Properties

Label 726.2.h
Level $726$
Weight $2$
Character orbit 726.h
Rep. character $\chi_{726}(161,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $144$
Newform subspaces $12$
Sturm bound $264$
Trace bound $9$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 726 = 2 \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 726.h (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 33 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 12 \)
Sturm bound: \(264\)
Trace bound: \(9\)
Distinguishing \(T_p\): \(5\), \(7\), \(17\), \(29\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(726, [\chi])\).

Total New Old
Modular forms 624 144 480
Cusp forms 432 144 288
Eisenstein series 192 0 192

Trace form

\( 144 q - 6 q^{3} - 36 q^{4} + 5 q^{6} + 18 q^{9} + 14 q^{12} + 12 q^{15} - 36 q^{16} + 5 q^{18} + 30 q^{19} - 5 q^{24} + 64 q^{25} - 12 q^{27} - 10 q^{28} - 30 q^{30} - 38 q^{31} - 36 q^{34} - 7 q^{36} - 20 q^{37}+ \cdots + 70 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(726, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
726.2.h.a 726.h 33.f $8$ $5.797$ 8.0.185640625.1 None 66.2.h.a \(-2\) \(-3\) \(5\) \(-5\) $\mathrm{SU}(2)[C_{10}]$ \(q+(-1+\beta _{2}+\beta _{4}-\beta _{6})q^{2}+\beta _{5}q^{3}+\cdots\)
726.2.h.b 726.h 33.f $8$ $5.797$ 8.0.64000000.1 None 726.2.b.a \(-2\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q-\beta _{6}q^{2}+(-1+\beta _{2}-\beta _{3}-\beta _{4}+\beta _{6}+\cdots)q^{3}+\cdots\)
726.2.h.c 726.h 33.f $8$ $5.797$ 8.0.185640625.1 None 66.2.h.a \(-2\) \(2\) \(-5\) \(5\) $\mathrm{SU}(2)[C_{10}]$ \(q-\beta _{4}q^{2}+(\beta _{2}+\beta _{3}+\beta _{4})q^{3}+\beta _{6}q^{4}+\cdots\)
726.2.h.d 726.h 33.f $8$ $5.797$ 8.0.185640625.1 None 66.2.h.a \(-2\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+\beta _{6}q^{2}-\beta _{7}q^{3}+(-1+\beta _{2}+\beta _{4}+\cdots)q^{4}+\cdots\)
726.2.h.e 726.h 33.f $8$ $5.797$ 8.0.64000000.1 None 66.2.b.a \(-2\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q-\beta _{6}q^{2}+(1-\beta _{2}+\beta _{3}+\beta _{4}-\beta _{6}+\cdots)q^{3}+\cdots\)
726.2.h.f 726.h 33.f $8$ $5.797$ 8.0.185640625.1 None 66.2.h.a \(2\) \(-3\) \(5\) \(5\) $\mathrm{SU}(2)[C_{10}]$ \(q+(1-\beta _{2}-\beta _{4}+\beta _{6})q^{2}+\beta _{5}q^{3}-\beta _{2}q^{4}+\cdots\)
726.2.h.g 726.h 33.f $8$ $5.797$ 8.0.64000000.1 None 726.2.b.a \(2\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+(1-\beta _{2}+\beta _{4}-\beta _{6})q^{2}+(\beta _{1}-\beta _{3}+\cdots)q^{3}+\cdots\)
726.2.h.h 726.h 33.f $8$ $5.797$ 8.0.185640625.1 None 66.2.h.a \(2\) \(2\) \(-5\) \(-5\) $\mathrm{SU}(2)[C_{10}]$ \(q+(1-\beta _{2}-\beta _{4}+\beta _{6})q^{2}+(1+\beta _{1}+\beta _{3}+\cdots)q^{3}+\cdots\)
726.2.h.i 726.h 33.f $8$ $5.797$ 8.0.64000000.1 None 66.2.b.a \(2\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q-\beta _{4}q^{2}+(\beta _{2}-\beta _{7})q^{3}+(-1+\beta _{2}+\cdots)q^{4}+\cdots\)
726.2.h.j 726.h 33.f $8$ $5.797$ 8.0.185640625.1 None 66.2.h.a \(2\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q-\beta _{6}q^{2}+(\beta _{2}+\beta _{3}+\beta _{4})q^{3}+(-1+\cdots)q^{4}+\cdots\)
726.2.h.k 726.h 33.f $32$ $5.797$ None 726.2.b.d \(-8\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$
726.2.h.l 726.h 33.f $32$ $5.797$ None 726.2.b.d \(8\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$

Decomposition of \(S_{2}^{\mathrm{old}}(726, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(726, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(66, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(363, [\chi])\)\(^{\oplus 2}\)