Properties

Label 726.2.h.e.239.1
Level $726$
Weight $2$
Character 726.239
Analytic conductor $5.797$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [726,2,Mod(161,726)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(726, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("726.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 726 = 2 \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 726.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-2,2,-2,0,2,0,-2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.79713918674\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: 8.0.64000000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{6} + 4x^{4} - 8x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 66)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 239.1
Root \(0.831254 + 1.14412i\) of defining polynomial
Character \(\chi\) \(=\) 726.239
Dual form 726.2.h.e.161.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 + 0.587785i) q^{2} +(-1.65401 - 0.514040i) q^{3} +(0.309017 - 0.951057i) q^{4} +(0.831254 - 1.14412i) q^{5} +(1.64027 - 0.556338i) q^{6} +(-4.03499 - 1.31105i) q^{7} +(0.309017 + 0.951057i) q^{8} +(2.47152 + 1.70046i) q^{9} +1.41421i q^{10} +(-1.00000 + 1.41421i) q^{12} +(-2.49376 - 3.43237i) q^{13} +(4.03499 - 1.31105i) q^{14} +(-1.96303 + 1.46510i) q^{15} +(-0.809017 - 0.587785i) q^{16} +(-2.99901 + 0.0770245i) q^{18} +(-0.831254 - 1.14412i) q^{20} +(6.00000 + 4.24264i) q^{21} +1.41421i q^{23} +(-0.0222369 - 1.73191i) q^{24} +(0.927051 + 2.85317i) q^{25} +(4.03499 + 1.31105i) q^{26} +(-3.21383 - 4.08305i) q^{27} +(-2.49376 + 3.43237i) q^{28} +(-1.85410 + 5.70634i) q^{29} +(0.726963 - 2.33913i) q^{30} +(3.23607 - 2.35114i) q^{31} +1.00000 q^{32} +(-4.85410 + 3.52671i) q^{35} +(2.38098 - 1.82509i) q^{36} +(0.618034 - 1.90211i) q^{37} +(2.36034 + 6.95908i) q^{39} +(1.34500 + 0.437016i) q^{40} +(1.85410 + 5.70634i) q^{41} +(-7.34786 + 0.0943431i) q^{42} +8.48528i q^{43} +(4.00000 - 1.41421i) q^{45} +(-0.831254 - 1.14412i) q^{46} +(-9.41498 + 3.05911i) q^{47} +(1.03598 + 1.38807i) q^{48} +(8.89919 + 6.46564i) q^{49} +(-2.42705 - 1.76336i) q^{50} +(-4.03499 + 1.31105i) q^{52} +(4.15627 + 5.72061i) q^{53} +(5.00000 + 1.41421i) q^{54} -4.24264i q^{56} +(-1.85410 - 5.70634i) q^{58} +(-10.7600 - 3.49613i) q^{59} +(0.786780 + 2.31969i) q^{60} +(-2.49376 + 3.43237i) q^{61} +(-1.23607 + 3.80423i) q^{62} +(-7.74320 - 10.1016i) q^{63} +(-0.809017 + 0.587785i) q^{64} -6.00000 q^{65} -4.00000 q^{67} +(0.726963 - 2.33913i) q^{69} +(1.85410 - 5.70634i) q^{70} +(-4.15627 + 5.72061i) q^{71} +(-0.853491 + 2.87603i) q^{72} +(0.618034 + 1.90211i) q^{74} +(-0.0667106 - 5.19572i) q^{75} +(-6.00000 - 4.24264i) q^{78} +(2.49376 + 3.43237i) q^{79} +(-1.34500 + 0.437016i) q^{80} +(3.21687 + 8.40546i) q^{81} +(-4.85410 - 3.52671i) q^{82} +(-9.70820 - 7.05342i) q^{83} +(5.88909 - 4.39529i) q^{84} +(-4.98752 - 6.86474i) q^{86} +(6.00000 - 8.48528i) q^{87} +5.65685i q^{89} +(-2.40481 + 3.49526i) q^{90} +(5.56231 + 17.1190i) q^{91} +(1.34500 + 0.437016i) q^{92} +(-6.56108 + 2.22535i) q^{93} +(5.81878 - 8.00886i) q^{94} +(-1.65401 - 0.514040i) q^{96} +(-6.47214 + 4.70228i) q^{97} -11.0000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 2 q^{3} - 2 q^{4} + 2 q^{6} - 2 q^{8} + 2 q^{9} - 8 q^{12} + 4 q^{15} - 2 q^{16} + 2 q^{18} + 48 q^{21} + 2 q^{24} - 6 q^{25} - 10 q^{27} + 12 q^{29} + 4 q^{30} + 8 q^{31} + 8 q^{32} - 12 q^{35}+ \cdots - 88 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/726\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(607\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 + 0.587785i −0.572061 + 0.415627i
\(3\) −1.65401 0.514040i −0.954945 0.296781i
\(4\) 0.309017 0.951057i 0.154508 0.475528i
\(5\) 0.831254 1.14412i 0.371748 0.511667i −0.581627 0.813456i \(-0.697584\pi\)
0.953375 + 0.301788i \(0.0975836\pi\)
\(6\) 1.64027 0.556338i 0.669638 0.227124i
\(7\) −4.03499 1.31105i −1.52508 0.495530i −0.577869 0.816130i \(-0.696115\pi\)
−0.947215 + 0.320600i \(0.896115\pi\)
\(8\) 0.309017 + 0.951057i 0.109254 + 0.336249i
\(9\) 2.47152 + 1.70046i 0.823842 + 0.566820i
\(10\) 1.41421i 0.447214i
\(11\) 0 0
\(12\) −1.00000 + 1.41421i −0.288675 + 0.408248i
\(13\) −2.49376 3.43237i −0.691645 0.951968i −1.00000 0.000696272i \(-0.999778\pi\)
0.308355 0.951271i \(-0.400222\pi\)
\(14\) 4.03499 1.31105i 1.07840 0.350392i
\(15\) −1.96303 + 1.46510i −0.506852 + 0.378286i
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(18\) −2.99901 + 0.0770245i −0.706874 + 0.0181548i
\(19\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(20\) −0.831254 1.14412i −0.185874 0.255834i
\(21\) 6.00000 + 4.24264i 1.30931 + 0.925820i
\(22\) 0 0
\(23\) 1.41421i 0.294884i 0.989071 + 0.147442i \(0.0471040\pi\)
−0.989071 + 0.147442i \(0.952896\pi\)
\(24\) −0.0222369 1.73191i −0.00453908 0.353524i
\(25\) 0.927051 + 2.85317i 0.185410 + 0.570634i
\(26\) 4.03499 + 1.31105i 0.791327 + 0.257118i
\(27\) −3.21383 4.08305i −0.618502 0.785783i
\(28\) −2.49376 + 3.43237i −0.471277 + 0.648657i
\(29\) −1.85410 + 5.70634i −0.344298 + 1.05964i 0.617660 + 0.786445i \(0.288081\pi\)
−0.961958 + 0.273196i \(0.911919\pi\)
\(30\) 0.726963 2.33913i 0.132725 0.427065i
\(31\) 3.23607 2.35114i 0.581215 0.422277i −0.257947 0.966159i \(-0.583046\pi\)
0.839162 + 0.543882i \(0.183046\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 0 0
\(35\) −4.85410 + 3.52671i −0.820493 + 0.596123i
\(36\) 2.38098 1.82509i 0.396830 0.304181i
\(37\) 0.618034 1.90211i 0.101604 0.312705i −0.887314 0.461165i \(-0.847432\pi\)
0.988918 + 0.148460i \(0.0474315\pi\)
\(38\) 0 0
\(39\) 2.36034 + 6.95908i 0.377957 + 1.11434i
\(40\) 1.34500 + 0.437016i 0.212663 + 0.0690983i
\(41\) 1.85410 + 5.70634i 0.289562 + 0.891180i 0.984994 + 0.172588i \(0.0552131\pi\)
−0.695432 + 0.718592i \(0.744787\pi\)
\(42\) −7.34786 + 0.0943431i −1.13380 + 0.0145575i
\(43\) 8.48528i 1.29399i 0.762493 + 0.646997i \(0.223975\pi\)
−0.762493 + 0.646997i \(0.776025\pi\)
\(44\) 0 0
\(45\) 4.00000 1.41421i 0.596285 0.210819i
\(46\) −0.831254 1.14412i −0.122562 0.168692i
\(47\) −9.41498 + 3.05911i −1.37332 + 0.446217i −0.900466 0.434926i \(-0.856775\pi\)
−0.472850 + 0.881143i \(0.656775\pi\)
\(48\) 1.03598 + 1.38807i 0.149531 + 0.200351i
\(49\) 8.89919 + 6.46564i 1.27131 + 0.923663i
\(50\) −2.42705 1.76336i −0.343237 0.249376i
\(51\) 0 0
\(52\) −4.03499 + 1.31105i −0.559553 + 0.181810i
\(53\) 4.15627 + 5.72061i 0.570908 + 0.785787i 0.992662 0.120923i \(-0.0385855\pi\)
−0.421754 + 0.906710i \(0.638586\pi\)
\(54\) 5.00000 + 1.41421i 0.680414 + 0.192450i
\(55\) 0 0
\(56\) 4.24264i 0.566947i
\(57\) 0 0
\(58\) −1.85410 5.70634i −0.243456 0.749279i
\(59\) −10.7600 3.49613i −1.40083 0.455157i −0.491371 0.870951i \(-0.663504\pi\)
−0.909459 + 0.415794i \(0.863504\pi\)
\(60\) 0.786780 + 2.31969i 0.101573 + 0.299471i
\(61\) −2.49376 + 3.43237i −0.319293 + 0.439470i −0.938251 0.345954i \(-0.887555\pi\)
0.618958 + 0.785424i \(0.287555\pi\)
\(62\) −1.23607 + 3.80423i −0.156981 + 0.483137i
\(63\) −7.74320 10.1016i −0.975551 1.27269i
\(64\) −0.809017 + 0.587785i −0.101127 + 0.0734732i
\(65\) −6.00000 −0.744208
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 0 0
\(69\) 0.726963 2.33913i 0.0875161 0.281598i
\(70\) 1.85410 5.70634i 0.221608 0.682038i
\(71\) −4.15627 + 5.72061i −0.493258 + 0.678912i −0.980985 0.194085i \(-0.937826\pi\)
0.487726 + 0.872997i \(0.337826\pi\)
\(72\) −0.853491 + 2.87603i −0.100585 + 0.338943i
\(73\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(74\) 0.618034 + 1.90211i 0.0718450 + 0.221116i
\(75\) −0.0667106 5.19572i −0.00770308 0.599951i
\(76\) 0 0
\(77\) 0 0
\(78\) −6.00000 4.24264i −0.679366 0.480384i
\(79\) 2.49376 + 3.43237i 0.280570 + 0.386172i 0.925923 0.377713i \(-0.123290\pi\)
−0.645353 + 0.763885i \(0.723290\pi\)
\(80\) −1.34500 + 0.437016i −0.150375 + 0.0488599i
\(81\) 3.21687 + 8.40546i 0.357430 + 0.933940i
\(82\) −4.85410 3.52671i −0.536046 0.389460i
\(83\) −9.70820 7.05342i −1.06561 0.774214i −0.0904951 0.995897i \(-0.528845\pi\)
−0.975119 + 0.221683i \(0.928845\pi\)
\(84\) 5.88909 4.39529i 0.642553 0.479566i
\(85\) 0 0
\(86\) −4.98752 6.86474i −0.537818 0.740244i
\(87\) 6.00000 8.48528i 0.643268 0.909718i
\(88\) 0 0
\(89\) 5.65685i 0.599625i 0.953998 + 0.299813i \(0.0969242\pi\)
−0.953998 + 0.299813i \(0.903076\pi\)
\(90\) −2.40481 + 3.49526i −0.253490 + 0.368433i
\(91\) 5.56231 + 17.1190i 0.583088 + 1.79456i
\(92\) 1.34500 + 0.437016i 0.140226 + 0.0455621i
\(93\) −6.56108 + 2.22535i −0.680353 + 0.230758i
\(94\) 5.81878 8.00886i 0.600161 0.826051i
\(95\) 0 0
\(96\) −1.65401 0.514040i −0.168812 0.0524640i
\(97\) −6.47214 + 4.70228i −0.657146 + 0.477444i −0.865698 0.500567i \(-0.833125\pi\)
0.208552 + 0.978011i \(0.433125\pi\)
\(98\) −11.0000 −1.11117
\(99\) 0 0
\(100\) 3.00000 0.300000
\(101\) 4.85410 3.52671i 0.483001 0.350921i −0.319485 0.947591i \(-0.603510\pi\)
0.802486 + 0.596670i \(0.203510\pi\)
\(102\) 0 0
\(103\) −1.23607 + 3.80423i −0.121793 + 0.374842i −0.993303 0.115536i \(-0.963141\pi\)
0.871510 + 0.490378i \(0.163141\pi\)
\(104\) 2.49376 3.43237i 0.244533 0.336571i
\(105\) 9.84163 3.33803i 0.960444 0.325758i
\(106\) −6.72499 2.18508i −0.653188 0.212234i
\(107\) 5.56231 + 17.1190i 0.537728 + 1.65496i 0.737679 + 0.675152i \(0.235922\pi\)
−0.199950 + 0.979806i \(0.564078\pi\)
\(108\) −4.87634 + 1.79480i −0.469226 + 0.172705i
\(109\) 12.7279i 1.21911i −0.792742 0.609557i \(-0.791347\pi\)
0.792742 0.609557i \(-0.208653\pi\)
\(110\) 0 0
\(111\) −2.00000 + 2.82843i −0.189832 + 0.268462i
\(112\) 2.49376 + 3.43237i 0.235638 + 0.324328i
\(113\) 10.7600 3.49613i 1.01221 0.328888i 0.244478 0.969655i \(-0.421383\pi\)
0.767736 + 0.640767i \(0.221383\pi\)
\(114\) 0 0
\(115\) 1.61803 + 1.17557i 0.150882 + 0.109623i
\(116\) 4.85410 + 3.52671i 0.450692 + 0.327447i
\(117\) −0.326787 12.7237i −0.0302115 1.17631i
\(118\) 10.7600 3.49613i 0.990536 0.321845i
\(119\) 0 0
\(120\) −2.00000 1.41421i −0.182574 0.129099i
\(121\) 0 0
\(122\) 4.24264i 0.384111i
\(123\) −0.133421 10.3914i −0.0120302 0.936965i
\(124\) −1.23607 3.80423i −0.111002 0.341630i
\(125\) 10.7600 + 3.49613i 0.962402 + 0.312703i
\(126\) 12.2020 + 3.62105i 1.08704 + 0.322589i
\(127\) 7.48128 10.2971i 0.663857 0.913720i −0.335745 0.941953i \(-0.608988\pi\)
0.999601 + 0.0282327i \(0.00898794\pi\)
\(128\) 0.309017 0.951057i 0.0273135 0.0840623i
\(129\) 4.36178 14.0348i 0.384033 1.23569i
\(130\) 4.85410 3.52671i 0.425733 0.309313i
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 3.23607 2.35114i 0.279554 0.203108i
\(135\) −7.34302 + 0.282967i −0.631986 + 0.0243539i
\(136\) 0 0
\(137\) −1.66251 + 2.28825i −0.142038 + 0.195498i −0.874109 0.485730i \(-0.838554\pi\)
0.732071 + 0.681228i \(0.238554\pi\)
\(138\) 0.786780 + 2.31969i 0.0669752 + 0.197465i
\(139\) 16.1400 + 5.24419i 1.36897 + 0.444807i 0.899029 0.437889i \(-0.144274\pi\)
0.469945 + 0.882696i \(0.344274\pi\)
\(140\) 1.85410 + 5.70634i 0.156700 + 0.482274i
\(141\) 17.1450 0.220134i 1.44387 0.0185386i
\(142\) 7.07107i 0.593391i
\(143\) 0 0
\(144\) −1.00000 2.82843i −0.0833333 0.235702i
\(145\) 4.98752 + 6.86474i 0.414191 + 0.570085i
\(146\) 0 0
\(147\) −11.3958 15.2688i −0.939908 1.25935i
\(148\) −1.61803 1.17557i −0.133002 0.0966313i
\(149\) −4.85410 3.52671i −0.397664 0.288919i 0.370925 0.928663i \(-0.379041\pi\)
−0.768589 + 0.639743i \(0.779041\pi\)
\(150\) 3.10794 + 4.16422i 0.253762 + 0.340007i
\(151\) 4.03499 1.31105i 0.328363 0.106692i −0.140196 0.990124i \(-0.544773\pi\)
0.468559 + 0.883432i \(0.344773\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.65685i 0.454369i
\(156\) 7.34786 0.0943431i 0.588300 0.00755349i
\(157\) −6.79837 20.9232i −0.542569 1.66986i −0.726700 0.686955i \(-0.758947\pi\)
0.184131 0.982902i \(-0.441053\pi\)
\(158\) −4.03499 1.31105i −0.321007 0.104301i
\(159\) −3.93390 11.5985i −0.311979 0.919818i
\(160\) 0.831254 1.14412i 0.0657164 0.0904508i
\(161\) 1.85410 5.70634i 0.146124 0.449723i
\(162\) −7.54311 4.90933i −0.592642 0.385714i
\(163\) −1.61803 + 1.17557i −0.126734 + 0.0920778i −0.649347 0.760493i \(-0.724958\pi\)
0.522612 + 0.852570i \(0.324958\pi\)
\(164\) 6.00000 0.468521
\(165\) 0 0
\(166\) 12.0000 0.931381
\(167\) 9.70820 7.05342i 0.751243 0.545810i −0.144969 0.989436i \(-0.546308\pi\)
0.896212 + 0.443626i \(0.146308\pi\)
\(168\) −2.18089 + 7.01739i −0.168259 + 0.541403i
\(169\) −1.54508 + 4.75528i −0.118853 + 0.365791i
\(170\) 0 0
\(171\) 0 0
\(172\) 8.06998 + 2.62210i 0.615330 + 0.199933i
\(173\) −1.85410 5.70634i −0.140965 0.433845i 0.855505 0.517794i \(-0.173247\pi\)
−0.996470 + 0.0839492i \(0.973247\pi\)
\(174\) 0.133421 + 10.3914i 0.0101146 + 0.787774i
\(175\) 12.7279i 0.962140i
\(176\) 0 0
\(177\) 16.0000 + 11.3137i 1.20263 + 0.850390i
\(178\) −3.32502 4.57649i −0.249220 0.343023i
\(179\) −5.37999 + 1.74806i −0.402119 + 0.130656i −0.503092 0.864233i \(-0.667804\pi\)
0.100973 + 0.994889i \(0.467804\pi\)
\(180\) −0.108929 4.24124i −0.00811909 0.316124i
\(181\) −1.61803 1.17557i −0.120268 0.0873795i 0.526026 0.850469i \(-0.323682\pi\)
−0.646293 + 0.763089i \(0.723682\pi\)
\(182\) −14.5623 10.5801i −1.07943 0.784252i
\(183\) 5.88909 4.39529i 0.435334 0.324909i
\(184\) −1.34500 + 0.437016i −0.0991545 + 0.0322172i
\(185\) −1.66251 2.28825i −0.122230 0.168235i
\(186\) 4.00000 5.65685i 0.293294 0.414781i
\(187\) 0 0
\(188\) 9.89949i 0.721995i
\(189\) 7.61471 + 20.6886i 0.553888 + 1.50487i
\(190\) 0 0
\(191\) 9.41498 + 3.05911i 0.681244 + 0.221350i 0.629140 0.777292i \(-0.283407\pi\)
0.0521041 + 0.998642i \(0.483407\pi\)
\(192\) 1.64027 0.556338i 0.118376 0.0401502i
\(193\) −4.98752 + 6.86474i −0.359010 + 0.494135i −0.949872 0.312638i \(-0.898787\pi\)
0.590863 + 0.806772i \(0.298787\pi\)
\(194\) 2.47214 7.60845i 0.177489 0.546255i
\(195\) 9.92408 + 3.08424i 0.710678 + 0.220867i
\(196\) 8.89919 6.46564i 0.635656 0.461831i
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) −2.42705 + 1.76336i −0.171618 + 0.124688i
\(201\) 6.61606 + 2.05616i 0.466661 + 0.145030i
\(202\) −1.85410 + 5.70634i −0.130454 + 0.401497i
\(203\) 14.9626 20.5942i 1.05017 1.44543i
\(204\) 0 0
\(205\) 8.06998 + 2.62210i 0.563632 + 0.183135i
\(206\) −1.23607 3.80423i −0.0861209 0.265053i
\(207\) −2.40481 + 3.49526i −0.167146 + 0.242938i
\(208\) 4.24264i 0.294174i
\(209\) 0 0
\(210\) −6.00000 + 8.48528i −0.414039 + 0.585540i
\(211\) 4.98752 + 6.86474i 0.343355 + 0.472588i 0.945418 0.325861i \(-0.105654\pi\)
−0.602062 + 0.798449i \(0.705654\pi\)
\(212\) 6.72499 2.18508i 0.461874 0.150072i
\(213\) 9.81516 7.32549i 0.672523 0.501934i
\(214\) −14.5623 10.5801i −0.995459 0.723243i
\(215\) 9.70820 + 7.05342i 0.662094 + 0.481039i
\(216\) 2.89008 4.31827i 0.196645 0.293821i
\(217\) −16.1400 + 5.24419i −1.09565 + 0.355999i
\(218\) 7.48128 + 10.2971i 0.506697 + 0.697408i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) −0.0444738 3.46382i −0.00298488 0.232476i
\(223\) 2.47214 + 7.60845i 0.165546 + 0.509500i 0.999076 0.0429750i \(-0.0136836\pi\)
−0.833530 + 0.552475i \(0.813684\pi\)
\(224\) −4.03499 1.31105i −0.269599 0.0875981i
\(225\) −2.56047 + 8.62809i −0.170698 + 0.575206i
\(226\) −6.65003 + 9.15298i −0.442353 + 0.608847i
\(227\) −1.85410 + 5.70634i −0.123061 + 0.378743i −0.993543 0.113458i \(-0.963807\pi\)
0.870482 + 0.492201i \(0.163807\pi\)
\(228\) 0 0
\(229\) −11.3262 + 8.22899i −0.748459 + 0.543787i −0.895349 0.445366i \(-0.853074\pi\)
0.146890 + 0.989153i \(0.453074\pi\)
\(230\) −2.00000 −0.131876
\(231\) 0 0
\(232\) −6.00000 −0.393919
\(233\) −14.5623 + 10.5801i −0.954008 + 0.693128i −0.951752 0.306870i \(-0.900718\pi\)
−0.00225687 + 0.999997i \(0.500718\pi\)
\(234\) 7.74320 + 10.1016i 0.506188 + 0.660364i
\(235\) −4.32624 + 13.3148i −0.282213 + 0.868561i
\(236\) −6.65003 + 9.15298i −0.432880 + 0.595808i
\(237\) −2.36034 6.95908i −0.153321 0.452041i
\(238\) 0 0
\(239\) −3.70820 11.4127i −0.239864 0.738225i −0.996439 0.0843180i \(-0.973129\pi\)
0.756575 0.653907i \(-0.226871\pi\)
\(240\) 2.44929 0.0314477i 0.158101 0.00202994i
\(241\) 8.48528i 0.546585i 0.961931 + 0.273293i \(0.0881127\pi\)
−0.961931 + 0.273293i \(0.911887\pi\)
\(242\) 0 0
\(243\) −1.00000 15.5563i −0.0641500 0.997940i
\(244\) 2.49376 + 3.43237i 0.159647 + 0.219735i
\(245\) 14.7950 4.80718i 0.945216 0.307119i
\(246\) 6.21588 + 8.32844i 0.396310 + 0.531002i
\(247\) 0 0
\(248\) 3.23607 + 2.35114i 0.205491 + 0.149298i
\(249\) 12.4318 + 16.6569i 0.787831 + 1.05559i
\(250\) −10.7600 + 3.49613i −0.680521 + 0.221115i
\(251\) −3.32502 4.57649i −0.209873 0.288866i 0.691083 0.722775i \(-0.257134\pi\)
−0.900956 + 0.433910i \(0.857134\pi\)
\(252\) −12.0000 + 4.24264i −0.755929 + 0.267261i
\(253\) 0 0
\(254\) 12.7279i 0.798621i
\(255\) 0 0
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) −10.7600 3.49613i −0.671189 0.218082i −0.0464552 0.998920i \(-0.514792\pi\)
−0.624734 + 0.780838i \(0.714792\pi\)
\(258\) 4.72068 + 13.9182i 0.293897 + 0.866507i
\(259\) −4.98752 + 6.86474i −0.309910 + 0.426554i
\(260\) −1.85410 + 5.70634i −0.114987 + 0.353892i
\(261\) −14.2859 + 10.9505i −0.884273 + 0.677821i
\(262\) 9.70820 7.05342i 0.599775 0.435762i
\(263\) 12.0000 0.739952 0.369976 0.929041i \(-0.379366\pi\)
0.369976 + 0.929041i \(0.379366\pi\)
\(264\) 0 0
\(265\) 10.0000 0.614295
\(266\) 0 0
\(267\) 2.90785 9.35652i 0.177958 0.572609i
\(268\) −1.23607 + 3.80423i −0.0755049 + 0.232380i
\(269\) −4.15627 + 5.72061i −0.253412 + 0.348792i −0.916703 0.399570i \(-0.869159\pi\)
0.663290 + 0.748362i \(0.269159\pi\)
\(270\) 5.77430 4.54504i 0.351413 0.276603i
\(271\) −12.1050 3.93314i −0.735325 0.238921i −0.0826700 0.996577i \(-0.526345\pi\)
−0.652655 + 0.757655i \(0.726345\pi\)
\(272\) 0 0
\(273\) −0.400264 31.1743i −0.0242251 1.88676i
\(274\) 2.82843i 0.170872i
\(275\) 0 0
\(276\) −2.00000 1.41421i −0.120386 0.0851257i
\(277\) −12.4688 17.1618i −0.749178 1.03116i −0.998038 0.0626156i \(-0.980056\pi\)
0.248860 0.968540i \(-0.419944\pi\)
\(278\) −16.1400 + 5.24419i −0.968011 + 0.314526i
\(279\) 11.9960 0.308098i 0.718184 0.0184453i
\(280\) −4.85410 3.52671i −0.290088 0.210761i
\(281\) −9.70820 7.05342i −0.579143 0.420772i 0.259272 0.965804i \(-0.416517\pi\)
−0.838415 + 0.545032i \(0.816517\pi\)
\(282\) −13.7412 + 10.2557i −0.818278 + 0.610717i
\(283\) 8.06998 2.62210i 0.479711 0.155867i −0.0591728 0.998248i \(-0.518846\pi\)
0.538883 + 0.842380i \(0.318846\pi\)
\(284\) 4.15627 + 5.72061i 0.246629 + 0.339456i
\(285\) 0 0
\(286\) 0 0
\(287\) 25.4558i 1.50261i
\(288\) 2.47152 + 1.70046i 0.145636 + 0.100201i
\(289\) −5.25329 16.1680i −0.309017 0.951057i
\(290\) −8.06998 2.62210i −0.473886 0.153975i
\(291\) 13.1222 4.45070i 0.769235 0.260905i
\(292\) 0 0
\(293\) 1.85410 5.70634i 0.108318 0.333368i −0.882177 0.470918i \(-0.843923\pi\)
0.990495 + 0.137550i \(0.0439228\pi\)
\(294\) 18.1942 + 5.65445i 1.06110 + 0.329774i
\(295\) −12.9443 + 9.40456i −0.753645 + 0.547555i
\(296\) 2.00000 0.116248
\(297\) 0 0
\(298\) 6.00000 0.347571
\(299\) 4.85410 3.52671i 0.280720 0.203955i
\(300\) −4.96204 1.54212i −0.286484 0.0890344i
\(301\) 11.1246 34.2380i 0.641212 1.97345i
\(302\) −2.49376 + 3.43237i −0.143500 + 0.197511i
\(303\) −9.84163 + 3.33803i −0.565387 + 0.191765i
\(304\) 0 0
\(305\) 1.85410 + 5.70634i 0.106166 + 0.326744i
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 4.00000 5.65685i 0.227552 0.321807i
\(310\) 3.32502 + 4.57649i 0.188848 + 0.259927i
\(311\) −25.5549 + 8.30330i −1.44909 + 0.470837i −0.924718 0.380653i \(-0.875699\pi\)
−0.524370 + 0.851490i \(0.675699\pi\)
\(312\) −5.88909 + 4.39529i −0.333404 + 0.248834i
\(313\) 8.09017 + 5.87785i 0.457283 + 0.332236i 0.792465 0.609918i \(-0.208798\pi\)
−0.335181 + 0.942154i \(0.608798\pi\)
\(314\) 17.7984 + 12.9313i 1.00442 + 0.729754i
\(315\) −17.9941 + 0.462147i −1.01385 + 0.0260390i
\(316\) 4.03499 1.31105i 0.226986 0.0737522i
\(317\) −5.81878 8.00886i −0.326815 0.449822i 0.613718 0.789526i \(-0.289673\pi\)
−0.940533 + 0.339703i \(0.889673\pi\)
\(318\) 10.0000 + 7.07107i 0.560772 + 0.396526i
\(319\) 0 0
\(320\) 1.41421i 0.0790569i
\(321\) −0.400264 31.1743i −0.0223406 1.73998i
\(322\) 1.85410 + 5.70634i 0.103325 + 0.318002i
\(323\) 0 0
\(324\) 8.98813 0.461994i 0.499341 0.0256664i
\(325\) 7.48128 10.2971i 0.414987 0.571181i
\(326\) 0.618034 1.90211i 0.0342297 0.105348i
\(327\) −6.54267 + 21.0522i −0.361810 + 1.16419i
\(328\) −4.85410 + 3.52671i −0.268023 + 0.194730i
\(329\) 42.0000 2.31553
\(330\) 0 0
\(331\) −10.0000 −0.549650 −0.274825 0.961494i \(-0.588620\pi\)
−0.274825 + 0.961494i \(0.588620\pi\)
\(332\) −9.70820 + 7.05342i −0.532807 + 0.387107i
\(333\) 4.76195 3.65018i 0.260953 0.200028i
\(334\) −3.70820 + 11.4127i −0.202904 + 0.624474i
\(335\) −3.32502 + 4.57649i −0.181665 + 0.250040i
\(336\) −2.36034 6.95908i −0.128767 0.379649i
\(337\) −32.2799 10.4884i −1.75840 0.571339i −0.761367 0.648321i \(-0.775472\pi\)
−0.997032 + 0.0769821i \(0.975472\pi\)
\(338\) −1.54508 4.75528i −0.0840415 0.258653i
\(339\) −19.5943 + 0.251582i −1.06422 + 0.0136640i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −9.97505 13.7295i −0.538602 0.741322i
\(344\) −8.06998 + 2.62210i −0.435104 + 0.141374i
\(345\) −2.07196 2.77615i −0.111551 0.149463i
\(346\) 4.85410 + 3.52671i 0.260958 + 0.189597i
\(347\) 9.70820 + 7.05342i 0.521164 + 0.378648i 0.817042 0.576578i \(-0.195612\pi\)
−0.295878 + 0.955226i \(0.595612\pi\)
\(348\) −6.21588 8.32844i −0.333206 0.446451i
\(349\) 28.2449 9.17734i 1.51192 0.491252i 0.568450 0.822718i \(-0.307543\pi\)
0.943467 + 0.331466i \(0.107543\pi\)
\(350\) 7.48128 + 10.2971i 0.399891 + 0.550403i
\(351\) −6.00000 + 21.2132i −0.320256 + 1.13228i
\(352\) 0 0
\(353\) 22.6274i 1.20434i 0.798369 + 0.602168i \(0.205696\pi\)
−0.798369 + 0.602168i \(0.794304\pi\)
\(354\) −19.5943 + 0.251582i −1.04143 + 0.0133714i
\(355\) 3.09017 + 9.51057i 0.164009 + 0.504768i
\(356\) 5.37999 + 1.74806i 0.285139 + 0.0926472i
\(357\) 0 0
\(358\) 3.32502 4.57649i 0.175733 0.241875i
\(359\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(360\) 2.58107 + 3.36721i 0.136034 + 0.177468i
\(361\) −15.3713 + 11.1679i −0.809017 + 0.587785i
\(362\) 2.00000 0.105118
\(363\) 0 0
\(364\) 18.0000 0.943456
\(365\) 0 0
\(366\) −2.18089 + 7.01739i −0.113997 + 0.366805i
\(367\) −8.65248 + 26.6296i −0.451656 + 1.39005i 0.423362 + 0.905961i \(0.360850\pi\)
−0.875017 + 0.484092i \(0.839150\pi\)
\(368\) 0.831254 1.14412i 0.0433321 0.0596415i
\(369\) −5.12094 + 17.2562i −0.266586 + 0.898321i
\(370\) 2.68999 + 0.874032i 0.139846 + 0.0454388i
\(371\) −9.27051 28.5317i −0.481301 1.48129i
\(372\) 0.0889475 + 6.92763i 0.00461171 + 0.359181i
\(373\) 29.6985i 1.53773i 0.639412 + 0.768865i \(0.279178\pi\)
−0.639412 + 0.768865i \(0.720822\pi\)
\(374\) 0 0
\(375\) −16.0000 11.3137i −0.826236 0.584237i
\(376\) −5.81878 8.00886i −0.300081 0.413025i
\(377\) 24.2099 7.86629i 1.24688 0.405134i
\(378\) −18.3209 12.2616i −0.942323 0.630668i
\(379\) −1.61803 1.17557i −0.0831128 0.0603850i 0.545453 0.838141i \(-0.316358\pi\)
−0.628566 + 0.777756i \(0.716358\pi\)
\(380\) 0 0
\(381\) −17.6673 + 13.1859i −0.905122 + 0.675533i
\(382\) −9.41498 + 3.05911i −0.481712 + 0.156518i
\(383\) −0.831254 1.14412i −0.0424751 0.0584619i 0.787251 0.616632i \(-0.211504\pi\)
−0.829726 + 0.558170i \(0.811504\pi\)
\(384\) −1.00000 + 1.41421i −0.0510310 + 0.0721688i
\(385\) 0 0
\(386\) 8.48528i 0.431889i
\(387\) −14.4289 + 20.9716i −0.733461 + 1.06605i
\(388\) 2.47214 + 7.60845i 0.125504 + 0.386261i
\(389\) 9.41498 + 3.05911i 0.477358 + 0.155103i 0.537807 0.843068i \(-0.319253\pi\)
−0.0604483 + 0.998171i \(0.519253\pi\)
\(390\) −9.84163 + 3.33803i −0.498350 + 0.169027i
\(391\) 0 0
\(392\) −3.39919 + 10.4616i −0.171685 + 0.528392i
\(393\) 19.8482 + 6.16849i 1.00121 + 0.311159i
\(394\) 14.5623 10.5801i 0.733638 0.533019i
\(395\) 6.00000 0.301893
\(396\) 0 0
\(397\) −34.0000 −1.70641 −0.853206 0.521575i \(-0.825345\pi\)
−0.853206 + 0.521575i \(0.825345\pi\)
\(398\) 12.9443 9.40456i 0.648838 0.471408i
\(399\) 0 0
\(400\) 0.927051 2.85317i 0.0463525 0.142658i
\(401\) −21.6126 + 29.7472i −1.07928 + 1.48550i −0.218973 + 0.975731i \(0.570271\pi\)
−0.860309 + 0.509773i \(0.829729\pi\)
\(402\) −6.56108 + 2.22535i −0.327237 + 0.110990i
\(403\) −16.1400 5.24419i −0.803989 0.261232i
\(404\) −1.85410 5.70634i −0.0922450 0.283901i
\(405\) 12.2909 + 3.30658i 0.610740 + 0.164305i
\(406\) 25.4558i 1.26335i
\(407\) 0 0
\(408\) 0 0
\(409\) 4.98752 + 6.86474i 0.246617 + 0.339439i 0.914323 0.404986i \(-0.132724\pi\)
−0.667706 + 0.744425i \(0.732724\pi\)
\(410\) −8.06998 + 2.62210i −0.398548 + 0.129496i
\(411\) 3.92606 2.93019i 0.193658 0.144536i
\(412\) 3.23607 + 2.35114i 0.159430 + 0.115832i
\(413\) 38.8328 + 28.2137i 1.91084 + 1.38831i
\(414\) −0.108929 4.24124i −0.00535357 0.208446i
\(415\) −16.1400 + 5.24419i −0.792280 + 0.257427i
\(416\) −2.49376 3.43237i −0.122267 0.168286i
\(417\) −24.0000 16.9706i −1.17529 0.831052i
\(418\) 0 0
\(419\) 11.3137i 0.552711i −0.961056 0.276355i \(-0.910873\pi\)
0.961056 0.276355i \(-0.0891267\pi\)
\(420\) −0.133421 10.3914i −0.00651029 0.507051i
\(421\) −3.09017 9.51057i −0.150606 0.463517i 0.847084 0.531460i \(-0.178356\pi\)
−0.997689 + 0.0679432i \(0.978356\pi\)
\(422\) −8.06998 2.62210i −0.392841 0.127642i
\(423\) −28.4713 8.44913i −1.38432 0.410811i
\(424\) −4.15627 + 5.72061i −0.201846 + 0.277818i
\(425\) 0 0
\(426\) −3.63482 + 11.6956i −0.176107 + 0.566656i
\(427\) 14.5623 10.5801i 0.704719 0.512009i
\(428\) 18.0000 0.870063
\(429\) 0 0
\(430\) −12.0000 −0.578691
\(431\) −29.1246 + 21.1603i −1.40288 + 1.01925i −0.408574 + 0.912725i \(0.633974\pi\)
−0.994310 + 0.106529i \(0.966026\pi\)
\(432\) 0.200088 + 5.19230i 0.00962674 + 0.249815i
\(433\) 0.618034 1.90211i 0.0297008 0.0914097i −0.935107 0.354365i \(-0.884697\pi\)
0.964808 + 0.262955i \(0.0846971\pi\)
\(434\) 9.97505 13.7295i 0.478818 0.659036i
\(435\) −4.72068 13.9182i −0.226339 0.667325i
\(436\) −12.1050 3.93314i −0.579723 0.188363i
\(437\) 0 0
\(438\) 0 0
\(439\) 21.2132i 1.01245i 0.862401 + 0.506225i \(0.168960\pi\)
−0.862401 + 0.506225i \(0.831040\pi\)
\(440\) 0 0
\(441\) 11.0000 + 31.1127i 0.523810 + 1.48156i
\(442\) 0 0
\(443\) 26.8999 8.74032i 1.27805 0.415265i 0.410160 0.912014i \(-0.365473\pi\)
0.867895 + 0.496748i \(0.165473\pi\)
\(444\) 2.07196 + 2.77615i 0.0983309 + 0.131750i
\(445\) 6.47214 + 4.70228i 0.306809 + 0.222910i
\(446\) −6.47214 4.70228i −0.306465 0.222660i
\(447\) 6.21588 + 8.32844i 0.294001 + 0.393921i
\(448\) 4.03499 1.31105i 0.190635 0.0619412i
\(449\) −18.2876 25.1707i −0.863045 1.18788i −0.980835 0.194840i \(-0.937581\pi\)
0.117790 0.993038i \(-0.462419\pi\)
\(450\) −3.00000 8.48528i −0.141421 0.400000i
\(451\) 0 0
\(452\) 11.3137i 0.532152i
\(453\) −7.34786 + 0.0943431i −0.345233 + 0.00443263i
\(454\) −1.85410 5.70634i −0.0870173 0.267812i
\(455\) 24.2099 + 7.86629i 1.13498 + 0.368777i
\(456\) 0 0
\(457\) 4.98752 6.86474i 0.233306 0.321119i −0.676271 0.736653i \(-0.736405\pi\)
0.909578 + 0.415534i \(0.136405\pi\)
\(458\) 4.32624 13.3148i 0.202152 0.622159i
\(459\) 0 0
\(460\) 1.61803 1.17557i 0.0754412 0.0548113i
\(461\) 30.0000 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(462\) 0 0
\(463\) 32.0000 1.48717 0.743583 0.668644i \(-0.233125\pi\)
0.743583 + 0.668644i \(0.233125\pi\)
\(464\) 4.85410 3.52671i 0.225346 0.163723i
\(465\) −2.90785 + 9.35652i −0.134848 + 0.433898i
\(466\) 5.56231 17.1190i 0.257669 0.793023i
\(467\) 18.2876 25.1707i 0.846249 1.16476i −0.138428 0.990372i \(-0.544205\pi\)
0.984677 0.174389i \(-0.0557949\pi\)
\(468\) −12.2020 3.62105i −0.564036 0.167383i
\(469\) 16.1400 + 5.24419i 0.745274 + 0.242154i
\(470\) −4.32624 13.3148i −0.199554 0.614166i
\(471\) 0.489211 + 38.1020i 0.0225417 + 1.75565i
\(472\) 11.3137i 0.520756i
\(473\) 0 0
\(474\) 6.00000 + 4.24264i 0.275589 + 0.194871i
\(475\) 0 0
\(476\) 0 0
\(477\) 0.544645 + 21.2062i 0.0249376 + 0.970966i
\(478\) 9.70820 + 7.05342i 0.444043 + 0.322616i
\(479\) −9.70820 7.05342i −0.443579 0.322279i 0.343476 0.939161i \(-0.388395\pi\)
−0.787055 + 0.616882i \(0.788395\pi\)
\(480\) −1.96303 + 1.46510i −0.0895997 + 0.0668722i
\(481\) −8.06998 + 2.62210i −0.367960 + 0.119557i
\(482\) −4.98752 6.86474i −0.227175 0.312680i
\(483\) −6.00000 + 8.48528i −0.273009 + 0.386094i
\(484\) 0 0
\(485\) 11.3137i 0.513729i
\(486\) 9.95281 + 11.9976i 0.451469 + 0.544221i
\(487\) 6.18034 + 19.0211i 0.280058 + 0.861930i 0.987837 + 0.155495i \(0.0496974\pi\)
−0.707779 + 0.706434i \(0.750303\pi\)
\(488\) −4.03499 1.31105i −0.182655 0.0593484i
\(489\) 3.28054 1.11268i 0.148351 0.0503169i
\(490\) −9.14379 + 12.5854i −0.413074 + 0.568548i
\(491\) 1.85410 5.70634i 0.0836745 0.257523i −0.900463 0.434934i \(-0.856772\pi\)
0.984137 + 0.177410i \(0.0567719\pi\)
\(492\) −9.92408 3.08424i −0.447412 0.139048i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) 24.2705 17.6336i 1.08868 0.790973i
\(498\) −19.8482 6.16849i −0.889418 0.276416i
\(499\) 4.32624 13.3148i 0.193669 0.596052i −0.806321 0.591479i \(-0.798544\pi\)
0.999990 0.00457310i \(-0.00145567\pi\)
\(500\) 6.65003 9.15298i 0.297398 0.409334i
\(501\) −19.6833 + 6.67605i −0.879383 + 0.298264i
\(502\) 5.37999 + 1.74806i 0.240121 + 0.0780199i
\(503\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(504\) 7.21444 10.4858i 0.321357 0.467074i
\(505\) 8.48528i 0.377590i
\(506\) 0 0
\(507\) 5.00000 7.07107i 0.222058 0.314037i
\(508\) −7.48128 10.2971i −0.331928 0.456860i
\(509\) −1.34500 + 0.437016i −0.0596159 + 0.0193704i −0.338673 0.940904i \(-0.609978\pi\)
0.279057 + 0.960274i \(0.409978\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.809017 0.587785i −0.0357538 0.0259767i
\(513\) 0 0
\(514\) 10.7600 3.49613i 0.474602 0.154208i
\(515\) 3.32502 + 4.57649i 0.146518 + 0.201664i
\(516\) −12.0000 8.48528i −0.528271 0.373544i
\(517\) 0 0
\(518\) 8.48528i 0.372822i
\(519\) 0.133421 + 10.3914i 0.00585654 + 0.456134i
\(520\) −1.85410 5.70634i −0.0813077 0.250240i
\(521\) −18.8300 6.11822i −0.824955 0.268044i −0.134036 0.990976i \(-0.542794\pi\)
−0.690919 + 0.722932i \(0.742794\pi\)
\(522\) 5.12094 17.2562i 0.224138 0.755283i
\(523\) −14.9626 + 20.5942i −0.654267 + 0.900522i −0.999275 0.0380781i \(-0.987876\pi\)
0.345007 + 0.938600i \(0.387876\pi\)
\(524\) −3.70820 + 11.4127i −0.161994 + 0.498565i
\(525\) −6.54267 + 21.0522i −0.285545 + 0.918792i
\(526\) −9.70820 + 7.05342i −0.423298 + 0.307544i
\(527\) 0 0
\(528\) 0 0
\(529\) 21.0000 0.913043
\(530\) −8.09017 + 5.87785i −0.351415 + 0.255318i
\(531\) −20.6485 26.9377i −0.896069 1.16900i
\(532\) 0 0
\(533\) 14.9626 20.5942i 0.648101 0.892034i
\(534\) 3.14712 + 9.27877i 0.136189 + 0.401532i
\(535\) 24.2099 + 7.86629i 1.04669 + 0.340089i
\(536\) −1.23607 3.80423i −0.0533900 0.164318i
\(537\) 9.79715 0.125791i 0.422778 0.00542827i
\(538\) 7.07107i 0.304855i
\(539\) 0 0
\(540\) −2.00000 + 7.07107i −0.0860663 + 0.304290i
\(541\) 7.48128 + 10.2971i 0.321646 + 0.442707i 0.938969 0.344003i \(-0.111783\pi\)
−0.617323 + 0.786710i \(0.711783\pi\)
\(542\) 12.1050 3.93314i 0.519953 0.168943i
\(543\) 2.07196 + 2.77615i 0.0889163 + 0.119136i
\(544\) 0 0
\(545\) −14.5623 10.5801i −0.623781 0.453203i
\(546\) 18.6476 + 24.9853i 0.798045 + 1.06927i
\(547\) −32.2799 + 10.4884i −1.38019 + 0.448451i −0.902732 0.430204i \(-0.858442\pi\)
−0.477458 + 0.878654i \(0.658442\pi\)
\(548\) 1.66251 + 2.28825i 0.0710188 + 0.0977490i
\(549\) −12.0000 + 4.24264i −0.512148 + 0.181071i
\(550\) 0 0
\(551\) 0 0
\(552\) 2.44929 0.0314477i 0.104249 0.00133850i
\(553\) −5.56231 17.1190i −0.236533 0.727975i
\(554\) 20.1750 + 6.55524i 0.857152 + 0.278505i
\(555\) 1.57356 + 4.63939i 0.0667939 + 0.196931i
\(556\) 9.97505 13.7295i 0.423036 0.582259i
\(557\) −5.56231 + 17.1190i −0.235682 + 0.725356i 0.761348 + 0.648344i \(0.224538\pi\)
−0.997030 + 0.0770122i \(0.975462\pi\)
\(558\) −9.52391 + 7.30035i −0.403179 + 0.309049i
\(559\) 29.1246 21.1603i 1.23184 0.894984i
\(560\) 6.00000 0.253546
\(561\) 0 0
\(562\) 12.0000 0.506189
\(563\) 24.2705 17.6336i 1.02288 0.743166i 0.0560088 0.998430i \(-0.482163\pi\)
0.966871 + 0.255264i \(0.0821625\pi\)
\(564\) 5.08874 16.3739i 0.214275 0.689466i
\(565\) 4.94427 15.2169i 0.208007 0.640180i
\(566\) −4.98752 + 6.86474i −0.209641 + 0.288546i
\(567\) −1.96008 38.1334i −0.0823155 1.60145i
\(568\) −6.72499 2.18508i −0.282174 0.0916839i
\(569\) −7.41641 22.8254i −0.310912 0.956889i −0.977405 0.211377i \(-0.932205\pi\)
0.666493 0.745512i \(-0.267795\pi\)
\(570\) 0 0
\(571\) 33.9411i 1.42039i −0.704004 0.710196i \(-0.748606\pi\)
0.704004 0.710196i \(-0.251394\pi\)
\(572\) 0 0
\(573\) −14.0000 9.89949i −0.584858 0.413557i
\(574\) 14.9626 + 20.5942i 0.624526 + 0.859586i
\(575\) −4.03499 + 1.31105i −0.168271 + 0.0546745i
\(576\) −2.99901 + 0.0770245i −0.124959 + 0.00320935i
\(577\) −16.1803 11.7557i −0.673596 0.489396i 0.197631 0.980277i \(-0.436675\pi\)
−0.871227 + 0.490880i \(0.836675\pi\)
\(578\) 13.7533 + 9.99235i 0.572061 + 0.415627i
\(579\) 11.7782 8.79058i 0.489485 0.365324i
\(580\) 8.06998 2.62210i 0.335088 0.108877i
\(581\) 29.9251 + 41.1884i 1.24150 + 1.70878i
\(582\) −8.00000 + 11.3137i −0.331611 + 0.468968i
\(583\) 0 0
\(584\) 0 0
\(585\) −14.8291 10.2028i −0.613110 0.421832i
\(586\) 1.85410 + 5.70634i 0.0765922 + 0.235727i
\(587\) −26.8999 8.74032i −1.11028 0.360752i −0.304229 0.952599i \(-0.598399\pi\)
−0.806050 + 0.591847i \(0.798399\pi\)
\(588\) −18.0430 + 6.11971i −0.744080 + 0.252373i
\(589\) 0 0
\(590\) 4.94427 15.2169i 0.203552 0.626470i
\(591\) 29.7723 + 9.25273i 1.22467 + 0.380606i
\(592\) −1.61803 + 1.17557i −0.0665008 + 0.0483157i
\(593\) −36.0000 −1.47834 −0.739171 0.673517i \(-0.764783\pi\)
−0.739171 + 0.673517i \(0.764783\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −4.85410 + 3.52671i −0.198832 + 0.144460i
\(597\) 26.4642 + 8.22465i 1.08311 + 0.336612i
\(598\) −1.85410 + 5.70634i −0.0758199 + 0.233350i
\(599\) −14.1313 + 19.4501i −0.577390 + 0.794709i −0.993406 0.114648i \(-0.963426\pi\)
0.416016 + 0.909357i \(0.363426\pi\)
\(600\) 4.92081 1.66901i 0.200891 0.0681372i
\(601\) 32.2799 + 10.4884i 1.31673 + 0.427830i 0.881369 0.472428i \(-0.156622\pi\)
0.435356 + 0.900258i \(0.356622\pi\)
\(602\) 11.1246 + 34.2380i 0.453405 + 1.39544i
\(603\) −9.88610 6.80184i −0.402593 0.276992i
\(604\) 4.24264i 0.172631i
\(605\) 0 0
\(606\) 6.00000 8.48528i 0.243733 0.344691i
\(607\) −2.49376 3.43237i −0.101219 0.139316i 0.755403 0.655260i \(-0.227441\pi\)
−0.856622 + 0.515945i \(0.827441\pi\)
\(608\) 0 0
\(609\) −35.3346 + 26.3717i −1.43183 + 1.06864i
\(610\) −4.85410 3.52671i −0.196537 0.142792i
\(611\) 33.9787 + 24.6870i 1.37463 + 0.998728i
\(612\) 0 0
\(613\) 12.1050 3.93314i 0.488915 0.158858i −0.0541768 0.998531i \(-0.517253\pi\)
0.543092 + 0.839673i \(0.317253\pi\)
\(614\) 0 0
\(615\) −12.0000 8.48528i −0.483887 0.342160i
\(616\) 0 0
\(617\) 39.5980i 1.59415i 0.603877 + 0.797077i \(0.293622\pi\)
−0.603877 + 0.797077i \(0.706378\pi\)
\(618\) 0.0889475 + 6.92763i 0.00357799 + 0.278670i
\(619\) 13.5967 + 41.8465i 0.546499 + 1.68195i 0.717398 + 0.696664i \(0.245333\pi\)
−0.170898 + 0.985289i \(0.554667\pi\)
\(620\) −5.37999 1.74806i −0.216066 0.0702039i
\(621\) 5.77430 4.54504i 0.231715 0.182386i
\(622\) 15.7938 21.7383i 0.633275 0.871628i
\(623\) 7.41641 22.8254i 0.297132 0.914479i
\(624\) 2.18089 7.01739i 0.0873054 0.280920i
\(625\) 0.809017 0.587785i 0.0323607 0.0235114i
\(626\) −10.0000 −0.399680
\(627\) 0 0
\(628\) −22.0000 −0.877896
\(629\) 0 0
\(630\) 14.2859 10.9505i 0.569162 0.436280i
\(631\) 6.18034 19.0211i 0.246035 0.757219i −0.749429 0.662085i \(-0.769672\pi\)
0.995464 0.0951345i \(-0.0303281\pi\)
\(632\) −2.49376 + 3.43237i −0.0991965 + 0.136532i
\(633\) −4.72068 13.9182i −0.187630 0.553197i
\(634\) 9.41498 + 3.05911i 0.373917 + 0.121493i
\(635\) −5.56231 17.1190i −0.220733 0.679347i
\(636\) −12.2464 + 0.157238i −0.485603 + 0.00623491i
\(637\) 46.6690i 1.84909i
\(638\) 0 0
\(639\) −20.0000 + 7.07107i −0.791188 + 0.279727i
\(640\) −0.831254 1.14412i −0.0328582 0.0452254i
\(641\) −45.7299 + 14.8585i −1.80622 + 0.586877i −0.999989 0.00472015i \(-0.998498\pi\)
−0.806234 + 0.591597i \(0.798498\pi\)
\(642\) 18.6476 + 24.9853i 0.735964 + 0.986091i
\(643\) 3.23607 + 2.35114i 0.127618 + 0.0927200i 0.649763 0.760137i \(-0.274868\pi\)
−0.522145 + 0.852857i \(0.674868\pi\)
\(644\) −4.85410 3.52671i −0.191278 0.138972i
\(645\) −12.4318 16.6569i −0.489500 0.655864i
\(646\) 0 0
\(647\) 4.15627 + 5.72061i 0.163400 + 0.224901i 0.882864 0.469629i \(-0.155612\pi\)
−0.719464 + 0.694530i \(0.755612\pi\)
\(648\) −7.00000 + 5.65685i −0.274986 + 0.222222i
\(649\) 0 0
\(650\) 12.7279i 0.499230i
\(651\) 29.3915 0.377372i 1.15194 0.0147904i
\(652\) 0.618034 + 1.90211i 0.0242041 + 0.0744925i
\(653\) 25.5549 + 8.30330i 1.00004 + 0.324933i 0.762882 0.646537i \(-0.223784\pi\)
0.237160 + 0.971471i \(0.423784\pi\)
\(654\) −7.08102 20.8772i −0.276890 0.816365i
\(655\) −9.97505 + 13.7295i −0.389757 + 0.536455i
\(656\) 1.85410 5.70634i 0.0723905 0.222795i
\(657\) 0 0
\(658\) −33.9787 + 24.6870i −1.32463 + 0.962399i
\(659\) 30.0000 1.16863 0.584317 0.811525i \(-0.301362\pi\)
0.584317 + 0.811525i \(0.301362\pi\)
\(660\) 0 0
\(661\) −22.0000 −0.855701 −0.427850 0.903850i \(-0.640729\pi\)
−0.427850 + 0.903850i \(0.640729\pi\)
\(662\) 8.09017 5.87785i 0.314433 0.228449i
\(663\) 0 0
\(664\) 3.70820 11.4127i 0.143906 0.442898i
\(665\) 0 0
\(666\) −1.70698 + 5.75206i −0.0661442 + 0.222888i
\(667\) −8.06998 2.62210i −0.312471 0.101528i
\(668\) −3.70820 11.4127i −0.143475 0.441570i
\(669\) −0.177895 13.8553i −0.00687782 0.535675i
\(670\) 5.65685i 0.218543i
\(671\) 0 0
\(672\) 6.00000 + 4.24264i 0.231455 + 0.163663i
\(673\) 24.9376 + 34.3237i 0.961274 + 1.32308i 0.946333 + 0.323192i \(0.104756\pi\)
0.0149412 + 0.999888i \(0.495244\pi\)
\(674\) 32.2799 10.4884i 1.24338 0.403997i
\(675\) 8.67025 12.9548i 0.333718 0.498630i
\(676\) 4.04508 + 2.93893i 0.155580 + 0.113036i
\(677\) −24.2705 17.6336i −0.932791 0.677713i 0.0138832 0.999904i \(-0.495581\pi\)
−0.946675 + 0.322191i \(0.895581\pi\)
\(678\) 15.7042 11.7208i 0.603118 0.450134i
\(679\) 32.2799 10.4884i 1.23879 0.402507i
\(680\) 0 0
\(681\) 6.00000 8.48528i 0.229920 0.325157i
\(682\) 0 0
\(683\) 5.65685i 0.216454i 0.994126 + 0.108227i \(0.0345173\pi\)
−0.994126 + 0.108227i \(0.965483\pi\)
\(684\) 0 0
\(685\) 1.23607 + 3.80423i 0.0472277 + 0.145352i
\(686\) 16.1400 + 5.24419i 0.616227 + 0.200224i
\(687\) 22.9638 7.78873i 0.876123 0.297158i
\(688\) 4.98752 6.86474i 0.190148 0.261716i
\(689\) 9.27051 28.5317i 0.353178 1.08697i
\(690\) 3.30803 + 1.02808i 0.125934 + 0.0391384i
\(691\) 22.6525 16.4580i 0.861741 0.626091i −0.0666172 0.997779i \(-0.521221\pi\)
0.928358 + 0.371687i \(0.121221\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) 19.4164 14.1068i 0.736506 0.535103i
\(696\) 9.92408 + 3.08424i 0.376171 + 0.116908i
\(697\) 0 0
\(698\) −17.4563 + 24.0266i −0.660732 + 0.909419i
\(699\) 29.5249 10.0141i 1.11673 0.378767i
\(700\) −12.1050 3.93314i −0.457525 0.148659i
\(701\) −5.56231 17.1190i −0.210085 0.646576i −0.999466 0.0326724i \(-0.989598\pi\)
0.789381 0.613904i \(-0.210402\pi\)
\(702\) −7.61471 20.6886i −0.287399 0.780839i
\(703\) 0 0
\(704\) 0 0
\(705\) 14.0000 19.7990i 0.527271 0.745673i
\(706\) −13.3001 18.3060i −0.500554 0.688954i
\(707\) −24.2099 + 7.86629i −0.910509 + 0.295842i
\(708\) 15.7042 11.7208i 0.590202 0.440494i
\(709\) 8.09017 + 5.87785i 0.303833 + 0.220747i 0.729246 0.684252i \(-0.239871\pi\)
−0.425413 + 0.904999i \(0.639871\pi\)
\(710\) −8.09017 5.87785i −0.303619 0.220592i
\(711\) 0.326787 + 12.7237i 0.0122555 + 0.477177i
\(712\) −5.37999 + 1.74806i −0.201624 + 0.0655115i
\(713\) 3.32502 + 4.57649i 0.124523 + 0.171391i
\(714\) 0 0
\(715\) 0 0
\(716\) 5.65685i 0.211407i
\(717\) 0.266843 + 20.7829i 0.00996542 + 0.776151i
\(718\) 0 0
\(719\) −30.9349 10.0514i −1.15368 0.374853i −0.331151 0.943578i \(-0.607437\pi\)
−0.822528 + 0.568725i \(0.807437\pi\)
\(720\) −4.06732 1.20702i −0.151580 0.0449829i
\(721\) 9.97505 13.7295i 0.371490 0.511312i
\(722\) 5.87132 18.0701i 0.218508 0.672499i
\(723\) 4.36178 14.0348i 0.162216 0.521959i
\(724\) −1.61803 + 1.17557i −0.0601338 + 0.0436897i
\(725\) −18.0000 −0.668503
\(726\) 0 0
\(727\) 44.0000 1.63187 0.815935 0.578144i \(-0.196223\pi\)
0.815935 + 0.578144i \(0.196223\pi\)
\(728\) −14.5623 + 10.5801i −0.539715 + 0.392126i
\(729\) −6.34258 + 26.2445i −0.234910 + 0.972017i
\(730\) 0 0
\(731\) 0 0
\(732\) −2.36034 6.95908i −0.0872407 0.257215i
\(733\) 4.03499 + 1.31105i 0.149036 + 0.0484247i 0.382585 0.923920i \(-0.375034\pi\)
−0.233549 + 0.972345i \(0.575034\pi\)
\(734\) −8.65248 26.6296i −0.319369 0.982916i
\(735\) −26.9422 + 0.345925i −0.993777 + 0.0127596i
\(736\) 1.41421i 0.0521286i
\(737\) 0 0
\(738\) −6.00000 16.9706i −0.220863 0.624695i
\(739\) −14.9626 20.5942i −0.550407 0.757570i 0.439660 0.898164i \(-0.355099\pi\)
−0.990067 + 0.140594i \(0.955099\pi\)
\(740\) −2.68999 + 0.874032i −0.0988861 + 0.0321301i
\(741\) 0 0
\(742\) 24.2705 + 17.6336i 0.890998 + 0.647348i
\(743\) −19.4164 14.1068i −0.712319 0.517530i 0.171602 0.985166i \(-0.445106\pi\)
−0.883921 + 0.467636i \(0.845106\pi\)
\(744\) −4.14392 5.55229i −0.151923 0.203557i
\(745\) −8.06998 + 2.62210i −0.295661 + 0.0960662i
\(746\) −17.4563 24.0266i −0.639122 0.879676i
\(747\) −12.0000 33.9411i −0.439057 1.24184i
\(748\) 0 0
\(749\) 76.3675i 2.79041i
\(750\) 19.5943 0.251582i 0.715483 0.00918646i
\(751\) −12.3607 38.0423i −0.451048 1.38818i −0.875713 0.482832i \(-0.839608\pi\)
0.424666 0.905350i \(-0.360392\pi\)
\(752\) 9.41498 + 3.05911i 0.343329 + 0.111554i
\(753\) 3.14712 + 9.27877i 0.114687 + 0.338137i
\(754\) −14.9626 + 20.5942i −0.544905 + 0.749997i
\(755\) 1.85410 5.70634i 0.0674777 0.207675i
\(756\) 22.0291 0.848901i 0.801189 0.0308742i
\(757\) −1.61803 + 1.17557i −0.0588084 + 0.0427268i −0.616801 0.787119i \(-0.711572\pi\)
0.557993 + 0.829846i \(0.311572\pi\)
\(758\) 2.00000 0.0726433
\(759\) 0 0
\(760\) 0 0
\(761\) −19.4164 + 14.1068i −0.703844 + 0.511373i −0.881182 0.472777i \(-0.843252\pi\)
0.177338 + 0.984150i \(0.443252\pi\)
\(762\) 6.54267 21.0522i 0.237016 0.762639i
\(763\) −16.6869 + 51.3571i −0.604107 + 1.85925i
\(764\) 5.81878 8.00886i 0.210516 0.289750i
\(765\) 0 0
\(766\) 1.34500 + 0.437016i 0.0485967 + 0.0157900i
\(767\) 14.8328 + 45.6507i 0.535582 + 1.64835i
\(768\) −0.0222369 1.73191i −0.000802404 0.0624948i
\(769\) 42.4264i 1.52994i 0.644069 + 0.764968i \(0.277245\pi\)
−0.644069 + 0.764968i \(0.722755\pi\)
\(770\) 0 0
\(771\) 16.0000 + 11.3137i 0.576226 + 0.407453i
\(772\) 4.98752 + 6.86474i 0.179505 + 0.247067i
\(773\) −17.4850 + 5.68121i −0.628890 + 0.204339i −0.606083 0.795401i \(-0.707260\pi\)
−0.0228069 + 0.999740i \(0.507260\pi\)
\(774\) −0.653574 25.4475i −0.0234922 0.914690i
\(775\) 9.70820 + 7.05342i 0.348729 + 0.253366i
\(776\) −6.47214 4.70228i −0.232336 0.168802i
\(777\) 11.7782 8.79058i 0.422540 0.315360i
\(778\) −9.41498 + 3.05911i −0.337543 + 0.109674i
\(779\) 0 0
\(780\) 6.00000 8.48528i 0.214834 0.303822i
\(781\) 0 0
\(782\) 0 0
\(783\) 29.2580 10.7688i 1.04560 0.384846i
\(784\) −3.39919 10.4616i −0.121400 0.373629i
\(785\) −29.5899 9.61435i −1.05611 0.343151i
\(786\) −19.6833 + 6.67605i −0.702078 + 0.238127i
\(787\) 24.9376 34.3237i 0.888930 1.22351i −0.0849366 0.996386i \(-0.527069\pi\)
0.973867 0.227121i \(-0.0729312\pi\)
\(788\) −5.56231 + 17.1190i −0.198149 + 0.609840i
\(789\) −19.8482 6.16849i −0.706613 0.219604i
\(790\) −4.85410 + 3.52671i −0.172701 + 0.125475i
\(791\) −48.0000 −1.70668
\(792\) 0 0
\(793\) 18.0000 0.639199
\(794\) 27.5066 19.9847i 0.976172 0.709230i
\(795\) −16.5401 5.14040i −0.586618 0.182311i
\(796\) −4.94427 + 15.2169i −0.175245 + 0.539349i
\(797\) 0.831254 1.14412i 0.0294445 0.0405269i −0.794041 0.607864i \(-0.792026\pi\)
0.823485 + 0.567337i \(0.192026\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.927051 + 2.85317i 0.0327762 + 0.100875i
\(801\) −9.61926 + 13.9811i −0.339880 + 0.493996i
\(802\) 36.7696i 1.29838i
\(803\) 0 0
\(804\) 4.00000 5.65685i 0.141069 0.199502i
\(805\) −4.98752 6.86474i −0.175787 0.241950i
\(806\) 16.1400 5.24419i 0.568506 0.184719i
\(807\) 9.81516 7.32549i 0.345510 0.257869i
\(808\) 4.85410 + 3.52671i 0.170767 + 0.124069i
\(809\) 43.6869 + 31.7404i 1.53595 + 1.11593i 0.952812 + 0.303560i \(0.0981753\pi\)
0.583138 + 0.812373i \(0.301825\pi\)
\(810\) −11.8871 + 4.54934i −0.417671 + 0.159848i
\(811\) 24.2099 7.86629i 0.850126 0.276223i 0.148627 0.988893i \(-0.452515\pi\)
0.701499 + 0.712671i \(0.252515\pi\)
\(812\) −14.9626 20.5942i −0.525083 0.722715i
\(813\) 18.0000 + 12.7279i 0.631288 + 0.446388i
\(814\) 0 0
\(815\) 2.82843i 0.0990755i
\(816\) 0 0
\(817\) 0 0
\(818\) −8.06998 2.62210i −0.282160 0.0916794i
\(819\) −15.3628 + 51.7686i −0.536821 + 1.80894i
\(820\) 4.98752 6.86474i 0.174172 0.239727i
\(821\) 9.27051 28.5317i 0.323543 0.995763i −0.648551 0.761171i \(-0.724625\pi\)
0.972094 0.234592i \(-0.0753753\pi\)
\(822\) −1.45393 + 4.67826i −0.0507115 + 0.163173i
\(823\) 32.3607 23.5114i 1.12802 0.819556i 0.142617 0.989778i \(-0.454448\pi\)
0.985406 + 0.170222i \(0.0544484\pi\)
\(824\) −4.00000 −0.139347
\(825\) 0 0
\(826\) −48.0000 −1.67013
\(827\) −29.1246 + 21.1603i −1.01276 + 0.735815i −0.964787 0.263034i \(-0.915277\pi\)
−0.0479754 + 0.998849i \(0.515277\pi\)
\(828\) 2.58107 + 3.36721i 0.0896982 + 0.117019i
\(829\) 0.618034 1.90211i 0.0214652 0.0660631i −0.939750 0.341862i \(-0.888942\pi\)
0.961215 + 0.275799i \(0.0889424\pi\)
\(830\) 9.97505 13.7295i 0.346239 0.476557i
\(831\) 11.8017 + 34.7954i 0.409396 + 1.20704i
\(832\) 4.03499 + 1.31105i 0.139888 + 0.0454524i
\(833\) 0 0
\(834\) 29.3915 0.377372i 1.01774 0.0130673i
\(835\) 16.9706i 0.587291i
\(836\) 0 0
\(837\) −20.0000 5.65685i −0.691301 0.195529i
\(838\) 6.65003 + 9.15298i 0.229722 + 0.316185i
\(839\) 14.7950 4.80718i 0.510779 0.165962i −0.0422775 0.999106i \(-0.513461\pi\)
0.553056 + 0.833144i \(0.313461\pi\)
\(840\) 6.21588 + 8.32844i 0.214468 + 0.287358i
\(841\) −5.66312 4.11450i −0.195280 0.141879i
\(842\) 8.09017 + 5.87785i 0.278806 + 0.202564i
\(843\) 12.4318 + 16.6569i 0.428173 + 0.573693i
\(844\) 8.06998 2.62210i 0.277780 0.0902563i
\(845\) 4.15627 + 5.72061i 0.142980 + 0.196795i
\(846\) 28.0000 9.89949i 0.962660 0.340352i
\(847\) 0 0
\(848\) 7.07107i 0.242821i
\(849\) −14.6957 + 0.188686i −0.504356 + 0.00647569i
\(850\) 0 0
\(851\) 2.68999 + 0.874032i 0.0922118 + 0.0299614i
\(852\) −3.93390 11.5985i −0.134773 0.397357i
\(853\) 12.4688 17.1618i 0.426924 0.587610i −0.540320 0.841460i \(-0.681697\pi\)
0.967244 + 0.253849i \(0.0816968\pi\)
\(854\) −5.56231 + 17.1190i −0.190338 + 0.585801i
\(855\) 0 0
\(856\) −14.5623 + 10.5801i −0.497729 + 0.361622i
\(857\) −6.00000 −0.204956 −0.102478 0.994735i \(-0.532677\pi\)
−0.102478 + 0.994735i \(0.532677\pi\)
\(858\) 0 0
\(859\) −22.0000 −0.750630 −0.375315 0.926897i \(-0.622466\pi\)
−0.375315 + 0.926897i \(0.622466\pi\)
\(860\) 9.70820 7.05342i 0.331047 0.240520i
\(861\) −13.0853 + 42.1043i −0.445947 + 1.43491i
\(862\) 11.1246 34.2380i 0.378906 1.16615i
\(863\) −4.15627 + 5.72061i −0.141481 + 0.194732i −0.873877 0.486147i \(-0.838402\pi\)
0.732396 + 0.680879i \(0.238402\pi\)
\(864\) −3.21383 4.08305i −0.109337 0.138908i
\(865\) −8.06998 2.62210i −0.274388 0.0891539i
\(866\) 0.618034 + 1.90211i 0.0210016 + 0.0646364i
\(867\) 0.378027 + 29.4424i 0.0128385 + 0.999918i
\(868\) 16.9706i 0.576018i
\(869\) 0 0
\(870\) 12.0000 + 8.48528i 0.406838 + 0.287678i
\(871\) 9.97505 + 13.7295i 0.337992 + 0.465205i
\(872\) 12.1050 3.93314i 0.409926 0.133193i
\(873\) −23.9921 + 0.616196i −0.812009 + 0.0208551i
\(874\) 0 0
\(875\) −38.8328 28.2137i −1.31279 0.953797i
\(876\) 0 0
\(877\) −28.2449 + 9.17734i −0.953764 + 0.309897i −0.744244 0.667908i \(-0.767190\pi\)
−0.209520 + 0.977804i \(0.567190\pi\)
\(878\) −12.4688 17.1618i −0.420802 0.579184i
\(879\) −6.00000 + 8.48528i −0.202375 + 0.286201i
\(880\) 0 0
\(881\) 5.65685i 0.190584i 0.995449 + 0.0952921i \(0.0303785\pi\)
−0.995449 + 0.0952921i \(0.969621\pi\)
\(882\) −27.1868 18.7051i −0.915426 0.629832i
\(883\) 6.18034 + 19.0211i 0.207985 + 0.640112i 0.999578 + 0.0290628i \(0.00925227\pi\)
−0.791593 + 0.611049i \(0.790748\pi\)
\(884\) 0 0
\(885\) 26.2443 8.90140i 0.882194 0.299217i
\(886\) −16.6251 + 22.8825i −0.558530 + 0.768751i
\(887\) −14.8328 + 45.6507i −0.498037 + 1.53280i 0.314132 + 0.949379i \(0.398286\pi\)
−0.812169 + 0.583422i \(0.801714\pi\)
\(888\) −3.30803 1.02808i −0.111010 0.0345001i
\(889\) −43.6869 + 31.7404i −1.46521 + 1.06454i
\(890\) −8.00000 −0.268161
\(891\) 0 0
\(892\) 8.00000 0.267860
\(893\) 0 0
\(894\) −9.92408 3.08424i −0.331911 0.103153i
\(895\) −2.47214 + 7.60845i −0.0826344 + 0.254323i
\(896\) −2.49376 + 3.43237i −0.0833107 + 0.114667i
\(897\) −9.84163 + 3.33803i −0.328602 + 0.111453i
\(898\) 29.5899 + 9.61435i 0.987429 + 0.320835i
\(899\) 7.41641 + 22.8254i 0.247351 + 0.761268i
\(900\) 7.41457 + 5.10138i 0.247152 + 0.170046i
\(901\) 0 0
\(902\) 0 0
\(903\) −36.0000 + 50.9117i −1.19800 + 1.69423i
\(904\) 6.65003 + 9.15298i 0.221177 + 0.304424i
\(905\) −2.68999 + 0.874032i −0.0894184 + 0.0290538i
\(906\) 5.88909 4.39529i 0.195652 0.146024i
\(907\) −35.5967 25.8626i −1.18197 0.858752i −0.189578 0.981866i \(-0.560712\pi\)
−0.992393 + 0.123114i \(0.960712\pi\)
\(908\) 4.85410 + 3.52671i 0.161089 + 0.117038i
\(909\) 17.9941 0.462147i 0.596826 0.0153284i
\(910\) −24.2099 + 7.86629i −0.802552 + 0.260765i
\(911\) −5.81878 8.00886i −0.192785 0.265345i 0.701672 0.712500i \(-0.252437\pi\)
−0.894457 + 0.447155i \(0.852437\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 8.48528i 0.280668i
\(915\) −0.133421 10.3914i −0.00441077 0.343531i
\(916\) 4.32624 + 13.3148i 0.142943 + 0.439933i
\(917\) 48.4199 + 15.7326i 1.59897 + 0.519535i
\(918\) 0 0
\(919\) −22.4439 + 30.8913i −0.740354 + 1.01901i 0.258244 + 0.966080i \(0.416856\pi\)
−0.998598 + 0.0529307i \(0.983144\pi\)
\(920\) −0.618034 + 1.90211i −0.0203760 + 0.0627108i
\(921\) 0 0
\(922\) −24.2705 + 17.6336i −0.799307 + 0.580730i
\(923\) 30.0000 0.987462
\(924\) 0 0
\(925\) 6.00000 0.197279
\(926\) −25.8885 + 18.8091i −0.850750 + 0.618106i
\(927\) −9.52391 + 7.30035i −0.312806 + 0.239775i
\(928\) −1.85410 + 5.70634i −0.0608639 + 0.187320i
\(929\) −1.66251 + 2.28825i −0.0545451 + 0.0750749i −0.835418 0.549615i \(-0.814775\pi\)
0.780873 + 0.624690i \(0.214775\pi\)
\(930\) −3.14712 9.27877i −0.103198 0.304263i
\(931\) 0 0
\(932\) 5.56231 + 17.1190i 0.182199 + 0.560752i
\(933\) 46.5365 0.597506i 1.52354 0.0195615i
\(934\) 31.1127i 1.01804i
\(935\) 0 0
\(936\) 12.0000 4.24264i 0.392232 0.138675i
\(937\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(938\) −16.1400 + 5.24419i −0.526989 + 0.171229i
\(939\) −10.3598 13.8807i −0.338079 0.452980i
\(940\) 11.3262 + 8.22899i 0.369421 + 0.268400i
\(941\) −33.9787 24.6870i −1.10767 0.804773i −0.125379 0.992109i \(-0.540015\pi\)
−0.982296 + 0.187336i \(0.940015\pi\)
\(942\) −22.7916 30.5376i −0.742589 0.994969i
\(943\) −8.06998 + 2.62210i −0.262795 + 0.0853872i
\(944\) 6.65003 + 9.15298i 0.216440 + 0.297904i
\(945\) 30.0000 + 8.48528i 0.975900 + 0.276026i
\(946\) 0 0
\(947\) 48.0833i 1.56250i 0.624221 + 0.781248i \(0.285417\pi\)
−0.624221 + 0.781248i \(0.714583\pi\)
\(948\) −7.34786 + 0.0943431i −0.238648 + 0.00306412i
\(949\) 0 0
\(950\) 0 0
\(951\) 5.50746 + 16.2379i 0.178592 + 0.526548i
\(952\) 0 0
\(953\) −16.6869 + 51.3571i −0.540542 + 1.66362i 0.190817 + 0.981626i \(0.438886\pi\)
−0.731359 + 0.681992i \(0.761114\pi\)
\(954\) −12.9053 16.8361i −0.417825 0.545087i
\(955\) 11.3262 8.22899i 0.366508 0.266284i
\(956\) −12.0000 −0.388108
\(957\) 0 0
\(958\) 12.0000 0.387702
\(959\) 9.70820 7.05342i 0.313494 0.227767i
\(960\) 0.726963 2.33913i 0.0234626 0.0754951i
\(961\) −4.63525 + 14.2658i −0.149524 + 0.460189i
\(962\) 4.98752 6.86474i 0.160804 0.221328i
\(963\) −15.3628 + 51.7686i −0.495060 + 1.66822i
\(964\) 8.06998 + 2.62210i 0.259917 + 0.0844520i
\(965\) 3.70820 + 11.4127i 0.119371 + 0.367387i
\(966\) −0.133421 10.3914i −0.00429276 0.334339i
\(967\) 4.24264i 0.136434i 0.997671 + 0.0682171i \(0.0217310\pi\)
−0.997671 + 0.0682171i \(0.978269\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −6.65003 9.15298i −0.213520 0.293885i
\(971\) 43.0399 13.9845i 1.38122 0.448784i 0.478147 0.878280i \(-0.341309\pi\)
0.903069 + 0.429495i \(0.141309\pi\)
\(972\) −15.1040 3.85612i −0.484461 0.123685i
\(973\) −58.2492 42.3205i −1.86738 1.35673i
\(974\) −16.1803 11.7557i −0.518452 0.376677i
\(975\) −17.6673 + 13.1859i −0.565806 + 0.422286i
\(976\) 4.03499 1.31105i 0.129157 0.0419656i
\(977\) −8.31254 11.4412i −0.265942 0.366037i 0.655073 0.755566i \(-0.272638\pi\)
−0.921014 + 0.389529i \(0.872638\pi\)
\(978\) −2.00000 + 2.82843i −0.0639529 + 0.0904431i
\(979\) 0 0
\(980\) 15.5563i 0.496929i
\(981\) 21.6433 31.4574i 0.691018 1.00436i
\(982\) 1.85410 + 5.70634i 0.0591668 + 0.182097i
\(983\) 9.41498 + 3.05911i 0.300291 + 0.0975705i 0.455287 0.890345i \(-0.349537\pi\)
−0.154996 + 0.987915i \(0.549537\pi\)
\(984\) 9.84163 3.33803i 0.313740 0.106412i
\(985\) −14.9626 + 20.5942i −0.476747 + 0.656186i
\(986\) 0 0
\(987\) −69.4686 21.5897i −2.21121 0.687208i
\(988\) 0 0
\(989\) −12.0000 −0.381578
\(990\) 0 0
\(991\) 20.0000 0.635321 0.317660 0.948205i \(-0.397103\pi\)
0.317660 + 0.948205i \(0.397103\pi\)
\(992\) 3.23607 2.35114i 0.102745 0.0746488i
\(993\) 16.5401 + 5.14040i 0.524885 + 0.163126i
\(994\) −9.27051 + 28.5317i −0.294043 + 0.904970i
\(995\) −13.3001 + 18.3060i −0.421640 + 0.580338i
\(996\) 19.6833 6.67605i 0.623688 0.211539i
\(997\) −28.2449 9.17734i −0.894526 0.290649i −0.174550 0.984648i \(-0.555847\pi\)
−0.719976 + 0.693999i \(0.755847\pi\)
\(998\) 4.32624 + 13.3148i 0.136945 + 0.421472i
\(999\) −9.75268 + 3.58961i −0.308561 + 0.113570i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 726.2.h.e.239.1 8
3.2 odd 2 726.2.h.i.239.2 8
11.2 odd 10 66.2.b.a.65.2 yes 2
11.3 even 5 inner 726.2.h.e.215.2 8
11.4 even 5 inner 726.2.h.e.161.2 8
11.5 even 5 inner 726.2.h.e.233.1 8
11.6 odd 10 726.2.h.i.233.1 8
11.7 odd 10 726.2.h.i.161.2 8
11.8 odd 10 726.2.h.i.215.2 8
11.9 even 5 66.2.b.b.65.2 yes 2
11.10 odd 2 726.2.h.i.239.1 8
33.2 even 10 66.2.b.b.65.1 yes 2
33.5 odd 10 726.2.h.i.233.2 8
33.8 even 10 inner 726.2.h.e.215.1 8
33.14 odd 10 726.2.h.i.215.1 8
33.17 even 10 inner 726.2.h.e.233.2 8
33.20 odd 10 66.2.b.a.65.1 2
33.26 odd 10 726.2.h.i.161.1 8
33.29 even 10 inner 726.2.h.e.161.1 8
33.32 even 2 inner 726.2.h.e.239.2 8
44.31 odd 10 528.2.b.c.65.1 2
44.35 even 10 528.2.b.b.65.1 2
55.2 even 20 1650.2.f.b.1649.2 4
55.9 even 10 1650.2.d.a.1451.1 2
55.13 even 20 1650.2.f.b.1649.3 4
55.24 odd 10 1650.2.d.b.1451.1 2
55.42 odd 20 1650.2.f.a.1649.4 4
55.53 odd 20 1650.2.f.a.1649.1 4
88.13 odd 10 2112.2.b.g.65.1 2
88.35 even 10 2112.2.b.d.65.2 2
88.53 even 10 2112.2.b.i.65.1 2
88.75 odd 10 2112.2.b.b.65.2 2
99.2 even 30 1782.2.i.c.1187.2 4
99.13 odd 30 1782.2.i.f.593.2 4
99.20 odd 30 1782.2.i.f.1187.2 4
99.31 even 15 1782.2.i.c.593.2 4
99.68 even 30 1782.2.i.c.593.1 4
99.79 odd 30 1782.2.i.f.1187.1 4
99.86 odd 30 1782.2.i.f.593.1 4
99.97 even 15 1782.2.i.c.1187.1 4
132.35 odd 10 528.2.b.c.65.2 2
132.119 even 10 528.2.b.b.65.2 2
165.2 odd 20 1650.2.f.a.1649.3 4
165.53 even 20 1650.2.f.b.1649.4 4
165.68 odd 20 1650.2.f.a.1649.2 4
165.119 odd 10 1650.2.d.b.1451.2 2
165.134 even 10 1650.2.d.a.1451.2 2
165.152 even 20 1650.2.f.b.1649.1 4
264.35 odd 10 2112.2.b.b.65.1 2
264.53 odd 10 2112.2.b.g.65.2 2
264.101 even 10 2112.2.b.i.65.2 2
264.251 even 10 2112.2.b.d.65.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
66.2.b.a.65.1 2 33.20 odd 10
66.2.b.a.65.2 yes 2 11.2 odd 10
66.2.b.b.65.1 yes 2 33.2 even 10
66.2.b.b.65.2 yes 2 11.9 even 5
528.2.b.b.65.1 2 44.35 even 10
528.2.b.b.65.2 2 132.119 even 10
528.2.b.c.65.1 2 44.31 odd 10
528.2.b.c.65.2 2 132.35 odd 10
726.2.h.e.161.1 8 33.29 even 10 inner
726.2.h.e.161.2 8 11.4 even 5 inner
726.2.h.e.215.1 8 33.8 even 10 inner
726.2.h.e.215.2 8 11.3 even 5 inner
726.2.h.e.233.1 8 11.5 even 5 inner
726.2.h.e.233.2 8 33.17 even 10 inner
726.2.h.e.239.1 8 1.1 even 1 trivial
726.2.h.e.239.2 8 33.32 even 2 inner
726.2.h.i.161.1 8 33.26 odd 10
726.2.h.i.161.2 8 11.7 odd 10
726.2.h.i.215.1 8 33.14 odd 10
726.2.h.i.215.2 8 11.8 odd 10
726.2.h.i.233.1 8 11.6 odd 10
726.2.h.i.233.2 8 33.5 odd 10
726.2.h.i.239.1 8 11.10 odd 2
726.2.h.i.239.2 8 3.2 odd 2
1650.2.d.a.1451.1 2 55.9 even 10
1650.2.d.a.1451.2 2 165.134 even 10
1650.2.d.b.1451.1 2 55.24 odd 10
1650.2.d.b.1451.2 2 165.119 odd 10
1650.2.f.a.1649.1 4 55.53 odd 20
1650.2.f.a.1649.2 4 165.68 odd 20
1650.2.f.a.1649.3 4 165.2 odd 20
1650.2.f.a.1649.4 4 55.42 odd 20
1650.2.f.b.1649.1 4 165.152 even 20
1650.2.f.b.1649.2 4 55.2 even 20
1650.2.f.b.1649.3 4 55.13 even 20
1650.2.f.b.1649.4 4 165.53 even 20
1782.2.i.c.593.1 4 99.68 even 30
1782.2.i.c.593.2 4 99.31 even 15
1782.2.i.c.1187.1 4 99.97 even 15
1782.2.i.c.1187.2 4 99.2 even 30
1782.2.i.f.593.1 4 99.86 odd 30
1782.2.i.f.593.2 4 99.13 odd 30
1782.2.i.f.1187.1 4 99.79 odd 30
1782.2.i.f.1187.2 4 99.20 odd 30
2112.2.b.b.65.1 2 264.35 odd 10
2112.2.b.b.65.2 2 88.75 odd 10
2112.2.b.d.65.1 2 264.251 even 10
2112.2.b.d.65.2 2 88.35 even 10
2112.2.b.g.65.1 2 88.13 odd 10
2112.2.b.g.65.2 2 264.53 odd 10
2112.2.b.i.65.1 2 88.53 even 10
2112.2.b.i.65.2 2 264.101 even 10