L(s) = 1 | + (0.809 + 0.587i)2-s + (−1.65 + 0.514i)3-s + (0.309 + 0.951i)4-s + (0.831 + 1.14i)5-s + (−1.64 − 0.556i)6-s + (4.03 − 1.31i)7-s + (−0.309 + 0.951i)8-s + (2.47 − 1.70i)9-s + 1.41i·10-s + (−1 − 1.41i)12-s + (2.49 − 3.43i)13-s + (4.03 + 1.31i)14-s + (−1.96 − 1.46i)15-s + (−0.809 + 0.587i)16-s + (2.99 + 0.0770i)18-s + ⋯ |
L(s) = 1 | + (0.572 + 0.415i)2-s + (−0.954 + 0.296i)3-s + (0.154 + 0.475i)4-s + (0.371 + 0.511i)5-s + (−0.669 − 0.227i)6-s + (1.52 − 0.495i)7-s + (−0.109 + 0.336i)8-s + (0.823 − 0.566i)9-s + 0.447i·10-s + (−0.288 − 0.408i)12-s + (0.691 − 0.951i)13-s + (1.07 + 0.350i)14-s + (−0.506 − 0.378i)15-s + (−0.202 + 0.146i)16-s + (0.706 + 0.0181i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 726 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.578 - 0.815i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 726 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.578 - 0.815i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.77962 + 0.919052i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.77962 + 0.919052i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.809 - 0.587i)T \) |
| 3 | \( 1 + (1.65 - 0.514i)T \) |
| 11 | \( 1 \) |
good | 5 | \( 1 + (-0.831 - 1.14i)T + (-1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (-4.03 + 1.31i)T + (5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-2.49 + 3.43i)T + (-4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 1.41iT - 23T^{2} \) |
| 29 | \( 1 + (-1.85 - 5.70i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-3.23 - 2.35i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-0.618 - 1.90i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (1.85 - 5.70i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 8.48iT - 43T^{2} \) |
| 47 | \( 1 + (9.41 + 3.05i)T + (38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-4.15 + 5.72i)T + (-16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (10.7 - 3.49i)T + (47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-2.49 - 3.43i)T + (-18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 4T + 67T^{2} \) |
| 71 | \( 1 + (4.15 + 5.72i)T + (-21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (2.49 - 3.43i)T + (-24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-9.70 + 7.05i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 5.65iT - 89T^{2} \) |
| 97 | \( 1 + (6.47 + 4.70i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.69242365897194125305907229629, −10.05703427660864650581451351562, −8.562135644905955213008786044659, −7.80250841517783062540080083069, −6.77859667824464156789057457503, −6.04179415814720457533846824128, −5.04202824584314898350056604507, −4.48674843145361253599518791203, −3.16811680070821641828285700681, −1.36767913838784326792946203070,
1.30359000900874366050399778144, 2.10975783457038230183857160864, 4.10608792316408735246493287198, 4.90735203643186144688813690679, 5.58337553817576345592050956372, 6.43103611652029513893575167741, 7.58869605979109634312452980348, 8.585361258798158788789354995788, 9.528849192795436628382497528331, 10.64502219031840719273655478978