Properties

Label 1782.2.i.f.593.1
Level $1782$
Weight $2$
Character 1782.593
Analytic conductor $14.229$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1782,2,Mod(593,1782)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1782, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1782.593"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1782 = 2 \cdot 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1782.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,0,-2,0,0,0,-4,0,0,-6,0,0,0,0,-2,0,0,0,0,0,6,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.2293416402\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 66)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 593.1
Root \(-1.22474 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1782.593
Dual form 1782.2.i.f.1187.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(-1.22474 + 0.707107i) q^{5} +(3.67423 + 2.12132i) q^{7} -1.00000 q^{8} +1.41421i q^{10} +(-2.72474 + 1.89097i) q^{11} +(3.67423 - 2.12132i) q^{13} +(3.67423 - 2.12132i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(1.22474 + 0.707107i) q^{20} +(0.275255 + 3.30518i) q^{22} +(-1.22474 + 0.707107i) q^{23} +(-1.50000 + 2.59808i) q^{25} -4.24264i q^{26} -4.24264i q^{28} +(-3.00000 + 5.19615i) q^{29} +(2.00000 + 3.46410i) q^{31} +(0.500000 + 0.866025i) q^{32} -6.00000 q^{35} +2.00000 q^{37} +(1.22474 - 0.707107i) q^{40} +(3.00000 + 5.19615i) q^{41} +(-7.34847 - 4.24264i) q^{43} +(3.00000 + 1.41421i) q^{44} +1.41421i q^{46} +(8.57321 + 4.94975i) q^{47} +(5.50000 + 9.52628i) q^{49} +(1.50000 + 2.59808i) q^{50} +(-3.67423 - 2.12132i) q^{52} +7.07107i q^{53} +(2.00000 - 4.24264i) q^{55} +(-3.67423 - 2.12132i) q^{56} +(3.00000 + 5.19615i) q^{58} +(9.79796 - 5.65685i) q^{59} +(3.67423 + 2.12132i) q^{61} +4.00000 q^{62} +1.00000 q^{64} +(-3.00000 + 5.19615i) q^{65} +(2.00000 + 3.46410i) q^{67} +(-3.00000 + 5.19615i) q^{70} +7.07107i q^{71} +(1.00000 - 1.73205i) q^{74} +(-14.0227 + 1.16781i) q^{77} +(3.67423 + 2.12132i) q^{79} -1.41421i q^{80} +6.00000 q^{82} +(6.00000 - 10.3923i) q^{83} +(-7.34847 + 4.24264i) q^{86} +(2.72474 - 1.89097i) q^{88} -5.65685i q^{89} +18.0000 q^{91} +(1.22474 + 0.707107i) q^{92} +(8.57321 - 4.94975i) q^{94} +(-4.00000 + 6.92820i) q^{97} +11.0000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{4} - 4 q^{8} - 6 q^{11} - 2 q^{16} + 6 q^{22} - 6 q^{25} - 12 q^{29} + 8 q^{31} + 2 q^{32} - 24 q^{35} + 8 q^{37} + 12 q^{41} + 12 q^{44} + 22 q^{49} + 6 q^{50} + 8 q^{55} + 12 q^{58}+ \cdots + 44 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1782\mathbb{Z}\right)^\times\).

\(n\) \(1135\) \(1541\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −1.22474 + 0.707107i −0.547723 + 0.316228i −0.748203 0.663470i \(-0.769083\pi\)
0.200480 + 0.979698i \(0.435750\pi\)
\(6\) 0 0
\(7\) 3.67423 + 2.12132i 1.38873 + 0.801784i 0.993172 0.116657i \(-0.0372179\pi\)
0.395558 + 0.918441i \(0.370551\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 1.41421i 0.447214i
\(11\) −2.72474 + 1.89097i −0.821541 + 0.570149i
\(12\) 0 0
\(13\) 3.67423 2.12132i 1.01905 0.588348i 0.105221 0.994449i \(-0.466445\pi\)
0.913828 + 0.406100i \(0.133112\pi\)
\(14\) 3.67423 2.12132i 0.981981 0.566947i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 1.22474 + 0.707107i 0.273861 + 0.158114i
\(21\) 0 0
\(22\) 0.275255 + 3.30518i 0.0586846 + 0.704667i
\(23\) −1.22474 + 0.707107i −0.255377 + 0.147442i −0.622224 0.782839i \(-0.713771\pi\)
0.366847 + 0.930281i \(0.380437\pi\)
\(24\) 0 0
\(25\) −1.50000 + 2.59808i −0.300000 + 0.519615i
\(26\) 4.24264i 0.832050i
\(27\) 0 0
\(28\) 4.24264i 0.801784i
\(29\) −3.00000 + 5.19615i −0.557086 + 0.964901i 0.440652 + 0.897678i \(0.354747\pi\)
−0.997738 + 0.0672232i \(0.978586\pi\)
\(30\) 0 0
\(31\) 2.00000 + 3.46410i 0.359211 + 0.622171i 0.987829 0.155543i \(-0.0497126\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 0 0
\(35\) −6.00000 −1.01419
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 1.22474 0.707107i 0.193649 0.111803i
\(41\) 3.00000 + 5.19615i 0.468521 + 0.811503i 0.999353 0.0359748i \(-0.0114536\pi\)
−0.530831 + 0.847477i \(0.678120\pi\)
\(42\) 0 0
\(43\) −7.34847 4.24264i −1.12063 0.646997i −0.179069 0.983836i \(-0.557309\pi\)
−0.941562 + 0.336840i \(0.890642\pi\)
\(44\) 3.00000 + 1.41421i 0.452267 + 0.213201i
\(45\) 0 0
\(46\) 1.41421i 0.208514i
\(47\) 8.57321 + 4.94975i 1.25053 + 0.721995i 0.971215 0.238204i \(-0.0765587\pi\)
0.279317 + 0.960199i \(0.409892\pi\)
\(48\) 0 0
\(49\) 5.50000 + 9.52628i 0.785714 + 1.36090i
\(50\) 1.50000 + 2.59808i 0.212132 + 0.367423i
\(51\) 0 0
\(52\) −3.67423 2.12132i −0.509525 0.294174i
\(53\) 7.07107i 0.971286i 0.874157 + 0.485643i \(0.161414\pi\)
−0.874157 + 0.485643i \(0.838586\pi\)
\(54\) 0 0
\(55\) 2.00000 4.24264i 0.269680 0.572078i
\(56\) −3.67423 2.12132i −0.490990 0.283473i
\(57\) 0 0
\(58\) 3.00000 + 5.19615i 0.393919 + 0.682288i
\(59\) 9.79796 5.65685i 1.27559 0.736460i 0.299552 0.954080i \(-0.403163\pi\)
0.976034 + 0.217620i \(0.0698294\pi\)
\(60\) 0 0
\(61\) 3.67423 + 2.12132i 0.470438 + 0.271607i 0.716423 0.697666i \(-0.245778\pi\)
−0.245985 + 0.969274i \(0.579112\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −3.00000 + 5.19615i −0.372104 + 0.644503i
\(66\) 0 0
\(67\) 2.00000 + 3.46410i 0.244339 + 0.423207i 0.961946 0.273241i \(-0.0880957\pi\)
−0.717607 + 0.696449i \(0.754762\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −3.00000 + 5.19615i −0.358569 + 0.621059i
\(71\) 7.07107i 0.839181i 0.907713 + 0.419591i \(0.137826\pi\)
−0.907713 + 0.419591i \(0.862174\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 1.00000 1.73205i 0.116248 0.201347i
\(75\) 0 0
\(76\) 0 0
\(77\) −14.0227 + 1.16781i −1.59804 + 0.133084i
\(78\) 0 0
\(79\) 3.67423 + 2.12132i 0.413384 + 0.238667i 0.692243 0.721665i \(-0.256623\pi\)
−0.278859 + 0.960332i \(0.589956\pi\)
\(80\) 1.41421i 0.158114i
\(81\) 0 0
\(82\) 6.00000 0.662589
\(83\) 6.00000 10.3923i 0.658586 1.14070i −0.322396 0.946605i \(-0.604488\pi\)
0.980982 0.194099i \(-0.0621783\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −7.34847 + 4.24264i −0.792406 + 0.457496i
\(87\) 0 0
\(88\) 2.72474 1.89097i 0.290459 0.201578i
\(89\) 5.65685i 0.599625i −0.953998 0.299813i \(-0.903076\pi\)
0.953998 0.299813i \(-0.0969242\pi\)
\(90\) 0 0
\(91\) 18.0000 1.88691
\(92\) 1.22474 + 0.707107i 0.127688 + 0.0737210i
\(93\) 0 0
\(94\) 8.57321 4.94975i 0.884260 0.510527i
\(95\) 0 0
\(96\) 0 0
\(97\) −4.00000 + 6.92820i −0.406138 + 0.703452i −0.994453 0.105180i \(-0.966458\pi\)
0.588315 + 0.808632i \(0.299792\pi\)
\(98\) 11.0000 1.11117
\(99\) 0 0
\(100\) 3.00000 0.300000
\(101\) −3.00000 + 5.19615i −0.298511 + 0.517036i −0.975796 0.218685i \(-0.929823\pi\)
0.677284 + 0.735721i \(0.263157\pi\)
\(102\) 0 0
\(103\) 2.00000 + 3.46410i 0.197066 + 0.341328i 0.947576 0.319531i \(-0.103525\pi\)
−0.750510 + 0.660859i \(0.770192\pi\)
\(104\) −3.67423 + 2.12132i −0.360288 + 0.208013i
\(105\) 0 0
\(106\) 6.12372 + 3.53553i 0.594789 + 0.343401i
\(107\) −18.0000 −1.74013 −0.870063 0.492941i \(-0.835922\pi\)
−0.870063 + 0.492941i \(0.835922\pi\)
\(108\) 0 0
\(109\) 12.7279i 1.21911i −0.792742 0.609557i \(-0.791347\pi\)
0.792742 0.609557i \(-0.208653\pi\)
\(110\) −2.67423 3.85337i −0.254978 0.367405i
\(111\) 0 0
\(112\) −3.67423 + 2.12132i −0.347183 + 0.200446i
\(113\) 9.79796 5.65685i 0.921714 0.532152i 0.0375328 0.999295i \(-0.488050\pi\)
0.884182 + 0.467143i \(0.154717\pi\)
\(114\) 0 0
\(115\) 1.00000 1.73205i 0.0932505 0.161515i
\(116\) 6.00000 0.557086
\(117\) 0 0
\(118\) 11.3137i 1.04151i
\(119\) 0 0
\(120\) 0 0
\(121\) 3.84847 10.3048i 0.349861 0.936802i
\(122\) 3.67423 2.12132i 0.332650 0.192055i
\(123\) 0 0
\(124\) 2.00000 3.46410i 0.179605 0.311086i
\(125\) 11.3137i 1.01193i
\(126\) 0 0
\(127\) 12.7279i 1.12942i 0.825289 + 0.564710i \(0.191012\pi\)
−0.825289 + 0.564710i \(0.808988\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) 3.00000 + 5.19615i 0.263117 + 0.455733i
\(131\) −6.00000 10.3923i −0.524222 0.907980i −0.999602 0.0281993i \(-0.991023\pi\)
0.475380 0.879781i \(-0.342311\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) 0 0
\(137\) −2.44949 1.41421i −0.209274 0.120824i 0.391700 0.920093i \(-0.371887\pi\)
−0.600974 + 0.799269i \(0.705220\pi\)
\(138\) 0 0
\(139\) 14.6969 8.48528i 1.24658 0.719712i 0.276153 0.961114i \(-0.410940\pi\)
0.970425 + 0.241402i \(0.0776071\pi\)
\(140\) 3.00000 + 5.19615i 0.253546 + 0.439155i
\(141\) 0 0
\(142\) 6.12372 + 3.53553i 0.513892 + 0.296695i
\(143\) −6.00000 + 12.7279i −0.501745 + 1.06436i
\(144\) 0 0
\(145\) 8.48528i 0.704664i
\(146\) 0 0
\(147\) 0 0
\(148\) −1.00000 1.73205i −0.0821995 0.142374i
\(149\) 3.00000 + 5.19615i 0.245770 + 0.425685i 0.962348 0.271821i \(-0.0876260\pi\)
−0.716578 + 0.697507i \(0.754293\pi\)
\(150\) 0 0
\(151\) 3.67423 + 2.12132i 0.299005 + 0.172631i 0.641996 0.766708i \(-0.278107\pi\)
−0.342991 + 0.939339i \(0.611440\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −6.00000 + 12.7279i −0.483494 + 1.02565i
\(155\) −4.89898 2.82843i −0.393496 0.227185i
\(156\) 0 0
\(157\) 11.0000 + 19.0526i 0.877896 + 1.52056i 0.853646 + 0.520854i \(0.174386\pi\)
0.0242497 + 0.999706i \(0.492280\pi\)
\(158\) 3.67423 2.12132i 0.292306 0.168763i
\(159\) 0 0
\(160\) −1.22474 0.707107i −0.0968246 0.0559017i
\(161\) −6.00000 −0.472866
\(162\) 0 0
\(163\) 2.00000 0.156652 0.0783260 0.996928i \(-0.475042\pi\)
0.0783260 + 0.996928i \(0.475042\pi\)
\(164\) 3.00000 5.19615i 0.234261 0.405751i
\(165\) 0 0
\(166\) −6.00000 10.3923i −0.465690 0.806599i
\(167\) −6.00000 10.3923i −0.464294 0.804181i 0.534875 0.844931i \(-0.320359\pi\)
−0.999169 + 0.0407502i \(0.987025\pi\)
\(168\) 0 0
\(169\) 2.50000 4.33013i 0.192308 0.333087i
\(170\) 0 0
\(171\) 0 0
\(172\) 8.48528i 0.646997i
\(173\) −3.00000 + 5.19615i −0.228086 + 0.395056i −0.957241 0.289292i \(-0.906580\pi\)
0.729155 + 0.684349i \(0.239913\pi\)
\(174\) 0 0
\(175\) −11.0227 + 6.36396i −0.833238 + 0.481070i
\(176\) −0.275255 3.30518i −0.0207481 0.249138i
\(177\) 0 0
\(178\) −4.89898 2.82843i −0.367194 0.212000i
\(179\) 5.65685i 0.422813i −0.977398 0.211407i \(-0.932196\pi\)
0.977398 0.211407i \(-0.0678044\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 9.00000 15.5885i 0.667124 1.15549i
\(183\) 0 0
\(184\) 1.22474 0.707107i 0.0902894 0.0521286i
\(185\) −2.44949 + 1.41421i −0.180090 + 0.103975i
\(186\) 0 0
\(187\) 0 0
\(188\) 9.89949i 0.721995i
\(189\) 0 0
\(190\) 0 0
\(191\) 8.57321 + 4.94975i 0.620336 + 0.358151i 0.777000 0.629501i \(-0.216741\pi\)
−0.156664 + 0.987652i \(0.550074\pi\)
\(192\) 0 0
\(193\) −7.34847 + 4.24264i −0.528954 + 0.305392i −0.740591 0.671957i \(-0.765454\pi\)
0.211636 + 0.977349i \(0.432121\pi\)
\(194\) 4.00000 + 6.92820i 0.287183 + 0.497416i
\(195\) 0 0
\(196\) 5.50000 9.52628i 0.392857 0.680449i
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 1.50000 2.59808i 0.106066 0.183712i
\(201\) 0 0
\(202\) 3.00000 + 5.19615i 0.211079 + 0.365600i
\(203\) −22.0454 + 12.7279i −1.54728 + 0.893325i
\(204\) 0 0
\(205\) −7.34847 4.24264i −0.513239 0.296319i
\(206\) 4.00000 0.278693
\(207\) 0 0
\(208\) 4.24264i 0.294174i
\(209\) 0 0
\(210\) 0 0
\(211\) −7.34847 + 4.24264i −0.505889 + 0.292075i −0.731142 0.682225i \(-0.761012\pi\)
0.225253 + 0.974300i \(0.427679\pi\)
\(212\) 6.12372 3.53553i 0.420579 0.242821i
\(213\) 0 0
\(214\) −9.00000 + 15.5885i −0.615227 + 1.06561i
\(215\) 12.0000 0.818393
\(216\) 0 0
\(217\) 16.9706i 1.15204i
\(218\) −11.0227 6.36396i −0.746552 0.431022i
\(219\) 0 0
\(220\) −4.67423 + 0.389270i −0.315137 + 0.0262445i
\(221\) 0 0
\(222\) 0 0
\(223\) −4.00000 + 6.92820i −0.267860 + 0.463947i −0.968309 0.249756i \(-0.919650\pi\)
0.700449 + 0.713702i \(0.252983\pi\)
\(224\) 4.24264i 0.283473i
\(225\) 0 0
\(226\) 11.3137i 0.752577i
\(227\) −3.00000 + 5.19615i −0.199117 + 0.344881i −0.948242 0.317547i \(-0.897141\pi\)
0.749125 + 0.662428i \(0.230474\pi\)
\(228\) 0 0
\(229\) −7.00000 12.1244i −0.462573 0.801200i 0.536515 0.843891i \(-0.319740\pi\)
−0.999088 + 0.0426906i \(0.986407\pi\)
\(230\) −1.00000 1.73205i −0.0659380 0.114208i
\(231\) 0 0
\(232\) 3.00000 5.19615i 0.196960 0.341144i
\(233\) −18.0000 −1.17922 −0.589610 0.807688i \(-0.700718\pi\)
−0.589610 + 0.807688i \(0.700718\pi\)
\(234\) 0 0
\(235\) −14.0000 −0.913259
\(236\) −9.79796 5.65685i −0.637793 0.368230i
\(237\) 0 0
\(238\) 0 0
\(239\) −6.00000 10.3923i −0.388108 0.672222i 0.604087 0.796918i \(-0.293538\pi\)
−0.992195 + 0.124696i \(0.960204\pi\)
\(240\) 0 0
\(241\) −7.34847 4.24264i −0.473357 0.273293i 0.244287 0.969703i \(-0.421446\pi\)
−0.717644 + 0.696410i \(0.754779\pi\)
\(242\) −7.00000 8.48528i −0.449977 0.545455i
\(243\) 0 0
\(244\) 4.24264i 0.271607i
\(245\) −13.4722 7.77817i −0.860707 0.496929i
\(246\) 0 0
\(247\) 0 0
\(248\) −2.00000 3.46410i −0.127000 0.219971i
\(249\) 0 0
\(250\) −9.79796 5.65685i −0.619677 0.357771i
\(251\) 5.65685i 0.357057i −0.983935 0.178529i \(-0.942866\pi\)
0.983935 0.178529i \(-0.0571337\pi\)
\(252\) 0 0
\(253\) 2.00000 4.24264i 0.125739 0.266733i
\(254\) 11.0227 + 6.36396i 0.691626 + 0.399310i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 9.79796 5.65685i 0.611180 0.352865i −0.162247 0.986750i \(-0.551874\pi\)
0.773427 + 0.633885i \(0.218541\pi\)
\(258\) 0 0
\(259\) 7.34847 + 4.24264i 0.456612 + 0.263625i
\(260\) 6.00000 0.372104
\(261\) 0 0
\(262\) −12.0000 −0.741362
\(263\) 6.00000 10.3923i 0.369976 0.640817i −0.619586 0.784929i \(-0.712699\pi\)
0.989561 + 0.144112i \(0.0460326\pi\)
\(264\) 0 0
\(265\) −5.00000 8.66025i −0.307148 0.531995i
\(266\) 0 0
\(267\) 0 0
\(268\) 2.00000 3.46410i 0.122169 0.211604i
\(269\) 7.07107i 0.431131i 0.976489 + 0.215565i \(0.0691594\pi\)
−0.976489 + 0.215565i \(0.930841\pi\)
\(270\) 0 0
\(271\) 12.7279i 0.773166i −0.922255 0.386583i \(-0.873655\pi\)
0.922255 0.386583i \(-0.126345\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −2.44949 + 1.41421i −0.147979 + 0.0854358i
\(275\) −0.825765 9.91555i −0.0497955 0.597930i
\(276\) 0 0
\(277\) −18.3712 10.6066i −1.10382 0.637289i −0.166596 0.986025i \(-0.553278\pi\)
−0.937221 + 0.348736i \(0.886611\pi\)
\(278\) 16.9706i 1.01783i
\(279\) 0 0
\(280\) 6.00000 0.358569
\(281\) 6.00000 10.3923i 0.357930 0.619953i −0.629685 0.776851i \(-0.716816\pi\)
0.987615 + 0.156898i \(0.0501493\pi\)
\(282\) 0 0
\(283\) −7.34847 + 4.24264i −0.436821 + 0.252199i −0.702248 0.711932i \(-0.747820\pi\)
0.265427 + 0.964131i \(0.414487\pi\)
\(284\) 6.12372 3.53553i 0.363376 0.209795i
\(285\) 0 0
\(286\) 8.02270 + 11.5601i 0.474392 + 0.683564i
\(287\) 25.4558i 1.50261i
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) −7.34847 4.24264i −0.431517 0.249136i
\(291\) 0 0
\(292\) 0 0
\(293\) 3.00000 + 5.19615i 0.175262 + 0.303562i 0.940252 0.340480i \(-0.110589\pi\)
−0.764990 + 0.644042i \(0.777256\pi\)
\(294\) 0 0
\(295\) −8.00000 + 13.8564i −0.465778 + 0.806751i
\(296\) −2.00000 −0.116248
\(297\) 0 0
\(298\) 6.00000 0.347571
\(299\) −3.00000 + 5.19615i −0.173494 + 0.300501i
\(300\) 0 0
\(301\) −18.0000 31.1769i −1.03750 1.79701i
\(302\) 3.67423 2.12132i 0.211428 0.122068i
\(303\) 0 0
\(304\) 0 0
\(305\) −6.00000 −0.343559
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 8.02270 + 11.5601i 0.457136 + 0.658699i
\(309\) 0 0
\(310\) −4.89898 + 2.82843i −0.278243 + 0.160644i
\(311\) −23.2702 + 13.4350i −1.31953 + 0.761831i −0.983653 0.180075i \(-0.942366\pi\)
−0.335876 + 0.941906i \(0.609032\pi\)
\(312\) 0 0
\(313\) 5.00000 8.66025i 0.282617 0.489506i −0.689412 0.724370i \(-0.742131\pi\)
0.972028 + 0.234863i \(0.0754642\pi\)
\(314\) 22.0000 1.24153
\(315\) 0 0
\(316\) 4.24264i 0.238667i
\(317\) 8.57321 + 4.94975i 0.481520 + 0.278006i 0.721050 0.692883i \(-0.243660\pi\)
−0.239530 + 0.970889i \(0.576993\pi\)
\(318\) 0 0
\(319\) −1.65153 19.8311i −0.0924680 1.11033i
\(320\) −1.22474 + 0.707107i −0.0684653 + 0.0395285i
\(321\) 0 0
\(322\) −3.00000 + 5.19615i −0.167183 + 0.289570i
\(323\) 0 0
\(324\) 0 0
\(325\) 12.7279i 0.706018i
\(326\) 1.00000 1.73205i 0.0553849 0.0959294i
\(327\) 0 0
\(328\) −3.00000 5.19615i −0.165647 0.286910i
\(329\) 21.0000 + 36.3731i 1.15777 + 2.00531i
\(330\) 0 0
\(331\) 5.00000 8.66025i 0.274825 0.476011i −0.695266 0.718752i \(-0.744713\pi\)
0.970091 + 0.242742i \(0.0780468\pi\)
\(332\) −12.0000 −0.658586
\(333\) 0 0
\(334\) −12.0000 −0.656611
\(335\) −4.89898 2.82843i −0.267660 0.154533i
\(336\) 0 0
\(337\) −29.3939 + 16.9706i −1.60119 + 0.924445i −0.609936 + 0.792451i \(0.708805\pi\)
−0.991250 + 0.131995i \(0.957862\pi\)
\(338\) −2.50000 4.33013i −0.135982 0.235528i
\(339\) 0 0
\(340\) 0 0
\(341\) −12.0000 5.65685i −0.649836 0.306336i
\(342\) 0 0
\(343\) 16.9706i 0.916324i
\(344\) 7.34847 + 4.24264i 0.396203 + 0.228748i
\(345\) 0 0
\(346\) 3.00000 + 5.19615i 0.161281 + 0.279347i
\(347\) −6.00000 10.3923i −0.322097 0.557888i 0.658824 0.752297i \(-0.271054\pi\)
−0.980921 + 0.194409i \(0.937721\pi\)
\(348\) 0 0
\(349\) 25.7196 + 14.8492i 1.37674 + 0.794862i 0.991766 0.128065i \(-0.0408767\pi\)
0.384975 + 0.922927i \(0.374210\pi\)
\(350\) 12.7279i 0.680336i
\(351\) 0 0
\(352\) −3.00000 1.41421i −0.159901 0.0753778i
\(353\) 19.5959 + 11.3137i 1.04299 + 0.602168i 0.920677 0.390324i \(-0.127637\pi\)
0.122308 + 0.992492i \(0.460970\pi\)
\(354\) 0 0
\(355\) −5.00000 8.66025i −0.265372 0.459639i
\(356\) −4.89898 + 2.82843i −0.259645 + 0.149906i
\(357\) 0 0
\(358\) −4.89898 2.82843i −0.258919 0.149487i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 1.00000 1.73205i 0.0525588 0.0910346i
\(363\) 0 0
\(364\) −9.00000 15.5885i −0.471728 0.817057i
\(365\) 0 0
\(366\) 0 0
\(367\) 14.0000 24.2487i 0.730794 1.26577i −0.225750 0.974185i \(-0.572483\pi\)
0.956544 0.291587i \(-0.0941834\pi\)
\(368\) 1.41421i 0.0737210i
\(369\) 0 0
\(370\) 2.82843i 0.147043i
\(371\) −15.0000 + 25.9808i −0.778761 + 1.34885i
\(372\) 0 0
\(373\) 25.7196 14.8492i 1.33171 0.768865i 0.346151 0.938179i \(-0.387489\pi\)
0.985562 + 0.169314i \(0.0541553\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −8.57321 4.94975i −0.442130 0.255264i
\(377\) 25.4558i 1.31104i
\(378\) 0 0
\(379\) 2.00000 0.102733 0.0513665 0.998680i \(-0.483642\pi\)
0.0513665 + 0.998680i \(0.483642\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 8.57321 4.94975i 0.438644 0.253251i
\(383\) −1.22474 + 0.707107i −0.0625815 + 0.0361315i −0.530964 0.847394i \(-0.678170\pi\)
0.468383 + 0.883526i \(0.344837\pi\)
\(384\) 0 0
\(385\) 16.3485 11.3458i 0.833195 0.578236i
\(386\) 8.48528i 0.431889i
\(387\) 0 0
\(388\) 8.00000 0.406138
\(389\) 8.57321 + 4.94975i 0.434679 + 0.250962i 0.701338 0.712829i \(-0.252586\pi\)
−0.266659 + 0.963791i \(0.585920\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −5.50000 9.52628i −0.277792 0.481150i
\(393\) 0 0
\(394\) 9.00000 15.5885i 0.453413 0.785335i
\(395\) −6.00000 −0.301893
\(396\) 0 0
\(397\) −34.0000 −1.70641 −0.853206 0.521575i \(-0.825345\pi\)
−0.853206 + 0.521575i \(0.825345\pi\)
\(398\) −8.00000 + 13.8564i −0.401004 + 0.694559i
\(399\) 0 0
\(400\) −1.50000 2.59808i −0.0750000 0.129904i
\(401\) 31.8434 18.3848i 1.59018 0.918092i 0.596907 0.802310i \(-0.296396\pi\)
0.993275 0.115782i \(-0.0369373\pi\)
\(402\) 0 0
\(403\) 14.6969 + 8.48528i 0.732107 + 0.422682i
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) 25.4558i 1.26335i
\(407\) −5.44949 + 3.78194i −0.270121 + 0.187464i
\(408\) 0 0
\(409\) −7.34847 + 4.24264i −0.363358 + 0.209785i −0.670553 0.741862i \(-0.733943\pi\)
0.307195 + 0.951647i \(0.400610\pi\)
\(410\) −7.34847 + 4.24264i −0.362915 + 0.209529i
\(411\) 0 0
\(412\) 2.00000 3.46410i 0.0985329 0.170664i
\(413\) 48.0000 2.36193
\(414\) 0 0
\(415\) 16.9706i 0.833052i
\(416\) 3.67423 + 2.12132i 0.180144 + 0.104006i
\(417\) 0 0
\(418\) 0 0
\(419\) 9.79796 5.65685i 0.478662 0.276355i −0.241197 0.970476i \(-0.577540\pi\)
0.719859 + 0.694121i \(0.244207\pi\)
\(420\) 0 0
\(421\) 5.00000 8.66025i 0.243685 0.422075i −0.718076 0.695965i \(-0.754977\pi\)
0.961761 + 0.273890i \(0.0883103\pi\)
\(422\) 8.48528i 0.413057i
\(423\) 0 0
\(424\) 7.07107i 0.343401i
\(425\) 0 0
\(426\) 0 0
\(427\) 9.00000 + 15.5885i 0.435541 + 0.754378i
\(428\) 9.00000 + 15.5885i 0.435031 + 0.753497i
\(429\) 0 0
\(430\) 6.00000 10.3923i 0.289346 0.501161i
\(431\) −36.0000 −1.73406 −0.867029 0.498257i \(-0.833974\pi\)
−0.867029 + 0.498257i \(0.833974\pi\)
\(432\) 0 0
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 14.6969 + 8.48528i 0.705476 + 0.407307i
\(435\) 0 0
\(436\) −11.0227 + 6.36396i −0.527892 + 0.304778i
\(437\) 0 0
\(438\) 0 0
\(439\) −18.3712 10.6066i −0.876808 0.506225i −0.00720355 0.999974i \(-0.502293\pi\)
−0.869605 + 0.493749i \(0.835626\pi\)
\(440\) −2.00000 + 4.24264i −0.0953463 + 0.202260i
\(441\) 0 0
\(442\) 0 0
\(443\) −24.4949 14.1421i −1.16379 0.671913i −0.211579 0.977361i \(-0.567861\pi\)
−0.952209 + 0.305448i \(0.901194\pi\)
\(444\) 0 0
\(445\) 4.00000 + 6.92820i 0.189618 + 0.328428i
\(446\) 4.00000 + 6.92820i 0.189405 + 0.328060i
\(447\) 0 0
\(448\) 3.67423 + 2.12132i 0.173591 + 0.100223i
\(449\) 31.1127i 1.46830i −0.678988 0.734150i \(-0.737581\pi\)
0.678988 0.734150i \(-0.262419\pi\)
\(450\) 0 0
\(451\) −18.0000 8.48528i −0.847587 0.399556i
\(452\) −9.79796 5.65685i −0.460857 0.266076i
\(453\) 0 0
\(454\) 3.00000 + 5.19615i 0.140797 + 0.243868i
\(455\) −22.0454 + 12.7279i −1.03350 + 0.596694i
\(456\) 0 0
\(457\) −7.34847 4.24264i −0.343747 0.198462i 0.318181 0.948030i \(-0.396928\pi\)
−0.661928 + 0.749568i \(0.730261\pi\)
\(458\) −14.0000 −0.654177
\(459\) 0 0
\(460\) −2.00000 −0.0932505
\(461\) 15.0000 25.9808i 0.698620 1.21004i −0.270326 0.962769i \(-0.587131\pi\)
0.968945 0.247276i \(-0.0795353\pi\)
\(462\) 0 0
\(463\) −16.0000 27.7128i −0.743583 1.28792i −0.950854 0.309640i \(-0.899791\pi\)
0.207271 0.978284i \(-0.433542\pi\)
\(464\) −3.00000 5.19615i −0.139272 0.241225i
\(465\) 0 0
\(466\) −9.00000 + 15.5885i −0.416917 + 0.722121i
\(467\) 31.1127i 1.43972i −0.694117 0.719862i \(-0.744205\pi\)
0.694117 0.719862i \(-0.255795\pi\)
\(468\) 0 0
\(469\) 16.9706i 0.783628i
\(470\) −7.00000 + 12.1244i −0.322886 + 0.559255i
\(471\) 0 0
\(472\) −9.79796 + 5.65685i −0.450988 + 0.260378i
\(473\) 28.0454 2.33562i 1.28953 0.107392i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) −12.0000 −0.548867
\(479\) 6.00000 10.3923i 0.274147 0.474837i −0.695773 0.718262i \(-0.744938\pi\)
0.969920 + 0.243426i \(0.0782712\pi\)
\(480\) 0 0
\(481\) 7.34847 4.24264i 0.335061 0.193448i
\(482\) −7.34847 + 4.24264i −0.334714 + 0.193247i
\(483\) 0 0
\(484\) −10.8485 + 1.81954i −0.493112 + 0.0827062i
\(485\) 11.3137i 0.513729i
\(486\) 0 0
\(487\) 20.0000 0.906287 0.453143 0.891438i \(-0.350303\pi\)
0.453143 + 0.891438i \(0.350303\pi\)
\(488\) −3.67423 2.12132i −0.166325 0.0960277i
\(489\) 0 0
\(490\) −13.4722 + 7.77817i −0.608612 + 0.351382i
\(491\) 3.00000 + 5.19615i 0.135388 + 0.234499i 0.925746 0.378147i \(-0.123439\pi\)
−0.790358 + 0.612646i \(0.790105\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) −15.0000 + 25.9808i −0.672842 + 1.16540i
\(498\) 0 0
\(499\) −7.00000 12.1244i −0.313363 0.542761i 0.665725 0.746197i \(-0.268122\pi\)
−0.979088 + 0.203436i \(0.934789\pi\)
\(500\) −9.79796 + 5.65685i −0.438178 + 0.252982i
\(501\) 0 0
\(502\) −4.89898 2.82843i −0.218652 0.126239i
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 8.48528i 0.377590i
\(506\) −2.67423 3.85337i −0.118884 0.171303i
\(507\) 0 0
\(508\) 11.0227 6.36396i 0.489053 0.282355i
\(509\) −1.22474 + 0.707107i −0.0542859 + 0.0313420i −0.526897 0.849929i \(-0.676645\pi\)
0.472611 + 0.881271i \(0.343311\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 11.3137i 0.499026i
\(515\) −4.89898 2.82843i −0.215875 0.124635i
\(516\) 0 0
\(517\) −32.7196 + 2.72489i −1.43901 + 0.119840i
\(518\) 7.34847 4.24264i 0.322873 0.186411i
\(519\) 0 0
\(520\) 3.00000 5.19615i 0.131559 0.227866i
\(521\) 19.7990i 0.867409i 0.901055 + 0.433705i \(0.142794\pi\)
−0.901055 + 0.433705i \(0.857206\pi\)
\(522\) 0 0
\(523\) 25.4558i 1.11311i −0.830812 0.556553i \(-0.812124\pi\)
0.830812 0.556553i \(-0.187876\pi\)
\(524\) −6.00000 + 10.3923i −0.262111 + 0.453990i
\(525\) 0 0
\(526\) −6.00000 10.3923i −0.261612 0.453126i
\(527\) 0 0
\(528\) 0 0
\(529\) −10.5000 + 18.1865i −0.456522 + 0.790719i
\(530\) −10.0000 −0.434372
\(531\) 0 0
\(532\) 0 0
\(533\) 22.0454 + 12.7279i 0.954893 + 0.551308i
\(534\) 0 0
\(535\) 22.0454 12.7279i 0.953106 0.550276i
\(536\) −2.00000 3.46410i −0.0863868 0.149626i
\(537\) 0 0
\(538\) 6.12372 + 3.53553i 0.264013 + 0.152428i
\(539\) −33.0000 15.5563i −1.42141 0.670059i
\(540\) 0 0
\(541\) 12.7279i 0.547216i −0.961841 0.273608i \(-0.911783\pi\)
0.961841 0.273608i \(-0.0882171\pi\)
\(542\) −11.0227 6.36396i −0.473466 0.273356i
\(543\) 0 0
\(544\) 0 0
\(545\) 9.00000 + 15.5885i 0.385518 + 0.667736i
\(546\) 0 0
\(547\) −29.3939 16.9706i −1.25679 0.725609i −0.284342 0.958723i \(-0.591775\pi\)
−0.972449 + 0.233114i \(0.925108\pi\)
\(548\) 2.82843i 0.120824i
\(549\) 0 0
\(550\) −9.00000 4.24264i −0.383761 0.180907i
\(551\) 0 0
\(552\) 0 0
\(553\) 9.00000 + 15.5885i 0.382719 + 0.662889i
\(554\) −18.3712 + 10.6066i −0.780516 + 0.450631i
\(555\) 0 0
\(556\) −14.6969 8.48528i −0.623289 0.359856i
\(557\) 18.0000 0.762684 0.381342 0.924434i \(-0.375462\pi\)
0.381342 + 0.924434i \(0.375462\pi\)
\(558\) 0 0
\(559\) −36.0000 −1.52264
\(560\) 3.00000 5.19615i 0.126773 0.219578i
\(561\) 0 0
\(562\) −6.00000 10.3923i −0.253095 0.438373i
\(563\) −15.0000 25.9808i −0.632175 1.09496i −0.987106 0.160066i \(-0.948829\pi\)
0.354932 0.934892i \(-0.384504\pi\)
\(564\) 0 0
\(565\) −8.00000 + 13.8564i −0.336563 + 0.582943i
\(566\) 8.48528i 0.356663i
\(567\) 0 0
\(568\) 7.07107i 0.296695i
\(569\) −12.0000 + 20.7846i −0.503066 + 0.871336i 0.496928 + 0.867792i \(0.334461\pi\)
−0.999994 + 0.00354413i \(0.998872\pi\)
\(570\) 0 0
\(571\) −29.3939 + 16.9706i −1.23010 + 0.710196i −0.967050 0.254587i \(-0.918060\pi\)
−0.263046 + 0.964783i \(0.584727\pi\)
\(572\) 14.0227 1.16781i 0.586319 0.0488285i
\(573\) 0 0
\(574\) 22.0454 + 12.7279i 0.920158 + 0.531253i
\(575\) 4.24264i 0.176930i
\(576\) 0 0
\(577\) 20.0000 0.832611 0.416305 0.909225i \(-0.363325\pi\)
0.416305 + 0.909225i \(0.363325\pi\)
\(578\) −8.50000 + 14.7224i −0.353553 + 0.612372i
\(579\) 0 0
\(580\) −7.34847 + 4.24264i −0.305129 + 0.176166i
\(581\) 44.0908 25.4558i 1.82920 1.05609i
\(582\) 0 0
\(583\) −13.3712 19.2669i −0.553777 0.797952i
\(584\) 0 0
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) −24.4949 14.1421i −1.01101 0.583708i −0.0995246 0.995035i \(-0.531732\pi\)
−0.911488 + 0.411327i \(0.865066\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 8.00000 + 13.8564i 0.329355 + 0.570459i
\(591\) 0 0
\(592\) −1.00000 + 1.73205i −0.0410997 + 0.0711868i
\(593\) 36.0000 1.47834 0.739171 0.673517i \(-0.235217\pi\)
0.739171 + 0.673517i \(0.235217\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 3.00000 5.19615i 0.122885 0.212843i
\(597\) 0 0
\(598\) 3.00000 + 5.19615i 0.122679 + 0.212486i
\(599\) 20.8207 12.0208i 0.850709 0.491157i −0.0101809 0.999948i \(-0.503241\pi\)
0.860890 + 0.508791i \(0.169907\pi\)
\(600\) 0 0
\(601\) −29.3939 16.9706i −1.19900 0.692244i −0.238669 0.971101i \(-0.576711\pi\)
−0.960333 + 0.278857i \(0.910044\pi\)
\(602\) −36.0000 −1.46725
\(603\) 0 0
\(604\) 4.24264i 0.172631i
\(605\) 2.57321 + 15.3421i 0.104616 + 0.623743i
\(606\) 0 0
\(607\) 3.67423 2.12132i 0.149133 0.0861017i −0.423577 0.905860i \(-0.639226\pi\)
0.572709 + 0.819758i \(0.305892\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −3.00000 + 5.19615i −0.121466 + 0.210386i
\(611\) 42.0000 1.69914
\(612\) 0 0
\(613\) 12.7279i 0.514076i −0.966401 0.257038i \(-0.917253\pi\)
0.966401 0.257038i \(-0.0827465\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 14.0227 1.16781i 0.564991 0.0470523i
\(617\) −34.2929 + 19.7990i −1.38058 + 0.797077i −0.992228 0.124434i \(-0.960288\pi\)
−0.388351 + 0.921512i \(0.626955\pi\)
\(618\) 0 0
\(619\) −22.0000 + 38.1051i −0.884255 + 1.53157i −0.0376891 + 0.999290i \(0.512000\pi\)
−0.846566 + 0.532284i \(0.821334\pi\)
\(620\) 5.65685i 0.227185i
\(621\) 0 0
\(622\) 26.8701i 1.07739i
\(623\) 12.0000 20.7846i 0.480770 0.832718i
\(624\) 0 0
\(625\) 0.500000 + 0.866025i 0.0200000 + 0.0346410i
\(626\) −5.00000 8.66025i −0.199840 0.346133i
\(627\) 0 0
\(628\) 11.0000 19.0526i 0.438948 0.760280i
\(629\) 0 0
\(630\) 0 0
\(631\) 20.0000 0.796187 0.398094 0.917345i \(-0.369672\pi\)
0.398094 + 0.917345i \(0.369672\pi\)
\(632\) −3.67423 2.12132i −0.146153 0.0843816i
\(633\) 0 0
\(634\) 8.57321 4.94975i 0.340486 0.196580i
\(635\) −9.00000 15.5885i −0.357154 0.618609i
\(636\) 0 0
\(637\) 40.4166 + 23.3345i 1.60136 + 0.924547i
\(638\) −18.0000 8.48528i −0.712627 0.335936i
\(639\) 0 0
\(640\) 1.41421i 0.0559017i
\(641\) 41.6413 + 24.0416i 1.64473 + 0.949587i 0.979118 + 0.203292i \(0.0651642\pi\)
0.665615 + 0.746295i \(0.268169\pi\)
\(642\) 0 0
\(643\) 2.00000 + 3.46410i 0.0788723 + 0.136611i 0.902764 0.430137i \(-0.141535\pi\)
−0.823891 + 0.566748i \(0.808201\pi\)
\(644\) 3.00000 + 5.19615i 0.118217 + 0.204757i
\(645\) 0 0
\(646\) 0 0
\(647\) 7.07107i 0.277992i 0.990293 + 0.138996i \(0.0443876\pi\)
−0.990293 + 0.138996i \(0.955612\pi\)
\(648\) 0 0
\(649\) −16.0000 + 33.9411i −0.628055 + 1.33231i
\(650\) 11.0227 + 6.36396i 0.432346 + 0.249615i
\(651\) 0 0
\(652\) −1.00000 1.73205i −0.0391630 0.0678323i
\(653\) −23.2702 + 13.4350i −0.910631 + 0.525753i −0.880634 0.473797i \(-0.842883\pi\)
−0.0299972 + 0.999550i \(0.509550\pi\)
\(654\) 0 0
\(655\) 14.6969 + 8.48528i 0.574257 + 0.331547i
\(656\) −6.00000 −0.234261
\(657\) 0 0
\(658\) 42.0000 1.63733
\(659\) 15.0000 25.9808i 0.584317 1.01207i −0.410643 0.911796i \(-0.634696\pi\)
0.994960 0.100271i \(-0.0319709\pi\)
\(660\) 0 0
\(661\) 11.0000 + 19.0526i 0.427850 + 0.741059i 0.996682 0.0813955i \(-0.0259377\pi\)
−0.568831 + 0.822454i \(0.692604\pi\)
\(662\) −5.00000 8.66025i −0.194331 0.336590i
\(663\) 0 0
\(664\) −6.00000 + 10.3923i −0.232845 + 0.403300i
\(665\) 0 0
\(666\) 0 0
\(667\) 8.48528i 0.328551i
\(668\) −6.00000 + 10.3923i −0.232147 + 0.402090i
\(669\) 0 0
\(670\) −4.89898 + 2.82843i −0.189264 + 0.109272i
\(671\) −14.0227 + 1.16781i −0.541340 + 0.0450828i
\(672\) 0 0
\(673\) 36.7423 + 21.2132i 1.41631 + 0.817709i 0.995973 0.0896575i \(-0.0285772\pi\)
0.420341 + 0.907366i \(0.361911\pi\)
\(674\) 33.9411i 1.30736i
\(675\) 0 0
\(676\) −5.00000 −0.192308
\(677\) 15.0000 25.9808i 0.576497 0.998522i −0.419380 0.907811i \(-0.637753\pi\)
0.995877 0.0907112i \(-0.0289140\pi\)
\(678\) 0 0
\(679\) −29.3939 + 16.9706i −1.12803 + 0.651270i
\(680\) 0 0
\(681\) 0 0
\(682\) −10.8990 + 7.56388i −0.417343 + 0.289636i
\(683\) 5.65685i 0.216454i −0.994126 0.108227i \(-0.965483\pi\)
0.994126 0.108227i \(-0.0345173\pi\)
\(684\) 0 0
\(685\) 4.00000 0.152832
\(686\) 14.6969 + 8.48528i 0.561132 + 0.323970i
\(687\) 0 0
\(688\) 7.34847 4.24264i 0.280158 0.161749i
\(689\) 15.0000 + 25.9808i 0.571454 + 0.989788i
\(690\) 0 0
\(691\) 14.0000 24.2487i 0.532585 0.922464i −0.466691 0.884420i \(-0.654554\pi\)
0.999276 0.0380440i \(-0.0121127\pi\)
\(692\) 6.00000 0.228086
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) −12.0000 + 20.7846i −0.455186 + 0.788405i
\(696\) 0 0
\(697\) 0 0
\(698\) 25.7196 14.8492i 0.973503 0.562052i
\(699\) 0 0
\(700\) 11.0227 + 6.36396i 0.416619 + 0.240535i
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −2.72474 + 1.89097i −0.102693 + 0.0712686i
\(705\) 0 0
\(706\) 19.5959 11.3137i 0.737502 0.425797i
\(707\) −22.0454 + 12.7279i −0.829103 + 0.478683i
\(708\) 0 0
\(709\) 5.00000 8.66025i 0.187779 0.325243i −0.756730 0.653727i \(-0.773204\pi\)
0.944509 + 0.328484i \(0.106538\pi\)
\(710\) −10.0000 −0.375293
\(711\) 0 0
\(712\) 5.65685i 0.212000i
\(713\) −4.89898 2.82843i −0.183468 0.105925i
\(714\) 0 0
\(715\) −1.65153 19.8311i −0.0617637 0.741641i
\(716\) −4.89898 + 2.82843i −0.183083 + 0.105703i
\(717\) 0 0
\(718\) 0 0
\(719\) 32.5269i 1.21305i 0.795065 + 0.606525i \(0.207437\pi\)
−0.795065 + 0.606525i \(0.792563\pi\)
\(720\) 0 0
\(721\) 16.9706i 0.632017i
\(722\) 9.50000 16.4545i 0.353553 0.612372i
\(723\) 0 0
\(724\) −1.00000 1.73205i −0.0371647 0.0643712i
\(725\) −9.00000 15.5885i −0.334252 0.578941i
\(726\) 0 0
\(727\) −22.0000 + 38.1051i −0.815935 + 1.41324i 0.0927199 + 0.995692i \(0.470444\pi\)
−0.908655 + 0.417548i \(0.862889\pi\)
\(728\) −18.0000 −0.667124
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 3.67423 2.12132i 0.135711 0.0783528i −0.430607 0.902539i \(-0.641701\pi\)
0.566318 + 0.824187i \(0.308367\pi\)
\(734\) −14.0000 24.2487i −0.516749 0.895036i
\(735\) 0 0
\(736\) −1.22474 0.707107i −0.0451447 0.0260643i
\(737\) −12.0000 5.65685i −0.442026 0.208373i
\(738\) 0 0
\(739\) 25.4558i 0.936408i 0.883620 + 0.468204i \(0.155099\pi\)
−0.883620 + 0.468204i \(0.844901\pi\)
\(740\) 2.44949 + 1.41421i 0.0900450 + 0.0519875i
\(741\) 0 0
\(742\) 15.0000 + 25.9808i 0.550667 + 0.953784i
\(743\) 12.0000 + 20.7846i 0.440237 + 0.762513i 0.997707 0.0676840i \(-0.0215610\pi\)
−0.557470 + 0.830197i \(0.688228\pi\)
\(744\) 0 0
\(745\) −7.34847 4.24264i −0.269227 0.155438i
\(746\) 29.6985i 1.08734i
\(747\) 0 0
\(748\) 0 0
\(749\) −66.1362 38.1838i −2.41656 1.39520i
\(750\) 0 0
\(751\) 20.0000 + 34.6410i 0.729810 + 1.26407i 0.956963 + 0.290209i \(0.0937250\pi\)
−0.227153 + 0.973859i \(0.572942\pi\)
\(752\) −8.57321 + 4.94975i −0.312633 + 0.180499i
\(753\) 0 0
\(754\) 22.0454 + 12.7279i 0.802846 + 0.463524i
\(755\) −6.00000 −0.218362
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 1.00000 1.73205i 0.0363216 0.0629109i
\(759\) 0 0
\(760\) 0 0
\(761\) 12.0000 + 20.7846i 0.435000 + 0.753442i 0.997296 0.0734946i \(-0.0234152\pi\)
−0.562296 + 0.826936i \(0.690082\pi\)
\(762\) 0 0
\(763\) 27.0000 46.7654i 0.977466 1.69302i
\(764\) 9.89949i 0.358151i
\(765\) 0 0
\(766\) 1.41421i 0.0510976i
\(767\) 24.0000 41.5692i 0.866590 1.50098i
\(768\) 0 0
\(769\) 36.7423 21.2132i 1.32496 0.764968i 0.340447 0.940264i \(-0.389422\pi\)
0.984516 + 0.175296i \(0.0560882\pi\)
\(770\) −1.65153 19.8311i −0.0595170 0.714663i
\(771\) 0 0
\(772\) 7.34847 + 4.24264i 0.264477 + 0.152696i
\(773\) 18.3848i 0.661254i −0.943761 0.330627i \(-0.892740\pi\)
0.943761 0.330627i \(-0.107260\pi\)
\(774\) 0 0
\(775\) −12.0000 −0.431053
\(776\) 4.00000 6.92820i 0.143592 0.248708i
\(777\) 0 0
\(778\) 8.57321 4.94975i 0.307365 0.177457i
\(779\) 0 0
\(780\) 0 0
\(781\) −13.3712 19.2669i −0.478458 0.689422i
\(782\) 0 0
\(783\) 0 0
\(784\) −11.0000 −0.392857
\(785\) −26.9444 15.5563i −0.961686 0.555230i
\(786\) 0 0
\(787\) 36.7423 21.2132i 1.30972 0.756169i 0.327673 0.944791i \(-0.393735\pi\)
0.982050 + 0.188622i \(0.0604021\pi\)
\(788\) −9.00000 15.5885i −0.320612 0.555316i
\(789\) 0 0
\(790\) −3.00000 + 5.19615i −0.106735 + 0.184871i
\(791\) 48.0000 1.70668
\(792\) 0 0
\(793\) 18.0000 0.639199
\(794\) −17.0000 + 29.4449i −0.603307 + 1.04496i
\(795\) 0 0
\(796\) 8.00000 + 13.8564i 0.283552 + 0.491127i
\(797\) −1.22474 + 0.707107i −0.0433827 + 0.0250470i −0.521534 0.853230i \(-0.674640\pi\)
0.478152 + 0.878277i \(0.341307\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −3.00000 −0.106066
\(801\) 0 0
\(802\) 36.7696i 1.29838i
\(803\) 0 0
\(804\) 0 0
\(805\) 7.34847 4.24264i 0.259000 0.149533i
\(806\) 14.6969 8.48528i 0.517678 0.298881i
\(807\) 0 0
\(808\) 3.00000 5.19615i 0.105540 0.182800i
\(809\) 54.0000 1.89854 0.949269 0.314464i \(-0.101825\pi\)
0.949269 + 0.314464i \(0.101825\pi\)
\(810\) 0 0
\(811\) 25.4558i 0.893876i −0.894565 0.446938i \(-0.852515\pi\)
0.894565 0.446938i \(-0.147485\pi\)
\(812\) 22.0454 + 12.7279i 0.773642 + 0.446663i
\(813\) 0 0
\(814\) 0.550510 + 6.61037i 0.0192954 + 0.231693i
\(815\) −2.44949 + 1.41421i −0.0858019 + 0.0495377i
\(816\) 0 0
\(817\) 0 0
\(818\) 8.48528i 0.296681i
\(819\) 0 0
\(820\) 8.48528i 0.296319i
\(821\) 15.0000 25.9808i 0.523504 0.906735i −0.476122 0.879379i \(-0.657958\pi\)
0.999626 0.0273557i \(-0.00870868\pi\)
\(822\) 0 0
\(823\) 20.0000 + 34.6410i 0.697156 + 1.20751i 0.969448 + 0.245295i \(0.0788849\pi\)
−0.272292 + 0.962215i \(0.587782\pi\)
\(824\) −2.00000 3.46410i −0.0696733 0.120678i
\(825\) 0 0
\(826\) 24.0000 41.5692i 0.835067 1.44638i
\(827\) −36.0000 −1.25184 −0.625921 0.779886i \(-0.715277\pi\)
−0.625921 + 0.779886i \(0.715277\pi\)
\(828\) 0 0
\(829\) 2.00000 0.0694629 0.0347314 0.999397i \(-0.488942\pi\)
0.0347314 + 0.999397i \(0.488942\pi\)
\(830\) 14.6969 + 8.48528i 0.510138 + 0.294528i
\(831\) 0 0
\(832\) 3.67423 2.12132i 0.127381 0.0735436i
\(833\) 0 0
\(834\) 0 0
\(835\) 14.6969 + 8.48528i 0.508609 + 0.293645i
\(836\) 0 0
\(837\) 0 0
\(838\) 11.3137i 0.390826i
\(839\) −13.4722 7.77817i −0.465112 0.268532i 0.249079 0.968483i \(-0.419872\pi\)
−0.714191 + 0.699951i \(0.753205\pi\)
\(840\) 0 0
\(841\) −3.50000 6.06218i −0.120690 0.209041i
\(842\) −5.00000 8.66025i −0.172311 0.298452i
\(843\) 0 0
\(844\) 7.34847 + 4.24264i 0.252945 + 0.146038i
\(845\) 7.07107i 0.243252i
\(846\) 0 0
\(847\) 36.0000 29.6985i 1.23697 1.02045i
\(848\) −6.12372 3.53553i −0.210290 0.121411i
\(849\) 0 0
\(850\) 0 0
\(851\) −2.44949 + 1.41421i −0.0839674 + 0.0484786i
\(852\) 0 0
\(853\) −18.3712 10.6066i −0.629017 0.363163i 0.151354 0.988480i \(-0.451637\pi\)
−0.780371 + 0.625316i \(0.784970\pi\)
\(854\) 18.0000 0.615947
\(855\) 0 0
\(856\) 18.0000 0.615227
\(857\) −3.00000 + 5.19615i −0.102478 + 0.177497i −0.912705 0.408619i \(-0.866010\pi\)
0.810227 + 0.586116i \(0.199344\pi\)
\(858\) 0 0
\(859\) 11.0000 + 19.0526i 0.375315 + 0.650065i 0.990374 0.138416i \(-0.0442012\pi\)
−0.615059 + 0.788481i \(0.710868\pi\)
\(860\) −6.00000 10.3923i −0.204598 0.354375i
\(861\) 0 0
\(862\) −18.0000 + 31.1769i −0.613082 + 1.06189i
\(863\) 7.07107i 0.240702i 0.992731 + 0.120351i \(0.0384020\pi\)
−0.992731 + 0.120351i \(0.961598\pi\)
\(864\) 0 0
\(865\) 8.48528i 0.288508i
\(866\) 1.00000 1.73205i 0.0339814 0.0588575i
\(867\) 0 0
\(868\) 14.6969 8.48528i 0.498847 0.288009i
\(869\) −14.0227 + 1.16781i −0.475688 + 0.0396152i
\(870\) 0 0
\(871\) 14.6969 + 8.48528i 0.497987 + 0.287513i
\(872\) 12.7279i 0.431022i
\(873\) 0 0
\(874\) 0 0
\(875\) 24.0000 41.5692i 0.811348 1.40530i
\(876\) 0 0
\(877\) 25.7196 14.8492i 0.868491 0.501423i 0.00164425 0.999999i \(-0.499477\pi\)
0.866846 + 0.498575i \(0.166143\pi\)
\(878\) −18.3712 + 10.6066i −0.619997 + 0.357955i
\(879\) 0 0
\(880\) 2.67423 + 3.85337i 0.0901484 + 0.129897i
\(881\) 5.65685i 0.190584i −0.995449 0.0952921i \(-0.969621\pi\)
0.995449 0.0952921i \(-0.0303785\pi\)
\(882\) 0 0
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −24.4949 + 14.1421i −0.822922 + 0.475114i
\(887\) −24.0000 41.5692i −0.805841 1.39576i −0.915722 0.401813i \(-0.868380\pi\)
0.109881 0.993945i \(-0.464953\pi\)
\(888\) 0 0
\(889\) −27.0000 + 46.7654i −0.905551 + 1.56846i
\(890\) 8.00000 0.268161
\(891\) 0 0
\(892\) 8.00000 0.267860
\(893\) 0 0
\(894\) 0 0
\(895\) 4.00000 + 6.92820i 0.133705 + 0.231584i
\(896\) 3.67423 2.12132i 0.122748 0.0708683i
\(897\) 0 0
\(898\) −26.9444 15.5563i −0.899146 0.519122i
\(899\) −24.0000 −0.800445
\(900\) 0 0
\(901\) 0 0
\(902\) −16.3485 + 11.3458i −0.544344 + 0.377774i
\(903\) 0 0
\(904\) −9.79796 + 5.65685i −0.325875 + 0.188144i
\(905\) −2.44949 + 1.41421i −0.0814238 + 0.0470100i
\(906\) 0 0
\(907\) −22.0000 + 38.1051i −0.730498 + 1.26526i 0.226173 + 0.974087i \(0.427379\pi\)
−0.956671 + 0.291172i \(0.905955\pi\)
\(908\) 6.00000 0.199117
\(909\) 0 0
\(910\) 25.4558i 0.843853i
\(911\) 8.57321 + 4.94975i 0.284043 + 0.163992i 0.635252 0.772305i \(-0.280896\pi\)
−0.351209 + 0.936297i \(0.614229\pi\)
\(912\) 0 0
\(913\) 3.30306 + 39.6622i 0.109315 + 1.31263i
\(914\) −7.34847 + 4.24264i −0.243066 + 0.140334i
\(915\) 0 0
\(916\) −7.00000 + 12.1244i −0.231287 + 0.400600i
\(917\) 50.9117i 1.68125i
\(918\) 0 0
\(919\) 38.1838i 1.25957i −0.776771 0.629783i \(-0.783144\pi\)
0.776771 0.629783i \(-0.216856\pi\)
\(920\) −1.00000 + 1.73205i −0.0329690 + 0.0571040i
\(921\) 0 0
\(922\) −15.0000 25.9808i −0.493999 0.855631i
\(923\) 15.0000 + 25.9808i 0.493731 + 0.855167i
\(924\) 0 0
\(925\) −3.00000 + 5.19615i −0.0986394 + 0.170848i
\(926\) −32.0000 −1.05159
\(927\) 0 0
\(928\) −6.00000 −0.196960
\(929\) −2.44949 1.41421i −0.0803652 0.0463988i 0.459279 0.888292i \(-0.348108\pi\)
−0.539644 + 0.841893i \(0.681441\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 9.00000 + 15.5885i 0.294805 + 0.510617i
\(933\) 0 0
\(934\) −26.9444 15.5563i −0.881647 0.509019i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 14.6969 + 8.48528i 0.479872 + 0.277054i
\(939\) 0 0
\(940\) 7.00000 + 12.1244i 0.228315 + 0.395453i
\(941\) 21.0000 + 36.3731i 0.684580 + 1.18573i 0.973568 + 0.228395i \(0.0733479\pi\)
−0.288988 + 0.957333i \(0.593319\pi\)
\(942\) 0 0
\(943\) −7.34847 4.24264i −0.239299 0.138159i
\(944\) 11.3137i 0.368230i
\(945\) 0 0
\(946\) 12.0000 25.4558i 0.390154 0.827641i
\(947\) 41.6413 + 24.0416i 1.35316 + 0.781248i 0.988691 0.149967i \(-0.0479167\pi\)
0.364470 + 0.931215i \(0.381250\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 54.0000 1.74923 0.874616 0.484817i \(-0.161114\pi\)
0.874616 + 0.484817i \(0.161114\pi\)
\(954\) 0 0
\(955\) −14.0000 −0.453029
\(956\) −6.00000 + 10.3923i −0.194054 + 0.336111i
\(957\) 0 0
\(958\) −6.00000 10.3923i −0.193851 0.335760i
\(959\) −6.00000 10.3923i −0.193750 0.335585i
\(960\) 0 0
\(961\) 7.50000 12.9904i 0.241935 0.419045i
\(962\) 8.48528i 0.273576i
\(963\) 0 0
\(964\) 8.48528i 0.273293i
\(965\) 6.00000 10.3923i 0.193147 0.334540i
\(966\) 0 0
\(967\) 3.67423 2.12132i 0.118155 0.0682171i −0.439758 0.898117i \(-0.644936\pi\)
0.557913 + 0.829899i \(0.311602\pi\)
\(968\) −3.84847 + 10.3048i −0.123694 + 0.331209i
\(969\) 0 0
\(970\) −9.79796 5.65685i −0.314594 0.181631i
\(971\) 45.2548i 1.45230i 0.687538 + 0.726148i \(0.258691\pi\)
−0.687538 + 0.726148i \(0.741309\pi\)
\(972\) 0 0
\(973\) 72.0000 2.30821
\(974\) 10.0000 17.3205i 0.320421 0.554985i
\(975\) 0 0
\(976\) −3.67423 + 2.12132i −0.117609 + 0.0679018i
\(977\) −12.2474 + 7.07107i −0.391831 + 0.226224i −0.682953 0.730462i \(-0.739305\pi\)
0.291122 + 0.956686i \(0.405971\pi\)
\(978\) 0 0
\(979\) 10.6969 + 15.4135i 0.341876 + 0.492617i
\(980\) 15.5563i 0.496929i
\(981\) 0 0
\(982\) 6.00000 0.191468
\(983\) 8.57321 + 4.94975i 0.273443 + 0.157872i 0.630451 0.776229i \(-0.282870\pi\)
−0.357008 + 0.934101i \(0.616203\pi\)
\(984\) 0 0
\(985\) −22.0454 + 12.7279i −0.702425 + 0.405545i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 12.0000 0.381578
\(990\) 0 0
\(991\) 20.0000 0.635321 0.317660 0.948205i \(-0.397103\pi\)
0.317660 + 0.948205i \(0.397103\pi\)
\(992\) −2.00000 + 3.46410i −0.0635001 + 0.109985i
\(993\) 0 0
\(994\) 15.0000 + 25.9808i 0.475771 + 0.824060i
\(995\) 19.5959 11.3137i 0.621232 0.358669i
\(996\) 0 0
\(997\) 25.7196 + 14.8492i 0.814549 + 0.470280i 0.848533 0.529142i \(-0.177486\pi\)
−0.0339839 + 0.999422i \(0.510820\pi\)
\(998\) −14.0000 −0.443162
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1782.2.i.f.593.1 4
3.2 odd 2 1782.2.i.c.593.2 4
9.2 odd 6 66.2.b.b.65.2 yes 2
9.4 even 3 inner 1782.2.i.f.1187.2 4
9.5 odd 6 1782.2.i.c.1187.1 4
9.7 even 3 66.2.b.a.65.1 2
11.10 odd 2 1782.2.i.c.593.1 4
33.32 even 2 inner 1782.2.i.f.593.2 4
36.7 odd 6 528.2.b.b.65.2 2
36.11 even 6 528.2.b.c.65.1 2
45.2 even 12 1650.2.f.a.1649.4 4
45.7 odd 12 1650.2.f.b.1649.1 4
45.29 odd 6 1650.2.d.a.1451.1 2
45.34 even 6 1650.2.d.b.1451.2 2
45.38 even 12 1650.2.f.a.1649.1 4
45.43 odd 12 1650.2.f.b.1649.4 4
72.11 even 6 2112.2.b.b.65.2 2
72.29 odd 6 2112.2.b.i.65.1 2
72.43 odd 6 2112.2.b.d.65.1 2
72.61 even 6 2112.2.b.g.65.2 2
99.2 even 30 726.2.h.i.161.2 8
99.7 odd 30 726.2.h.e.215.1 8
99.16 even 15 726.2.h.i.239.2 8
99.20 odd 30 726.2.h.e.161.2 8
99.25 even 15 726.2.h.i.233.2 8
99.29 even 30 726.2.h.i.215.2 8
99.32 even 6 inner 1782.2.i.f.1187.1 4
99.38 odd 30 726.2.h.e.239.1 8
99.43 odd 6 66.2.b.b.65.1 yes 2
99.47 odd 30 726.2.h.e.233.1 8
99.52 odd 30 726.2.h.e.233.2 8
99.61 odd 30 726.2.h.e.239.2 8
99.65 even 6 66.2.b.a.65.2 yes 2
99.70 even 15 726.2.h.i.215.1 8
99.74 even 30 726.2.h.i.233.1 8
99.76 odd 6 1782.2.i.c.1187.2 4
99.79 odd 30 726.2.h.e.161.1 8
99.83 even 30 726.2.h.i.239.1 8
99.92 odd 30 726.2.h.e.215.2 8
99.97 even 15 726.2.h.i.161.1 8
396.43 even 6 528.2.b.c.65.2 2
396.263 odd 6 528.2.b.b.65.1 2
495.43 even 12 1650.2.f.a.1649.2 4
495.142 even 12 1650.2.f.a.1649.3 4
495.164 even 6 1650.2.d.b.1451.1 2
495.263 odd 12 1650.2.f.b.1649.3 4
495.362 odd 12 1650.2.f.b.1649.2 4
495.439 odd 6 1650.2.d.a.1451.2 2
792.43 even 6 2112.2.b.b.65.1 2
792.461 even 6 2112.2.b.g.65.1 2
792.637 odd 6 2112.2.b.i.65.2 2
792.659 odd 6 2112.2.b.d.65.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
66.2.b.a.65.1 2 9.7 even 3
66.2.b.a.65.2 yes 2 99.65 even 6
66.2.b.b.65.1 yes 2 99.43 odd 6
66.2.b.b.65.2 yes 2 9.2 odd 6
528.2.b.b.65.1 2 396.263 odd 6
528.2.b.b.65.2 2 36.7 odd 6
528.2.b.c.65.1 2 36.11 even 6
528.2.b.c.65.2 2 396.43 even 6
726.2.h.e.161.1 8 99.79 odd 30
726.2.h.e.161.2 8 99.20 odd 30
726.2.h.e.215.1 8 99.7 odd 30
726.2.h.e.215.2 8 99.92 odd 30
726.2.h.e.233.1 8 99.47 odd 30
726.2.h.e.233.2 8 99.52 odd 30
726.2.h.e.239.1 8 99.38 odd 30
726.2.h.e.239.2 8 99.61 odd 30
726.2.h.i.161.1 8 99.97 even 15
726.2.h.i.161.2 8 99.2 even 30
726.2.h.i.215.1 8 99.70 even 15
726.2.h.i.215.2 8 99.29 even 30
726.2.h.i.233.1 8 99.74 even 30
726.2.h.i.233.2 8 99.25 even 15
726.2.h.i.239.1 8 99.83 even 30
726.2.h.i.239.2 8 99.16 even 15
1650.2.d.a.1451.1 2 45.29 odd 6
1650.2.d.a.1451.2 2 495.439 odd 6
1650.2.d.b.1451.1 2 495.164 even 6
1650.2.d.b.1451.2 2 45.34 even 6
1650.2.f.a.1649.1 4 45.38 even 12
1650.2.f.a.1649.2 4 495.43 even 12
1650.2.f.a.1649.3 4 495.142 even 12
1650.2.f.a.1649.4 4 45.2 even 12
1650.2.f.b.1649.1 4 45.7 odd 12
1650.2.f.b.1649.2 4 495.362 odd 12
1650.2.f.b.1649.3 4 495.263 odd 12
1650.2.f.b.1649.4 4 45.43 odd 12
1782.2.i.c.593.1 4 11.10 odd 2
1782.2.i.c.593.2 4 3.2 odd 2
1782.2.i.c.1187.1 4 9.5 odd 6
1782.2.i.c.1187.2 4 99.76 odd 6
1782.2.i.f.593.1 4 1.1 even 1 trivial
1782.2.i.f.593.2 4 33.32 even 2 inner
1782.2.i.f.1187.1 4 99.32 even 6 inner
1782.2.i.f.1187.2 4 9.4 even 3 inner
2112.2.b.b.65.1 2 792.43 even 6
2112.2.b.b.65.2 2 72.11 even 6
2112.2.b.d.65.1 2 72.43 odd 6
2112.2.b.d.65.2 2 792.659 odd 6
2112.2.b.g.65.1 2 792.461 even 6
2112.2.b.g.65.2 2 72.61 even 6
2112.2.b.i.65.1 2 72.29 odd 6
2112.2.b.i.65.2 2 792.637 odd 6