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 66)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1649.3
Root \(0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1650.1649
Dual form 1650.2.f.a.1649.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +(-1.41421 + 1.00000i) q^{3} -1.00000 q^{4} +(-1.00000 - 1.41421i) q^{6} -4.24264 q^{7} -1.00000i q^{8} +(1.00000 - 2.82843i) q^{9} +(-3.00000 + 1.41421i) q^{11} +(1.41421 - 1.00000i) q^{12} -4.24264 q^{13} -4.24264i q^{14} +1.00000 q^{16} +(2.82843 + 1.00000i) q^{18} +(6.00000 - 4.24264i) q^{21} +(-1.41421 - 3.00000i) q^{22} -1.41421 q^{23} +(1.00000 + 1.41421i) q^{24} -4.24264i q^{26} +(1.41421 + 5.00000i) q^{27} +4.24264 q^{28} +6.00000 q^{29} -4.00000 q^{31} +1.00000i q^{32} +(2.82843 - 5.00000i) q^{33} +(-1.00000 + 2.82843i) q^{36} +2.00000i q^{37} +(6.00000 - 4.24264i) q^{39} +6.00000 q^{41} +(4.24264 + 6.00000i) q^{42} -8.48528 q^{43} +(3.00000 - 1.41421i) q^{44} -1.41421i q^{46} +9.89949 q^{47} +(-1.41421 + 1.00000i) q^{48} +11.0000 q^{49} +4.24264 q^{52} +7.07107 q^{53} +(-5.00000 + 1.41421i) q^{54} +4.24264i q^{56} +6.00000i q^{58} -11.3137i q^{59} +4.24264i q^{61} -4.00000i q^{62} +(-4.24264 + 12.0000i) q^{63} -1.00000 q^{64} +(5.00000 + 2.82843i) q^{66} -4.00000i q^{67} +(2.00000 - 1.41421i) q^{69} +7.07107i q^{71} +(-2.82843 - 1.00000i) q^{72} -2.00000 q^{74} +(12.7279 - 6.00000i) q^{77} +(4.24264 + 6.00000i) q^{78} -4.24264i q^{79} +(-7.00000 - 5.65685i) q^{81} +6.00000i q^{82} -12.0000i q^{83} +(-6.00000 + 4.24264i) q^{84} -8.48528i q^{86} +(-8.48528 + 6.00000i) q^{87} +(1.41421 + 3.00000i) q^{88} +5.65685i q^{89} +18.0000 q^{91} +1.41421 q^{92} +(5.65685 - 4.00000i) q^{93} +9.89949i q^{94} +(-1.00000 - 1.41421i) q^{96} +8.00000i q^{97} +11.0000i q^{98} +(1.00000 + 9.89949i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 4 q^{6} + 4 q^{9} - 12 q^{11} + 4 q^{16} + 24 q^{21} + 4 q^{24} + 24 q^{29} - 16 q^{31} - 4 q^{36} + 24 q^{39} + 24 q^{41} + 12 q^{44} + 44 q^{49} - 20 q^{54} - 4 q^{64} + 20 q^{66} + 8 q^{69}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1650\mathbb{Z}\right)^\times\).

\(n\) \(551\) \(727\) \(1201\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) −1.41421 + 1.00000i −0.816497 + 0.577350i
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) −1.00000 1.41421i −0.408248 0.577350i
\(7\) −4.24264 −1.60357 −0.801784 0.597614i \(-0.796115\pi\)
−0.801784 + 0.597614i \(0.796115\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 1.00000 2.82843i 0.333333 0.942809i
\(10\) 0 0
\(11\) −3.00000 + 1.41421i −0.904534 + 0.426401i
\(12\) 1.41421 1.00000i 0.408248 0.288675i
\(13\) −4.24264 −1.17670 −0.588348 0.808608i \(-0.700222\pi\)
−0.588348 + 0.808608i \(0.700222\pi\)
\(14\) 4.24264i 1.13389i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 2.82843 + 1.00000i 0.666667 + 0.235702i
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 6.00000 4.24264i 1.30931 0.925820i
\(22\) −1.41421 3.00000i −0.301511 0.639602i
\(23\) −1.41421 −0.294884 −0.147442 0.989071i \(-0.547104\pi\)
−0.147442 + 0.989071i \(0.547104\pi\)
\(24\) 1.00000 + 1.41421i 0.204124 + 0.288675i
\(25\) 0 0
\(26\) 4.24264i 0.832050i
\(27\) 1.41421 + 5.00000i 0.272166 + 0.962250i
\(28\) 4.24264 0.801784
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 2.82843 5.00000i 0.492366 0.870388i
\(34\) 0 0
\(35\) 0 0
\(36\) −1.00000 + 2.82843i −0.166667 + 0.471405i
\(37\) 2.00000i 0.328798i 0.986394 + 0.164399i \(0.0525685\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) 0 0
\(39\) 6.00000 4.24264i 0.960769 0.679366i
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 4.24264 + 6.00000i 0.654654 + 0.925820i
\(43\) −8.48528 −1.29399 −0.646997 0.762493i \(-0.723975\pi\)
−0.646997 + 0.762493i \(0.723975\pi\)
\(44\) 3.00000 1.41421i 0.452267 0.213201i
\(45\) 0 0
\(46\) 1.41421i 0.208514i
\(47\) 9.89949 1.44399 0.721995 0.691898i \(-0.243225\pi\)
0.721995 + 0.691898i \(0.243225\pi\)
\(48\) −1.41421 + 1.00000i −0.204124 + 0.144338i
\(49\) 11.0000 1.57143
\(50\) 0 0
\(51\) 0 0
\(52\) 4.24264 0.588348
\(53\) 7.07107 0.971286 0.485643 0.874157i \(-0.338586\pi\)
0.485643 + 0.874157i \(0.338586\pi\)
\(54\) −5.00000 + 1.41421i −0.680414 + 0.192450i
\(55\) 0 0
\(56\) 4.24264i 0.566947i
\(57\) 0 0
\(58\) 6.00000i 0.787839i
\(59\) 11.3137i 1.47292i −0.676481 0.736460i \(-0.736496\pi\)
0.676481 0.736460i \(-0.263504\pi\)
\(60\) 0 0
\(61\) 4.24264i 0.543214i 0.962408 + 0.271607i \(0.0875552\pi\)
−0.962408 + 0.271607i \(0.912445\pi\)
\(62\) 4.00000i 0.508001i
\(63\) −4.24264 + 12.0000i −0.534522 + 1.51186i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 5.00000 + 2.82843i 0.615457 + 0.348155i
\(67\) 4.00000i 0.488678i −0.969690 0.244339i \(-0.921429\pi\)
0.969690 0.244339i \(-0.0785709\pi\)
\(68\) 0 0
\(69\) 2.00000 1.41421i 0.240772 0.170251i
\(70\) 0 0
\(71\) 7.07107i 0.839181i 0.907713 + 0.419591i \(0.137826\pi\)
−0.907713 + 0.419591i \(0.862174\pi\)
\(72\) −2.82843 1.00000i −0.333333 0.117851i
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) −2.00000 −0.232495
\(75\) 0 0
\(76\) 0 0
\(77\) 12.7279 6.00000i 1.45048 0.683763i
\(78\) 4.24264 + 6.00000i 0.480384 + 0.679366i
\(79\) 4.24264i 0.477334i −0.971101 0.238667i \(-0.923290\pi\)
0.971101 0.238667i \(-0.0767105\pi\)
\(80\) 0 0
\(81\) −7.00000 5.65685i −0.777778 0.628539i
\(82\) 6.00000i 0.662589i
\(83\) 12.0000i 1.31717i −0.752506 0.658586i \(-0.771155\pi\)
0.752506 0.658586i \(-0.228845\pi\)
\(84\) −6.00000 + 4.24264i −0.654654 + 0.462910i
\(85\) 0 0
\(86\) 8.48528i 0.914991i
\(87\) −8.48528 + 6.00000i −0.909718 + 0.643268i
\(88\) 1.41421 + 3.00000i 0.150756 + 0.319801i
\(89\) 5.65685i 0.599625i 0.953998 + 0.299813i \(0.0969242\pi\)
−0.953998 + 0.299813i \(0.903076\pi\)
\(90\) 0 0
\(91\) 18.0000 1.88691
\(92\) 1.41421 0.147442
\(93\) 5.65685 4.00000i 0.586588 0.414781i
\(94\) 9.89949i 1.02105i
\(95\) 0 0
\(96\) −1.00000 1.41421i −0.102062 0.144338i
\(97\) 8.00000i 0.812277i 0.913812 + 0.406138i \(0.133125\pi\)
−0.913812 + 0.406138i \(0.866875\pi\)
\(98\) 11.0000i 1.11117i
\(99\) 1.00000 + 9.89949i 0.100504 + 0.994937i
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) 4.00000i 0.394132i 0.980390 + 0.197066i \(0.0631413\pi\)
−0.980390 + 0.197066i \(0.936859\pi\)
\(104\) 4.24264i 0.416025i
\(105\) 0 0
\(106\) 7.07107i 0.686803i
\(107\) 18.0000i 1.74013i 0.492941 + 0.870063i \(0.335922\pi\)
−0.492941 + 0.870063i \(0.664078\pi\)
\(108\) −1.41421 5.00000i −0.136083 0.481125i
\(109\) 12.7279i 1.21911i −0.792742 0.609557i \(-0.791347\pi\)
0.792742 0.609557i \(-0.208653\pi\)
\(110\) 0 0
\(111\) −2.00000 2.82843i −0.189832 0.268462i
\(112\) −4.24264 −0.400892
\(113\) 11.3137 1.06430 0.532152 0.846649i \(-0.321383\pi\)
0.532152 + 0.846649i \(0.321383\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −6.00000 −0.557086
\(117\) −4.24264 + 12.0000i −0.392232 + 1.10940i
\(118\) 11.3137 1.04151
\(119\) 0 0
\(120\) 0 0
\(121\) 7.00000 8.48528i 0.636364 0.771389i
\(122\) −4.24264 −0.384111
\(123\) −8.48528 + 6.00000i −0.765092 + 0.541002i
\(124\) 4.00000 0.359211
\(125\) 0 0
\(126\) −12.0000 4.24264i −1.06904 0.377964i
\(127\) 12.7279 1.12942 0.564710 0.825289i \(-0.308988\pi\)
0.564710 + 0.825289i \(0.308988\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 12.0000 8.48528i 1.05654 0.747087i
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) −2.82843 + 5.00000i −0.246183 + 0.435194i
\(133\) 0 0
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) 0 0
\(137\) −2.82843 −0.241649 −0.120824 0.992674i \(-0.538554\pi\)
−0.120824 + 0.992674i \(0.538554\pi\)
\(138\) 1.41421 + 2.00000i 0.120386 + 0.170251i
\(139\) 16.9706i 1.43942i 0.694273 + 0.719712i \(0.255726\pi\)
−0.694273 + 0.719712i \(0.744274\pi\)
\(140\) 0 0
\(141\) −14.0000 + 9.89949i −1.17901 + 0.833688i
\(142\) −7.07107 −0.593391
\(143\) 12.7279 6.00000i 1.06436 0.501745i
\(144\) 1.00000 2.82843i 0.0833333 0.235702i
\(145\) 0 0
\(146\) 0 0
\(147\) −15.5563 + 11.0000i −1.28307 + 0.907265i
\(148\) 2.00000i 0.164399i
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) 4.24264i 0.345261i 0.984987 + 0.172631i \(0.0552267\pi\)
−0.984987 + 0.172631i \(0.944773\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 6.00000 + 12.7279i 0.483494 + 1.02565i
\(155\) 0 0
\(156\) −6.00000 + 4.24264i −0.480384 + 0.339683i
\(157\) 22.0000i 1.75579i −0.478852 0.877896i \(-0.658947\pi\)
0.478852 0.877896i \(-0.341053\pi\)
\(158\) 4.24264 0.337526
\(159\) −10.0000 + 7.07107i −0.793052 + 0.560772i
\(160\) 0 0
\(161\) 6.00000 0.472866
\(162\) 5.65685 7.00000i 0.444444 0.549972i
\(163\) 2.00000i 0.156652i −0.996928 0.0783260i \(-0.975042\pi\)
0.996928 0.0783260i \(-0.0249575\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) 12.0000 0.931381
\(167\) 12.0000i 0.928588i −0.885681 0.464294i \(-0.846308\pi\)
0.885681 0.464294i \(-0.153692\pi\)
\(168\) −4.24264 6.00000i −0.327327 0.462910i
\(169\) 5.00000 0.384615
\(170\) 0 0
\(171\) 0 0
\(172\) 8.48528 0.646997
\(173\) 6.00000i 0.456172i 0.973641 + 0.228086i \(0.0732467\pi\)
−0.973641 + 0.228086i \(0.926753\pi\)
\(174\) −6.00000 8.48528i −0.454859 0.643268i
\(175\) 0 0
\(176\) −3.00000 + 1.41421i −0.226134 + 0.106600i
\(177\) 11.3137 + 16.0000i 0.850390 + 1.20263i
\(178\) −5.65685 −0.423999
\(179\) 5.65685i 0.422813i 0.977398 + 0.211407i \(0.0678044\pi\)
−0.977398 + 0.211407i \(0.932196\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 18.0000i 1.33425i
\(183\) −4.24264 6.00000i −0.313625 0.443533i
\(184\) 1.41421i 0.104257i
\(185\) 0 0
\(186\) 4.00000 + 5.65685i 0.293294 + 0.414781i
\(187\) 0 0
\(188\) −9.89949 −0.721995
\(189\) −6.00000 21.2132i −0.436436 1.54303i
\(190\) 0 0
\(191\) 9.89949i 0.716302i −0.933664 0.358151i \(-0.883407\pi\)
0.933664 0.358151i \(-0.116593\pi\)
\(192\) 1.41421 1.00000i 0.102062 0.0721688i
\(193\) 8.48528 0.610784 0.305392 0.952227i \(-0.401213\pi\)
0.305392 + 0.952227i \(0.401213\pi\)
\(194\) −8.00000 −0.574367
\(195\) 0 0
\(196\) −11.0000 −0.785714
\(197\) 18.0000i 1.28245i −0.767354 0.641223i \(-0.778427\pi\)
0.767354 0.641223i \(-0.221573\pi\)
\(198\) −9.89949 + 1.00000i −0.703526 + 0.0710669i
\(199\) 16.0000 1.13421 0.567105 0.823646i \(-0.308063\pi\)
0.567105 + 0.823646i \(0.308063\pi\)
\(200\) 0 0
\(201\) 4.00000 + 5.65685i 0.282138 + 0.399004i
\(202\) 6.00000i 0.422159i
\(203\) −25.4558 −1.78665
\(204\) 0 0
\(205\) 0 0
\(206\) −4.00000 −0.278693
\(207\) −1.41421 + 4.00000i −0.0982946 + 0.278019i
\(208\) −4.24264 −0.294174
\(209\) 0 0
\(210\) 0 0
\(211\) 8.48528i 0.584151i 0.956395 + 0.292075i \(0.0943458\pi\)
−0.956395 + 0.292075i \(0.905654\pi\)
\(212\) −7.07107 −0.485643
\(213\) −7.07107 10.0000i −0.484502 0.685189i
\(214\) −18.0000 −1.23045
\(215\) 0 0
\(216\) 5.00000 1.41421i 0.340207 0.0962250i
\(217\) 16.9706 1.15204
\(218\) 12.7279 0.862044
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 2.82843 2.00000i 0.189832 0.134231i
\(223\) 8.00000i 0.535720i −0.963458 0.267860i \(-0.913684\pi\)
0.963458 0.267860i \(-0.0863164\pi\)
\(224\) 4.24264i 0.283473i
\(225\) 0 0
\(226\) 11.3137i 0.752577i
\(227\) 6.00000i 0.398234i −0.979976 0.199117i \(-0.936193\pi\)
0.979976 0.199117i \(-0.0638074\pi\)
\(228\) 0 0
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 0 0
\(231\) −12.0000 + 21.2132i −0.789542 + 1.39573i
\(232\) 6.00000i 0.393919i
\(233\) 18.0000i 1.17922i −0.807688 0.589610i \(-0.799282\pi\)
0.807688 0.589610i \(-0.200718\pi\)
\(234\) −12.0000 4.24264i −0.784465 0.277350i
\(235\) 0 0
\(236\) 11.3137i 0.736460i
\(237\) 4.24264 + 6.00000i 0.275589 + 0.389742i
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) 8.48528i 0.546585i −0.961931 0.273293i \(-0.911887\pi\)
0.961931 0.273293i \(-0.0881127\pi\)
\(242\) 8.48528 + 7.00000i 0.545455 + 0.449977i
\(243\) 15.5563 + 1.00000i 0.997940 + 0.0641500i
\(244\) 4.24264i 0.271607i
\(245\) 0 0
\(246\) −6.00000 8.48528i −0.382546 0.541002i
\(247\) 0 0
\(248\) 4.00000i 0.254000i
\(249\) 12.0000 + 16.9706i 0.760469 + 1.07547i
\(250\) 0 0
\(251\) 5.65685i 0.357057i −0.983935 0.178529i \(-0.942866\pi\)
0.983935 0.178529i \(-0.0571337\pi\)
\(252\) 4.24264 12.0000i 0.267261 0.755929i
\(253\) 4.24264 2.00000i 0.266733 0.125739i
\(254\) 12.7279i 0.798621i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −11.3137 −0.705730 −0.352865 0.935674i \(-0.614792\pi\)
−0.352865 + 0.935674i \(0.614792\pi\)
\(258\) 8.48528 + 12.0000i 0.528271 + 0.747087i
\(259\) 8.48528i 0.527250i
\(260\) 0 0
\(261\) 6.00000 16.9706i 0.371391 1.05045i
\(262\) 12.0000i 0.741362i
\(263\) 12.0000i 0.739952i −0.929041 0.369976i \(-0.879366\pi\)
0.929041 0.369976i \(-0.120634\pi\)
\(264\) −5.00000 2.82843i −0.307729 0.174078i
\(265\) 0 0
\(266\) 0 0
\(267\) −5.65685 8.00000i −0.346194 0.489592i
\(268\) 4.00000i 0.244339i
\(269\) 7.07107i 0.431131i −0.976489 0.215565i \(-0.930841\pi\)
0.976489 0.215565i \(-0.0691594\pi\)
\(270\) 0 0
\(271\) 12.7279i 0.773166i 0.922255 + 0.386583i \(0.126345\pi\)
−0.922255 + 0.386583i \(0.873655\pi\)
\(272\) 0 0
\(273\) −25.4558 + 18.0000i −1.54066 + 1.08941i
\(274\) 2.82843i 0.170872i
\(275\) 0 0
\(276\) −2.00000 + 1.41421i −0.120386 + 0.0851257i
\(277\) 21.2132 1.27458 0.637289 0.770625i \(-0.280056\pi\)
0.637289 + 0.770625i \(0.280056\pi\)
\(278\) −16.9706 −1.01783
\(279\) −4.00000 + 11.3137i −0.239474 + 0.677334i
\(280\) 0 0
\(281\) 12.0000 0.715860 0.357930 0.933748i \(-0.383483\pi\)
0.357930 + 0.933748i \(0.383483\pi\)
\(282\) −9.89949 14.0000i −0.589506 0.833688i
\(283\) 8.48528 0.504398 0.252199 0.967675i \(-0.418846\pi\)
0.252199 + 0.967675i \(0.418846\pi\)
\(284\) 7.07107i 0.419591i
\(285\) 0 0
\(286\) 6.00000 + 12.7279i 0.354787 + 0.752618i
\(287\) −25.4558 −1.50261
\(288\) 2.82843 + 1.00000i 0.166667 + 0.0589256i
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) −8.00000 11.3137i −0.468968 0.663221i
\(292\) 0 0
\(293\) 6.00000i 0.350524i −0.984522 0.175262i \(-0.943923\pi\)
0.984522 0.175262i \(-0.0560772\pi\)
\(294\) −11.0000 15.5563i −0.641533 0.907265i
\(295\) 0 0
\(296\) 2.00000 0.116248
\(297\) −11.3137 13.0000i −0.656488 0.754337i
\(298\) 6.00000i 0.347571i
\(299\) 6.00000 0.346989
\(300\) 0 0
\(301\) 36.0000 2.07501
\(302\) −4.24264 −0.244137
\(303\) 8.48528 6.00000i 0.487467 0.344691i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) −12.7279 + 6.00000i −0.725241 + 0.341882i
\(309\) −4.00000 5.65685i −0.227552 0.321807i
\(310\) 0 0
\(311\) 26.8701i 1.52366i −0.647776 0.761831i \(-0.724301\pi\)
0.647776 0.761831i \(-0.275699\pi\)
\(312\) −4.24264 6.00000i −0.240192 0.339683i
\(313\) 10.0000i 0.565233i 0.959233 + 0.282617i \(0.0912024\pi\)
−0.959233 + 0.282617i \(0.908798\pi\)
\(314\) 22.0000 1.24153
\(315\) 0 0
\(316\) 4.24264i 0.238667i
\(317\) 9.89949 0.556011 0.278006 0.960579i \(-0.410327\pi\)
0.278006 + 0.960579i \(0.410327\pi\)
\(318\) −7.07107 10.0000i −0.396526 0.560772i
\(319\) −18.0000 + 8.48528i −1.00781 + 0.475085i
\(320\) 0 0
\(321\) −18.0000 25.4558i −1.00466 1.42081i
\(322\) 6.00000i 0.334367i
\(323\) 0 0
\(324\) 7.00000 + 5.65685i 0.388889 + 0.314270i
\(325\) 0 0
\(326\) 2.00000 0.110770
\(327\) 12.7279 + 18.0000i 0.703856 + 0.995402i
\(328\) 6.00000i 0.331295i
\(329\) −42.0000 −2.31553
\(330\) 0 0
\(331\) −10.0000 −0.549650 −0.274825 0.961494i \(-0.588620\pi\)
−0.274825 + 0.961494i \(0.588620\pi\)
\(332\) 12.0000i 0.658586i
\(333\) 5.65685 + 2.00000i 0.309994 + 0.109599i
\(334\) 12.0000 0.656611
\(335\) 0 0
\(336\) 6.00000 4.24264i 0.327327 0.231455i
\(337\) −33.9411 −1.84889 −0.924445 0.381314i \(-0.875472\pi\)
−0.924445 + 0.381314i \(0.875472\pi\)
\(338\) 5.00000i 0.271964i
\(339\) −16.0000 + 11.3137i −0.869001 + 0.614476i
\(340\) 0 0
\(341\) 12.0000 5.65685i 0.649836 0.306336i
\(342\) 0 0
\(343\) −16.9706 −0.916324
\(344\) 8.48528i 0.457496i
\(345\) 0 0
\(346\) −6.00000 −0.322562
\(347\) 12.0000i 0.644194i −0.946707 0.322097i \(-0.895612\pi\)
0.946707 0.322097i \(-0.104388\pi\)
\(348\) 8.48528 6.00000i 0.454859 0.321634i
\(349\) 29.6985i 1.58972i −0.606791 0.794862i \(-0.707543\pi\)
0.606791 0.794862i \(-0.292457\pi\)
\(350\) 0 0
\(351\) −6.00000 21.2132i −0.320256 1.13228i
\(352\) −1.41421 3.00000i −0.0753778 0.159901i
\(353\) −22.6274 −1.20434 −0.602168 0.798369i \(-0.705696\pi\)
−0.602168 + 0.798369i \(0.705696\pi\)
\(354\) −16.0000 + 11.3137i −0.850390 + 0.601317i
\(355\) 0 0
\(356\) 5.65685i 0.299813i
\(357\) 0 0
\(358\) −5.65685 −0.298974
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 2.00000i 0.105118i
\(363\) −1.41421 + 19.0000i −0.0742270 + 0.997241i
\(364\) −18.0000 −0.943456
\(365\) 0 0
\(366\) 6.00000 4.24264i 0.313625 0.221766i
\(367\) 28.0000i 1.46159i −0.682598 0.730794i \(-0.739150\pi\)
0.682598 0.730794i \(-0.260850\pi\)
\(368\) −1.41421 −0.0737210
\(369\) 6.00000 16.9706i 0.312348 0.883452i
\(370\) 0 0
\(371\) −30.0000 −1.55752
\(372\) −5.65685 + 4.00000i −0.293294 + 0.207390i
\(373\) −29.6985 −1.53773 −0.768865 0.639412i \(-0.779178\pi\)
−0.768865 + 0.639412i \(0.779178\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 9.89949i 0.510527i
\(377\) −25.4558 −1.31104
\(378\) 21.2132 6.00000i 1.09109 0.308607i
\(379\) −2.00000 −0.102733 −0.0513665 0.998680i \(-0.516358\pi\)
−0.0513665 + 0.998680i \(0.516358\pi\)
\(380\) 0 0
\(381\) −18.0000 + 12.7279i −0.922168 + 0.652071i
\(382\) 9.89949 0.506502
\(383\) −1.41421 −0.0722629 −0.0361315 0.999347i \(-0.511504\pi\)
−0.0361315 + 0.999347i \(0.511504\pi\)
\(384\) 1.00000 + 1.41421i 0.0510310 + 0.0721688i
\(385\) 0 0
\(386\) 8.48528i 0.431889i
\(387\) −8.48528 + 24.0000i −0.431331 + 1.21999i
\(388\) 8.00000i 0.406138i
\(389\) 9.89949i 0.501924i 0.967997 + 0.250962i \(0.0807470\pi\)
−0.967997 + 0.250962i \(0.919253\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 11.0000i 0.555584i
\(393\) 16.9706 12.0000i 0.856052 0.605320i
\(394\) 18.0000 0.906827
\(395\) 0 0
\(396\) −1.00000 9.89949i −0.0502519 0.497468i
\(397\) 34.0000i 1.70641i −0.521575 0.853206i \(-0.674655\pi\)
0.521575 0.853206i \(-0.325345\pi\)
\(398\) 16.0000i 0.802008i
\(399\) 0 0
\(400\) 0 0
\(401\) 36.7696i 1.83618i 0.396368 + 0.918092i \(0.370271\pi\)
−0.396368 + 0.918092i \(0.629729\pi\)
\(402\) −5.65685 + 4.00000i −0.282138 + 0.199502i
\(403\) 16.9706 0.845364
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) 25.4558i 1.26335i
\(407\) −2.82843 6.00000i −0.140200 0.297409i
\(408\) 0 0
\(409\) 8.48528i 0.419570i −0.977748 0.209785i \(-0.932724\pi\)
0.977748 0.209785i \(-0.0672764\pi\)
\(410\) 0 0
\(411\) 4.00000 2.82843i 0.197305 0.139516i
\(412\) 4.00000i 0.197066i
\(413\) 48.0000i 2.36193i
\(414\) −4.00000 1.41421i −0.196589 0.0695048i
\(415\) 0 0
\(416\) 4.24264i 0.208013i
\(417\) −16.9706 24.0000i −0.831052 1.17529i
\(418\) 0 0
\(419\) 11.3137i 0.552711i −0.961056 0.276355i \(-0.910873\pi\)
0.961056 0.276355i \(-0.0891267\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) −8.48528 −0.413057
\(423\) 9.89949 28.0000i 0.481330 1.36141i
\(424\) 7.07107i 0.343401i
\(425\) 0 0
\(426\) 10.0000 7.07107i 0.484502 0.342594i
\(427\) 18.0000i 0.871081i
\(428\) 18.0000i 0.870063i
\(429\) −12.0000 + 21.2132i −0.579365 + 1.02418i
\(430\) 0 0
\(431\) 36.0000 1.73406 0.867029 0.498257i \(-0.166026\pi\)
0.867029 + 0.498257i \(0.166026\pi\)
\(432\) 1.41421 + 5.00000i 0.0680414 + 0.240563i
\(433\) 2.00000i 0.0961139i −0.998845 0.0480569i \(-0.984697\pi\)
0.998845 0.0480569i \(-0.0153029\pi\)
\(434\) 16.9706i 0.814613i
\(435\) 0 0
\(436\) 12.7279i 0.609557i
\(437\) 0 0
\(438\) 0 0
\(439\) 21.2132i 1.01245i 0.862401 + 0.506225i \(0.168960\pi\)
−0.862401 + 0.506225i \(0.831040\pi\)
\(440\) 0 0
\(441\) 11.0000 31.1127i 0.523810 1.48156i
\(442\) 0 0
\(443\) 28.2843 1.34383 0.671913 0.740630i \(-0.265473\pi\)
0.671913 + 0.740630i \(0.265473\pi\)
\(444\) 2.00000 + 2.82843i 0.0949158 + 0.134231i
\(445\) 0 0
\(446\) 8.00000 0.378811
\(447\) 8.48528 6.00000i 0.401340 0.283790i
\(448\) 4.24264 0.200446
\(449\) 31.1127i 1.46830i 0.678988 + 0.734150i \(0.262419\pi\)
−0.678988 + 0.734150i \(0.737581\pi\)
\(450\) 0 0
\(451\) −18.0000 + 8.48528i −0.847587 + 0.399556i
\(452\) −11.3137 −0.532152
\(453\) −4.24264 6.00000i −0.199337 0.281905i
\(454\) 6.00000 0.281594
\(455\) 0 0
\(456\) 0 0
\(457\) 8.48528 0.396925 0.198462 0.980109i \(-0.436405\pi\)
0.198462 + 0.980109i \(0.436405\pi\)
\(458\) 14.0000i 0.654177i
\(459\) 0 0
\(460\) 0 0
\(461\) 30.0000 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(462\) −21.2132 12.0000i −0.986928 0.558291i
\(463\) 32.0000i 1.48717i −0.668644 0.743583i \(-0.733125\pi\)
0.668644 0.743583i \(-0.266875\pi\)
\(464\) 6.00000 0.278543
\(465\) 0 0
\(466\) 18.0000 0.833834
\(467\) 31.1127 1.43972 0.719862 0.694117i \(-0.244205\pi\)
0.719862 + 0.694117i \(0.244205\pi\)
\(468\) 4.24264 12.0000i 0.196116 0.554700i
\(469\) 16.9706i 0.783628i
\(470\) 0 0
\(471\) 22.0000 + 31.1127i 1.01371 + 1.43360i
\(472\) −11.3137 −0.520756
\(473\) 25.4558 12.0000i 1.17046 0.551761i
\(474\) −6.00000 + 4.24264i −0.275589 + 0.194871i
\(475\) 0 0
\(476\) 0 0
\(477\) 7.07107 20.0000i 0.323762 0.915737i
\(478\) 12.0000i 0.548867i
\(479\) −12.0000 −0.548294 −0.274147 0.961688i \(-0.588395\pi\)
−0.274147 + 0.961688i \(0.588395\pi\)
\(480\) 0 0
\(481\) 8.48528i 0.386896i
\(482\) 8.48528 0.386494
\(483\) −8.48528 + 6.00000i −0.386094 + 0.273009i
\(484\) −7.00000 + 8.48528i −0.318182 + 0.385695i
\(485\) 0 0
\(486\) −1.00000 + 15.5563i −0.0453609 + 0.705650i
\(487\) 20.0000i 0.906287i 0.891438 + 0.453143i \(0.149697\pi\)
−0.891438 + 0.453143i \(0.850303\pi\)
\(488\) 4.24264 0.192055
\(489\) 2.00000 + 2.82843i 0.0904431 + 0.127906i
\(490\) 0 0
\(491\) 6.00000 0.270776 0.135388 0.990793i \(-0.456772\pi\)
0.135388 + 0.990793i \(0.456772\pi\)
\(492\) 8.48528 6.00000i 0.382546 0.270501i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) 30.0000i 1.34568i
\(498\) −16.9706 + 12.0000i −0.760469 + 0.537733i
\(499\) −14.0000 −0.626726 −0.313363 0.949633i \(-0.601456\pi\)
−0.313363 + 0.949633i \(0.601456\pi\)
\(500\) 0 0
\(501\) 12.0000 + 16.9706i 0.536120 + 0.758189i
\(502\) 5.65685 0.252478
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 12.0000 + 4.24264i 0.534522 + 0.188982i
\(505\) 0 0
\(506\) 2.00000 + 4.24264i 0.0889108 + 0.188608i
\(507\) −7.07107 + 5.00000i −0.314037 + 0.222058i
\(508\) −12.7279 −0.564710
\(509\) 1.41421i 0.0626839i 0.999509 + 0.0313420i \(0.00997809\pi\)
−0.999509 + 0.0313420i \(0.990022\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 11.3137i 0.499026i
\(515\) 0 0
\(516\) −12.0000 + 8.48528i −0.528271 + 0.373544i
\(517\) −29.6985 + 14.0000i −1.30614 + 0.615719i
\(518\) 8.48528 0.372822
\(519\) −6.00000 8.48528i −0.263371 0.372463i
\(520\) 0 0
\(521\) 19.7990i 0.867409i 0.901055 + 0.433705i \(0.142794\pi\)
−0.901055 + 0.433705i \(0.857206\pi\)
\(522\) 16.9706 + 6.00000i 0.742781 + 0.262613i
\(523\) 25.4558 1.11311 0.556553 0.830812i \(-0.312124\pi\)
0.556553 + 0.830812i \(0.312124\pi\)
\(524\) 12.0000 0.524222
\(525\) 0 0
\(526\) 12.0000 0.523225
\(527\) 0 0
\(528\) 2.82843 5.00000i 0.123091 0.217597i
\(529\) −21.0000 −0.913043
\(530\) 0 0
\(531\) −32.0000 11.3137i −1.38868 0.490973i
\(532\) 0 0
\(533\) −25.4558 −1.10262
\(534\) 8.00000 5.65685i 0.346194 0.244796i
\(535\) 0 0
\(536\) −4.00000 −0.172774
\(537\) −5.65685 8.00000i −0.244111 0.345225i
\(538\) 7.07107 0.304855
\(539\) −33.0000 + 15.5563i −1.42141 + 0.670059i
\(540\) 0 0
\(541\) 12.7279i 0.547216i 0.961841 + 0.273608i \(0.0882171\pi\)
−0.961841 + 0.273608i \(0.911783\pi\)
\(542\) −12.7279 −0.546711
\(543\) −2.82843 + 2.00000i −0.121379 + 0.0858282i
\(544\) 0 0
\(545\) 0 0
\(546\) −18.0000 25.4558i −0.770329 1.08941i
\(547\) 33.9411 1.45122 0.725609 0.688107i \(-0.241558\pi\)
0.725609 + 0.688107i \(0.241558\pi\)
\(548\) 2.82843 0.120824
\(549\) 12.0000 + 4.24264i 0.512148 + 0.181071i
\(550\) 0 0
\(551\) 0 0
\(552\) −1.41421 2.00000i −0.0601929 0.0851257i
\(553\) 18.0000i 0.765438i
\(554\) 21.2132i 0.901263i
\(555\) 0 0
\(556\) 16.9706i 0.719712i
\(557\) 18.0000i 0.762684i −0.924434 0.381342i \(-0.875462\pi\)
0.924434 0.381342i \(-0.124538\pi\)
\(558\) −11.3137 4.00000i −0.478947 0.169334i
\(559\) 36.0000 1.52264
\(560\) 0 0
\(561\) 0 0
\(562\) 12.0000i 0.506189i
\(563\) 30.0000i 1.26435i 0.774826 + 0.632175i \(0.217837\pi\)
−0.774826 + 0.632175i \(0.782163\pi\)
\(564\) 14.0000 9.89949i 0.589506 0.416844i
\(565\) 0 0
\(566\) 8.48528i 0.356663i
\(567\) 29.6985 + 24.0000i 1.24722 + 1.00791i
\(568\) 7.07107 0.296695
\(569\) 24.0000 1.00613 0.503066 0.864248i \(-0.332205\pi\)
0.503066 + 0.864248i \(0.332205\pi\)
\(570\) 0 0
\(571\) 33.9411i 1.42039i 0.704004 + 0.710196i \(0.251394\pi\)
−0.704004 + 0.710196i \(0.748606\pi\)
\(572\) −12.7279 + 6.00000i −0.532181 + 0.250873i
\(573\) 9.89949 + 14.0000i 0.413557 + 0.584858i
\(574\) 25.4558i 1.06251i
\(575\) 0 0
\(576\) −1.00000 + 2.82843i −0.0416667 + 0.117851i
\(577\) 20.0000i 0.832611i 0.909225 + 0.416305i \(0.136675\pi\)
−0.909225 + 0.416305i \(0.863325\pi\)
\(578\) 17.0000i 0.707107i
\(579\) −12.0000 + 8.48528i −0.498703 + 0.352636i
\(580\) 0 0
\(581\) 50.9117i 2.11217i
\(582\) 11.3137 8.00000i 0.468968 0.331611i
\(583\) −21.2132 + 10.0000i −0.878561 + 0.414158i
\(584\) 0 0
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) −28.2843 −1.16742 −0.583708 0.811963i \(-0.698399\pi\)
−0.583708 + 0.811963i \(0.698399\pi\)
\(588\) 15.5563 11.0000i 0.641533 0.453632i
\(589\) 0 0
\(590\) 0 0
\(591\) 18.0000 + 25.4558i 0.740421 + 1.04711i
\(592\) 2.00000i 0.0821995i
\(593\) 36.0000i 1.47834i 0.673517 + 0.739171i \(0.264783\pi\)
−0.673517 + 0.739171i \(0.735217\pi\)
\(594\) 13.0000 11.3137i 0.533396 0.464207i
\(595\) 0 0
\(596\) 6.00000 0.245770
\(597\) −22.6274 + 16.0000i −0.926079 + 0.654836i
\(598\) 6.00000i 0.245358i
\(599\) 24.0416i 0.982314i −0.871071 0.491157i \(-0.836574\pi\)
0.871071 0.491157i \(-0.163426\pi\)
\(600\) 0 0
\(601\) 33.9411i 1.38449i −0.721664 0.692244i \(-0.756622\pi\)
0.721664 0.692244i \(-0.243378\pi\)
\(602\) 36.0000i 1.46725i
\(603\) −11.3137 4.00000i −0.460730 0.162893i
\(604\) 4.24264i 0.172631i
\(605\) 0 0
\(606\) 6.00000 + 8.48528i 0.243733 + 0.344691i
\(607\) 4.24264 0.172203 0.0861017 0.996286i \(-0.472559\pi\)
0.0861017 + 0.996286i \(0.472559\pi\)
\(608\) 0 0
\(609\) 36.0000 25.4558i 1.45879 1.03152i
\(610\) 0 0
\(611\) −42.0000 −1.69914
\(612\) 0 0
\(613\) 12.7279 0.514076 0.257038 0.966401i \(-0.417253\pi\)
0.257038 + 0.966401i \(0.417253\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) −6.00000 12.7279i −0.241747 0.512823i
\(617\) 39.5980 1.59415 0.797077 0.603877i \(-0.206378\pi\)
0.797077 + 0.603877i \(0.206378\pi\)
\(618\) 5.65685 4.00000i 0.227552 0.160904i
\(619\) −44.0000 −1.76851 −0.884255 0.467005i \(-0.845333\pi\)
−0.884255 + 0.467005i \(0.845333\pi\)
\(620\) 0 0
\(621\) −2.00000 7.07107i −0.0802572 0.283752i
\(622\) 26.8701 1.07739
\(623\) 24.0000i 0.961540i
\(624\) 6.00000 4.24264i 0.240192 0.169842i
\(625\) 0 0
\(626\) −10.0000 −0.399680
\(627\) 0 0
\(628\) 22.0000i 0.877896i
\(629\) 0 0
\(630\) 0 0
\(631\) 20.0000 0.796187 0.398094 0.917345i \(-0.369672\pi\)
0.398094 + 0.917345i \(0.369672\pi\)
\(632\) −4.24264 −0.168763
\(633\) −8.48528 12.0000i −0.337260 0.476957i
\(634\) 9.89949i 0.393159i
\(635\) 0 0
\(636\) 10.0000 7.07107i 0.396526 0.280386i
\(637\) −46.6690 −1.84909
\(638\) −8.48528 18.0000i −0.335936 0.712627i
\(639\) 20.0000 + 7.07107i 0.791188 + 0.279727i
\(640\) 0 0
\(641\) 48.0833i 1.89917i −0.313503 0.949587i \(-0.601502\pi\)
0.313503 0.949587i \(-0.398498\pi\)
\(642\) 25.4558 18.0000i 1.00466 0.710403i
\(643\) 4.00000i 0.157745i 0.996885 + 0.0788723i \(0.0251319\pi\)
−0.996885 + 0.0788723i \(0.974868\pi\)
\(644\) −6.00000 −0.236433
\(645\) 0 0
\(646\) 0 0
\(647\) −7.07107 −0.277992 −0.138996 0.990293i \(-0.544388\pi\)
−0.138996 + 0.990293i \(0.544388\pi\)
\(648\) −5.65685 + 7.00000i −0.222222 + 0.274986i
\(649\) 16.0000 + 33.9411i 0.628055 + 1.33231i
\(650\) 0 0
\(651\) −24.0000 + 16.9706i −0.940634 + 0.665129i
\(652\) 2.00000i 0.0783260i
\(653\) −26.8701 −1.05151 −0.525753 0.850637i \(-0.676216\pi\)
−0.525753 + 0.850637i \(0.676216\pi\)
\(654\) −18.0000 + 12.7279i −0.703856 + 0.497701i
\(655\) 0 0
\(656\) 6.00000 0.234261
\(657\) 0 0
\(658\) 42.0000i 1.63733i
\(659\) −30.0000 −1.16863 −0.584317 0.811525i \(-0.698638\pi\)
−0.584317 + 0.811525i \(0.698638\pi\)
\(660\) 0 0
\(661\) −22.0000 −0.855701 −0.427850 0.903850i \(-0.640729\pi\)
−0.427850 + 0.903850i \(0.640729\pi\)
\(662\) 10.0000i 0.388661i
\(663\) 0 0
\(664\) −12.0000 −0.465690
\(665\) 0 0
\(666\) −2.00000 + 5.65685i −0.0774984 + 0.219199i
\(667\) −8.48528 −0.328551
\(668\) 12.0000i 0.464294i
\(669\) 8.00000 + 11.3137i 0.309298 + 0.437413i
\(670\) 0 0
\(671\) −6.00000 12.7279i −0.231627 0.491356i
\(672\) 4.24264 + 6.00000i 0.163663 + 0.231455i
\(673\) 42.4264 1.63542 0.817709 0.575632i \(-0.195244\pi\)
0.817709 + 0.575632i \(0.195244\pi\)
\(674\) 33.9411i 1.30736i
\(675\) 0 0
\(676\) −5.00000 −0.192308
\(677\) 30.0000i 1.15299i 0.817099 + 0.576497i \(0.195581\pi\)
−0.817099 + 0.576497i \(0.804419\pi\)
\(678\) −11.3137 16.0000i −0.434500 0.614476i
\(679\) 33.9411i 1.30254i
\(680\) 0 0
\(681\) 6.00000 + 8.48528i 0.229920 + 0.325157i
\(682\) 5.65685 + 12.0000i 0.216612 + 0.459504i
\(683\) −5.65685 −0.216454 −0.108227 0.994126i \(-0.534517\pi\)
−0.108227 + 0.994126i \(0.534517\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 16.9706i 0.647939i
\(687\) 19.7990 14.0000i 0.755379 0.534133i
\(688\) −8.48528 −0.323498
\(689\) −30.0000 −1.14291
\(690\) 0 0
\(691\) −28.0000 −1.06517 −0.532585 0.846376i \(-0.678779\pi\)
−0.532585 + 0.846376i \(0.678779\pi\)
\(692\) 6.00000i 0.228086i
\(693\) −4.24264 42.0000i −0.161165 1.59545i
\(694\) 12.0000 0.455514
\(695\) 0 0
\(696\) 6.00000 + 8.48528i 0.227429 + 0.321634i
\(697\) 0 0
\(698\) 29.6985 1.12410
\(699\) 18.0000 + 25.4558i 0.680823 + 0.962828i
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 21.2132 6.00000i 0.800641 0.226455i
\(703\) 0 0
\(704\) 3.00000 1.41421i 0.113067 0.0533002i
\(705\) 0 0
\(706\) 22.6274i 0.851594i
\(707\) 25.4558 0.957366
\(708\) −11.3137 16.0000i −0.425195 0.601317i
\(709\) 10.0000 0.375558 0.187779 0.982211i \(-0.439871\pi\)
0.187779 + 0.982211i \(0.439871\pi\)
\(710\) 0 0
\(711\) −12.0000 4.24264i −0.450035 0.159111i
\(712\) 5.65685 0.212000
\(713\) 5.65685 0.211851
\(714\) 0 0
\(715\) 0 0
\(716\) 5.65685i 0.211407i
\(717\) −16.9706 + 12.0000i −0.633777 + 0.448148i
\(718\) 0 0
\(719\) 32.5269i 1.21305i −0.795065 0.606525i \(-0.792563\pi\)
0.795065 0.606525i \(-0.207437\pi\)
\(720\) 0 0
\(721\) 16.9706i 0.632017i
\(722\) 19.0000i 0.707107i
\(723\) 8.48528 + 12.0000i 0.315571 + 0.446285i
\(724\) −2.00000 −0.0743294
\(725\) 0 0
\(726\) −19.0000 1.41421i −0.705156 0.0524864i
\(727\) 44.0000i 1.63187i 0.578144 + 0.815935i \(0.303777\pi\)
−0.578144 + 0.815935i \(0.696223\pi\)
\(728\) 18.0000i 0.667124i
\(729\) −23.0000 + 14.1421i −0.851852 + 0.523783i
\(730\) 0 0
\(731\) 0 0
\(732\) 4.24264 + 6.00000i 0.156813 + 0.221766i
\(733\) −4.24264 −0.156706 −0.0783528 0.996926i \(-0.524966\pi\)
−0.0783528 + 0.996926i \(0.524966\pi\)
\(734\) 28.0000 1.03350
\(735\) 0 0
\(736\) 1.41421i 0.0521286i
\(737\) 5.65685 + 12.0000i 0.208373 + 0.442026i
\(738\) 16.9706 + 6.00000i 0.624695 + 0.220863i
\(739\) 25.4558i 0.936408i 0.883620 + 0.468204i \(0.155099\pi\)
−0.883620 + 0.468204i \(0.844901\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 30.0000i 1.10133i
\(743\) 24.0000i 0.880475i −0.897881 0.440237i \(-0.854894\pi\)
0.897881 0.440237i \(-0.145106\pi\)
\(744\) −4.00000 5.65685i −0.146647 0.207390i
\(745\) 0 0
\(746\) 29.6985i 1.08734i
\(747\) −33.9411 12.0000i −1.24184 0.439057i
\(748\) 0 0
\(749\) 76.3675i 2.79041i
\(750\) 0 0
\(751\) −40.0000 −1.45962 −0.729810 0.683650i \(-0.760392\pi\)
−0.729810 + 0.683650i \(0.760392\pi\)
\(752\) 9.89949 0.360997
\(753\) 5.65685 + 8.00000i 0.206147 + 0.291536i
\(754\) 25.4558i 0.927047i
\(755\) 0 0
\(756\) 6.00000 + 21.2132i 0.218218 + 0.771517i
\(757\) 2.00000i 0.0726912i 0.999339 + 0.0363456i \(0.0115717\pi\)
−0.999339 + 0.0363456i \(0.988428\pi\)
\(758\) 2.00000i 0.0726433i
\(759\) −4.00000 + 7.07107i −0.145191 + 0.256664i
\(760\) 0 0
\(761\) 24.0000 0.869999 0.435000 0.900431i \(-0.356748\pi\)
0.435000 + 0.900431i \(0.356748\pi\)
\(762\) −12.7279 18.0000i −0.461084 0.652071i
\(763\) 54.0000i 1.95493i
\(764\) 9.89949i 0.358151i
\(765\) 0 0
\(766\) 1.41421i 0.0510976i
\(767\) 48.0000i 1.73318i
\(768\) −1.41421 + 1.00000i −0.0510310 + 0.0360844i
\(769\) 42.4264i 1.52994i 0.644069 + 0.764968i \(0.277245\pi\)
−0.644069 + 0.764968i \(0.722755\pi\)
\(770\) 0 0
\(771\) 16.0000 11.3137i 0.576226 0.407453i
\(772\) −8.48528 −0.305392
\(773\) −18.3848 −0.661254 −0.330627 0.943761i \(-0.607260\pi\)
−0.330627 + 0.943761i \(0.607260\pi\)
\(774\) −24.0000 8.48528i −0.862662 0.304997i
\(775\) 0 0
\(776\) 8.00000 0.287183
\(777\) 8.48528 + 12.0000i 0.304408 + 0.430498i
\(778\) −9.89949 −0.354914
\(779\) 0 0
\(780\) 0 0
\(781\) −10.0000 21.2132i −0.357828 0.759068i
\(782\) 0 0
\(783\) 8.48528 + 30.0000i 0.303239 + 1.07211i
\(784\) 11.0000 0.392857
\(785\) 0 0
\(786\) 12.0000 + 16.9706i 0.428026 + 0.605320i
\(787\) 42.4264 1.51234 0.756169 0.654376i \(-0.227069\pi\)
0.756169 + 0.654376i \(0.227069\pi\)
\(788\) 18.0000i 0.641223i
\(789\) 12.0000 + 16.9706i 0.427211 + 0.604168i
\(790\) 0 0
\(791\) −48.0000 −1.70668
\(792\) 9.89949 1.00000i 0.351763 0.0355335i
\(793\) 18.0000i 0.639199i
\(794\) 34.0000 1.20661
\(795\) 0 0
\(796\) −16.0000 −0.567105
\(797\) 1.41421 0.0500940 0.0250470 0.999686i \(-0.492026\pi\)
0.0250470 + 0.999686i \(0.492026\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 16.0000 + 5.65685i 0.565332 + 0.199875i
\(802\) −36.7696 −1.29838
\(803\) 0 0
\(804\) −4.00000 5.65685i −0.141069 0.199502i
\(805\) 0 0
\(806\) 16.9706i 0.597763i
\(807\) 7.07107 + 10.0000i 0.248913 + 0.352017i
\(808\) 6.00000i 0.211079i
\(809\) 54.0000 1.89854 0.949269 0.314464i \(-0.101825\pi\)
0.949269 + 0.314464i \(0.101825\pi\)
\(810\) 0 0
\(811\) 25.4558i 0.893876i 0.894565 + 0.446938i \(0.147485\pi\)
−0.894565 + 0.446938i \(0.852515\pi\)
\(812\) 25.4558 0.893325
\(813\) −12.7279 18.0000i −0.446388 0.631288i
\(814\) 6.00000 2.82843i 0.210300 0.0991363i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 8.48528 0.296681
\(819\) 18.0000 50.9117i 0.628971 1.77900i
\(820\) 0 0
\(821\) 30.0000 1.04701 0.523504 0.852023i \(-0.324625\pi\)
0.523504 + 0.852023i \(0.324625\pi\)
\(822\) 2.82843 + 4.00000i 0.0986527 + 0.139516i
\(823\) 40.0000i 1.39431i 0.716919 + 0.697156i \(0.245552\pi\)
−0.716919 + 0.697156i \(0.754448\pi\)
\(824\) 4.00000 0.139347
\(825\) 0 0
\(826\) −48.0000 −1.67013
\(827\) 36.0000i 1.25184i 0.779886 + 0.625921i \(0.215277\pi\)
−0.779886 + 0.625921i \(0.784723\pi\)
\(828\) 1.41421 4.00000i 0.0491473 0.139010i
\(829\) −2.00000 −0.0694629 −0.0347314 0.999397i \(-0.511058\pi\)
−0.0347314 + 0.999397i \(0.511058\pi\)
\(830\) 0 0
\(831\) −30.0000 + 21.2132i −1.04069 + 0.735878i
\(832\) 4.24264 0.147087
\(833\) 0 0
\(834\) 24.0000 16.9706i 0.831052 0.587643i
\(835\) 0 0
\(836\) 0 0
\(837\) −5.65685 20.0000i −0.195529 0.691301i
\(838\) 11.3137 0.390826
\(839\) 15.5563i 0.537065i −0.963271 0.268532i \(-0.913461\pi\)
0.963271 0.268532i \(-0.0865386\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 10.0000i 0.344623i
\(843\) −16.9706 + 12.0000i −0.584497 + 0.413302i
\(844\) 8.48528i 0.292075i
\(845\) 0 0
\(846\) 28.0000 + 9.89949i 0.962660 + 0.340352i
\(847\) −29.6985 + 36.0000i −1.02045 + 1.23697i
\(848\) 7.07107 0.242821
\(849\) −12.0000 + 8.48528i −0.411839 + 0.291214i
\(850\) 0 0
\(851\) 2.82843i 0.0969572i
\(852\) 7.07107 + 10.0000i 0.242251 + 0.342594i
\(853\) −21.2132 −0.726326 −0.363163 0.931726i \(-0.618303\pi\)
−0.363163 + 0.931726i \(0.618303\pi\)
\(854\) 18.0000 0.615947
\(855\) 0 0
\(856\) 18.0000 0.615227
\(857\) 6.00000i 0.204956i −0.994735 0.102478i \(-0.967323\pi\)
0.994735 0.102478i \(-0.0326771\pi\)
\(858\) −21.2132 12.0000i −0.724207 0.409673i
\(859\) 22.0000 0.750630 0.375315 0.926897i \(-0.377534\pi\)
0.375315 + 0.926897i \(0.377534\pi\)
\(860\) 0 0
\(861\) 36.0000 25.4558i 1.22688 0.867533i
\(862\) 36.0000i 1.22616i
\(863\) 7.07107 0.240702 0.120351 0.992731i \(-0.461598\pi\)
0.120351 + 0.992731i \(0.461598\pi\)
\(864\) −5.00000 + 1.41421i −0.170103 + 0.0481125i
\(865\) 0 0
\(866\) 2.00000 0.0679628
\(867\) −24.0416 + 17.0000i −0.816497 + 0.577350i
\(868\) −16.9706 −0.576018
\(869\) 6.00000 + 12.7279i 0.203536 + 0.431765i
\(870\) 0 0
\(871\) 16.9706i 0.575026i
\(872\) −12.7279 −0.431022
\(873\) 22.6274 + 8.00000i 0.765822 + 0.270759i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 29.6985 1.00285 0.501423 0.865202i \(-0.332810\pi\)
0.501423 + 0.865202i \(0.332810\pi\)
\(878\) −21.2132 −0.715911
\(879\) 6.00000 + 8.48528i 0.202375 + 0.286201i
\(880\) 0 0
\(881\) 5.65685i 0.190584i −0.995449 0.0952921i \(-0.969621\pi\)
0.995449 0.0952921i \(-0.0303785\pi\)
\(882\) 31.1127 + 11.0000i 1.04762 + 0.370389i
\(883\) 20.0000i 0.673054i −0.941674 0.336527i \(-0.890748\pi\)
0.941674 0.336527i \(-0.109252\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 28.2843i 0.950229i
\(887\) 48.0000i 1.61168i −0.592132 0.805841i \(-0.701714\pi\)
0.592132 0.805841i \(-0.298286\pi\)
\(888\) −2.82843 + 2.00000i −0.0949158 + 0.0671156i
\(889\) −54.0000 −1.81110
\(890\) 0 0
\(891\) 29.0000 + 7.07107i 0.971537 + 0.236890i
\(892\) 8.00000i 0.267860i
\(893\) 0 0
\(894\) 6.00000 + 8.48528i 0.200670 + 0.283790i
\(895\) 0 0
\(896\) 4.24264i 0.141737i
\(897\) −8.48528 + 6.00000i −0.283315 + 0.200334i
\(898\) −31.1127 −1.03824
\(899\) −24.0000 −0.800445
\(900\) 0 0
\(901\) 0 0
\(902\) −8.48528 18.0000i −0.282529 0.599334i
\(903\) −50.9117 + 36.0000i −1.69423 + 1.19800i
\(904\) 11.3137i 0.376288i
\(905\) 0 0
\(906\) 6.00000 4.24264i 0.199337 0.140952i
\(907\) 44.0000i 1.46100i 0.682915 + 0.730498i \(0.260712\pi\)
−0.682915 + 0.730498i \(0.739288\pi\)
\(908\) 6.00000i 0.199117i
\(909\) −6.00000 + 16.9706i −0.199007 + 0.562878i
\(910\) 0 0
\(911\) 9.89949i 0.327985i −0.986462 0.163992i \(-0.947563\pi\)
0.986462 0.163992i \(-0.0524373\pi\)
\(912\) 0 0
\(913\) 16.9706 + 36.0000i 0.561644 + 1.19143i
\(914\) 8.48528i 0.280668i
\(915\) 0 0
\(916\) 14.0000 0.462573
\(917\) 50.9117 1.68125
\(918\) 0 0
\(919\) 38.1838i 1.25957i −0.776771 0.629783i \(-0.783144\pi\)
0.776771 0.629783i \(-0.216856\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 30.0000i 0.987997i
\(923\) 30.0000i 0.987462i
\(924\) 12.0000 21.2132i 0.394771 0.697863i
\(925\) 0 0
\(926\) 32.0000 1.05159
\(927\) 11.3137 + 4.00000i 0.371591 + 0.131377i
\(928\) 6.00000i 0.196960i
\(929\) 2.82843i 0.0927977i −0.998923 0.0463988i \(-0.985225\pi\)
0.998923 0.0463988i \(-0.0147745\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 18.0000i 0.589610i
\(933\) 26.8701 + 38.0000i 0.879686 + 1.24406i
\(934\) 31.1127i 1.01804i
\(935\) 0 0
\(936\) 12.0000 + 4.24264i 0.392232 + 0.138675i
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) −16.9706 −0.554109
\(939\) −10.0000 14.1421i −0.326338 0.461511i
\(940\) 0 0
\(941\) 42.0000 1.36916 0.684580 0.728937i \(-0.259985\pi\)
0.684580 + 0.728937i \(0.259985\pi\)
\(942\) −31.1127 + 22.0000i −1.01371 + 0.716799i
\(943\) −8.48528 −0.276319
\(944\) 11.3137i 0.368230i
\(945\) 0 0
\(946\) 12.0000 + 25.4558i 0.390154 + 0.827641i
\(947\) 48.0833 1.56250 0.781248 0.624221i \(-0.214583\pi\)
0.781248 + 0.624221i \(0.214583\pi\)
\(948\) −4.24264 6.00000i −0.137795 0.194871i
\(949\) 0 0
\(950\) 0 0
\(951\) −14.0000 + 9.89949i −0.453981 + 0.321013i
\(952\) 0 0
\(953\) 54.0000i 1.74923i 0.484817 + 0.874616i \(0.338886\pi\)
−0.484817 + 0.874616i \(0.661114\pi\)
\(954\) 20.0000 + 7.07107i 0.647524 + 0.228934i
\(955\) 0 0
\(956\) −12.0000 −0.388108
\(957\) 16.9706 30.0000i 0.548580 0.969762i
\(958\) 12.0000i 0.387702i
\(959\) 12.0000 0.387500
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 8.48528 0.273576
\(963\) 50.9117 + 18.0000i 1.64061 + 0.580042i
\(964\) 8.48528i 0.273293i
\(965\) 0 0
\(966\) −6.00000 8.48528i −0.193047 0.273009i
\(967\) 4.24264 0.136434 0.0682171 0.997671i \(-0.478269\pi\)
0.0682171 + 0.997671i \(0.478269\pi\)
\(968\) −8.48528 7.00000i −0.272727 0.224989i
\(969\) 0 0
\(970\) 0 0
\(971\) 45.2548i 1.45230i 0.687538 + 0.726148i \(0.258691\pi\)
−0.687538 + 0.726148i \(0.741309\pi\)
\(972\) −15.5563 1.00000i −0.498970 0.0320750i
\(973\) 72.0000i 2.30821i
\(974\) −20.0000 −0.640841
\(975\) 0 0
\(976\) 4.24264i 0.135804i
\(977\) 14.1421 0.452447 0.226224 0.974075i \(-0.427362\pi\)
0.226224 + 0.974075i \(0.427362\pi\)
\(978\) −2.82843 + 2.00000i −0.0904431 + 0.0639529i
\(979\) −8.00000 16.9706i −0.255681 0.542382i
\(980\) 0 0
\(981\) −36.0000 12.7279i −1.14939 0.406371i
\(982\) 6.00000i 0.191468i
\(983\) −9.89949 −0.315745 −0.157872 0.987460i \(-0.550463\pi\)
−0.157872 + 0.987460i \(0.550463\pi\)
\(984\) 6.00000 + 8.48528i 0.191273 + 0.270501i
\(985\) 0 0
\(986\) 0 0
\(987\) 59.3970 42.0000i 1.89063 1.33687i
\(988\) 0 0
\(989\) 12.0000 0.381578
\(990\) 0 0
\(991\) 20.0000 0.635321 0.317660 0.948205i \(-0.397103\pi\)
0.317660 + 0.948205i \(0.397103\pi\)
\(992\) 4.00000i 0.127000i
\(993\) 14.1421 10.0000i 0.448787 0.317340i
\(994\) 30.0000 0.951542
\(995\) 0 0
\(996\) −12.0000 16.9706i −0.380235 0.537733i
\(997\) −29.6985 −0.940560 −0.470280 0.882517i \(-0.655847\pi\)
−0.470280 + 0.882517i \(0.655847\pi\)
\(998\) 14.0000i 0.443162i
\(999\) −10.0000 + 2.82843i −0.316386 + 0.0894875i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1650.2.f.a.1649.3 4
3.2 odd 2 1650.2.f.b.1649.2 4
5.2 odd 4 1650.2.d.a.1451.2 2
5.3 odd 4 66.2.b.b.65.1 yes 2
5.4 even 2 inner 1650.2.f.a.1649.2 4
11.10 odd 2 1650.2.f.b.1649.1 4
15.2 even 4 1650.2.d.b.1451.1 2
15.8 even 4 66.2.b.a.65.2 yes 2
15.14 odd 2 1650.2.f.b.1649.3 4
20.3 even 4 528.2.b.c.65.2 2
33.32 even 2 inner 1650.2.f.a.1649.4 4
40.3 even 4 2112.2.b.b.65.1 2
40.13 odd 4 2112.2.b.i.65.2 2
45.13 odd 12 1782.2.i.c.593.1 4
45.23 even 12 1782.2.i.f.593.2 4
45.38 even 12 1782.2.i.f.1187.1 4
45.43 odd 12 1782.2.i.c.1187.2 4
55.3 odd 20 726.2.h.e.233.2 8
55.8 even 20 726.2.h.i.233.2 8
55.13 even 20 726.2.h.i.161.1 8
55.18 even 20 726.2.h.i.215.1 8
55.28 even 20 726.2.h.i.239.2 8
55.32 even 4 1650.2.d.b.1451.2 2
55.38 odd 20 726.2.h.e.239.2 8
55.43 even 4 66.2.b.a.65.1 2
55.48 odd 20 726.2.h.e.215.1 8
55.53 odd 20 726.2.h.e.161.1 8
55.54 odd 2 1650.2.f.b.1649.4 4
60.23 odd 4 528.2.b.b.65.1 2
120.53 even 4 2112.2.b.g.65.1 2
120.83 odd 4 2112.2.b.d.65.2 2
165.8 odd 20 726.2.h.e.233.1 8
165.32 odd 4 1650.2.d.a.1451.1 2
165.38 even 20 726.2.h.i.239.1 8
165.53 even 20 726.2.h.i.161.2 8
165.68 odd 20 726.2.h.e.161.2 8
165.83 odd 20 726.2.h.e.239.1 8
165.98 odd 4 66.2.b.b.65.2 yes 2
165.113 even 20 726.2.h.i.233.1 8
165.128 odd 20 726.2.h.e.215.2 8
165.158 even 20 726.2.h.i.215.2 8
165.164 even 2 inner 1650.2.f.a.1649.1 4
220.43 odd 4 528.2.b.b.65.2 2
440.43 odd 4 2112.2.b.d.65.1 2
440.373 even 4 2112.2.b.g.65.2 2
495.43 even 12 1782.2.i.f.1187.2 4
495.263 odd 12 1782.2.i.c.1187.1 4
495.373 even 12 1782.2.i.f.593.1 4
495.428 odd 12 1782.2.i.c.593.2 4
660.263 even 4 528.2.b.c.65.1 2
1320.923 even 4 2112.2.b.b.65.2 2
1320.1253 odd 4 2112.2.b.i.65.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
66.2.b.a.65.1 2 55.43 even 4
66.2.b.a.65.2 yes 2 15.8 even 4
66.2.b.b.65.1 yes 2 5.3 odd 4
66.2.b.b.65.2 yes 2 165.98 odd 4
528.2.b.b.65.1 2 60.23 odd 4
528.2.b.b.65.2 2 220.43 odd 4
528.2.b.c.65.1 2 660.263 even 4
528.2.b.c.65.2 2 20.3 even 4
726.2.h.e.161.1 8 55.53 odd 20
726.2.h.e.161.2 8 165.68 odd 20
726.2.h.e.215.1 8 55.48 odd 20
726.2.h.e.215.2 8 165.128 odd 20
726.2.h.e.233.1 8 165.8 odd 20
726.2.h.e.233.2 8 55.3 odd 20
726.2.h.e.239.1 8 165.83 odd 20
726.2.h.e.239.2 8 55.38 odd 20
726.2.h.i.161.1 8 55.13 even 20
726.2.h.i.161.2 8 165.53 even 20
726.2.h.i.215.1 8 55.18 even 20
726.2.h.i.215.2 8 165.158 even 20
726.2.h.i.233.1 8 165.113 even 20
726.2.h.i.233.2 8 55.8 even 20
726.2.h.i.239.1 8 165.38 even 20
726.2.h.i.239.2 8 55.28 even 20
1650.2.d.a.1451.1 2 165.32 odd 4
1650.2.d.a.1451.2 2 5.2 odd 4
1650.2.d.b.1451.1 2 15.2 even 4
1650.2.d.b.1451.2 2 55.32 even 4
1650.2.f.a.1649.1 4 165.164 even 2 inner
1650.2.f.a.1649.2 4 5.4 even 2 inner
1650.2.f.a.1649.3 4 1.1 even 1 trivial
1650.2.f.a.1649.4 4 33.32 even 2 inner
1650.2.f.b.1649.1 4 11.10 odd 2
1650.2.f.b.1649.2 4 3.2 odd 2
1650.2.f.b.1649.3 4 15.14 odd 2
1650.2.f.b.1649.4 4 55.54 odd 2
1782.2.i.c.593.1 4 45.13 odd 12
1782.2.i.c.593.2 4 495.428 odd 12
1782.2.i.c.1187.1 4 495.263 odd 12
1782.2.i.c.1187.2 4 45.43 odd 12
1782.2.i.f.593.1 4 495.373 even 12
1782.2.i.f.593.2 4 45.23 even 12
1782.2.i.f.1187.1 4 45.38 even 12
1782.2.i.f.1187.2 4 495.43 even 12
2112.2.b.b.65.1 2 40.3 even 4
2112.2.b.b.65.2 2 1320.923 even 4
2112.2.b.d.65.1 2 440.43 odd 4
2112.2.b.d.65.2 2 120.83 odd 4
2112.2.b.g.65.1 2 120.53 even 4
2112.2.b.g.65.2 2 440.373 even 4
2112.2.b.i.65.1 2 1320.1253 odd 4
2112.2.b.i.65.2 2 40.13 odd 4