Properties

Label 680.2.h.b
Level $680$
Weight $2$
Character orbit 680.h
Analytic conductor $5.430$
Analytic rank $0$
Dimension $40$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(509,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.509"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 40 q + 12 q^{4} - 56 q^{9} + 56 q^{15} - 4 q^{16} - 36 q^{26} - 28 q^{30} + 24 q^{34} + 88 q^{36} + 8 q^{49} - 16 q^{50} - 88 q^{55} - 88 q^{60} - 132 q^{64} + 208 q^{66} + 72 q^{70} - 20 q^{76} - 56 q^{81}+ \cdots - 36 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
509.1 −1.36282 0.377781i 0.944008i 1.71456 + 1.02970i −0.0976904 2.23393i −0.356628 + 1.28651i 2.88614 −1.94764 2.05102i 2.10885 −0.710803 + 3.08136i
509.2 −1.36282 0.377781i 0.944008i 1.71456 + 1.02970i 0.0976904 + 2.23393i 0.356628 1.28651i −2.88614 −1.94764 2.05102i 2.10885 0.710803 3.08136i
509.3 −1.36282 + 0.377781i 0.944008i 1.71456 1.02970i 0.0976904 2.23393i 0.356628 + 1.28651i −2.88614 −1.94764 + 2.05102i 2.10885 0.710803 + 3.08136i
509.4 −1.36282 + 0.377781i 0.944008i 1.71456 1.02970i −0.0976904 + 2.23393i −0.356628 1.28651i 2.88614 −1.94764 + 2.05102i 2.10885 −0.710803 3.08136i
509.5 −1.29647 0.564954i 2.10974i 1.36165 + 1.46489i −2.12767 + 0.687771i −1.19191 + 2.73521i 2.16636 −0.937746 2.66845i −1.45102 3.14701 + 0.310361i
509.6 −1.29647 0.564954i 2.10974i 1.36165 + 1.46489i 2.12767 0.687771i 1.19191 2.73521i −2.16636 −0.937746 2.66845i −1.45102 −3.14701 0.310361i
509.7 −1.29647 + 0.564954i 2.10974i 1.36165 1.46489i 2.12767 + 0.687771i 1.19191 + 2.73521i −2.16636 −0.937746 + 2.66845i −1.45102 −3.14701 + 0.310361i
509.8 −1.29647 + 0.564954i 2.10974i 1.36165 1.46489i −2.12767 0.687771i −1.19191 2.73521i 2.16636 −0.937746 + 2.66845i −1.45102 3.14701 0.310361i
509.9 −1.20224 0.744721i 1.24640i 0.890781 + 1.79067i 1.91133 1.16052i −0.928222 + 1.49848i −1.18000 0.262617 2.81621i 1.44648 −3.16215 0.0281742i
509.10 −1.20224 0.744721i 1.24640i 0.890781 + 1.79067i −1.91133 + 1.16052i 0.928222 1.49848i 1.18000 0.262617 2.81621i 1.44648 3.16215 + 0.0281742i
509.11 −1.20224 + 0.744721i 1.24640i 0.890781 1.79067i −1.91133 1.16052i 0.928222 + 1.49848i 1.18000 0.262617 + 2.81621i 1.44648 3.16215 0.0281742i
509.12 −1.20224 + 0.744721i 1.24640i 0.890781 1.79067i 1.91133 + 1.16052i −0.928222 1.49848i −1.18000 0.262617 + 2.81621i 1.44648 −3.16215 + 0.0281742i
509.13 −0.870262 1.11474i 3.10853i −0.485287 + 1.94023i −0.636925 + 2.14344i −3.46520 + 2.70523i 1.38296 2.58518 1.14754i −6.66293 2.94367 1.15535i
509.14 −0.870262 1.11474i 3.10853i −0.485287 + 1.94023i 0.636925 2.14344i 3.46520 2.70523i −1.38296 2.58518 1.14754i −6.66293 −2.94367 + 1.15535i
509.15 −0.870262 + 1.11474i 3.10853i −0.485287 1.94023i 0.636925 + 2.14344i 3.46520 + 2.70523i −1.38296 2.58518 + 1.14754i −6.66293 −2.94367 1.15535i
509.16 −0.870262 + 1.11474i 3.10853i −0.485287 1.94023i −0.636925 2.14344i −3.46520 2.70523i 1.38296 2.58518 + 1.14754i −6.66293 2.94367 + 1.15535i
509.17 −0.0956273 1.41098i 2.33268i −1.98171 + 0.269856i 1.97601 + 1.04660i −3.29135 + 0.223067i 4.43533 0.570266 + 2.77034i −2.44138 1.28777 2.88819i
509.18 −0.0956273 1.41098i 2.33268i −1.98171 + 0.269856i −1.97601 1.04660i 3.29135 0.223067i −4.43533 0.570266 + 2.77034i −2.44138 −1.28777 + 2.88819i
509.19 −0.0956273 + 1.41098i 2.33268i −1.98171 0.269856i −1.97601 + 1.04660i 3.29135 + 0.223067i −4.43533 0.570266 2.77034i −2.44138 −1.28777 2.88819i
509.20 −0.0956273 + 1.41098i 2.33268i −1.98171 0.269856i 1.97601 1.04660i −3.29135 0.223067i 4.43533 0.570266 2.77034i −2.44138 1.28777 + 2.88819i
See all 40 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 509.40
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
8.b even 2 1 inner
17.b even 2 1 inner
40.f even 2 1 inner
85.c even 2 1 inner
136.h even 2 1 inner
680.h even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 680.2.h.b 40
5.b even 2 1 inner 680.2.h.b 40
8.b even 2 1 inner 680.2.h.b 40
17.b even 2 1 inner 680.2.h.b 40
40.f even 2 1 inner 680.2.h.b 40
85.c even 2 1 inner 680.2.h.b 40
136.h even 2 1 inner 680.2.h.b 40
680.h even 2 1 inner 680.2.h.b 40
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
680.2.h.b 40 1.a even 1 1 trivial
680.2.h.b 40 5.b even 2 1 inner
680.2.h.b 40 8.b even 2 1 inner
680.2.h.b 40 17.b even 2 1 inner
680.2.h.b 40 40.f even 2 1 inner
680.2.h.b 40 85.c even 2 1 inner
680.2.h.b 40 136.h even 2 1 inner
680.2.h.b 40 680.h even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{10} + 22T_{3}^{8} + 169T_{3}^{6} + 554T_{3}^{4} + 738T_{3}^{2} + 324 \) acting on \(S_{2}^{\mathrm{new}}(680, [\chi])\). Copy content Toggle raw display