Defining parameters
Level: | \( N \) | = | \( 726 = 2 \cdot 3 \cdot 11^{2} \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 8 \) | ||
Newform subspaces: | \( 61 \) | ||
Sturm bound: | \(58080\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(726))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 15160 | 3569 | 11591 |
Cusp forms | 13881 | 3569 | 10312 |
Eisenstein series | 1279 | 0 | 1279 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(726))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(726))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(726)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(66))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(121))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(242))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(363))\)\(^{\oplus 2}\)