Newspace parameters
Level: | \( N \) | \(=\) | \( 680 = 2^{3} \cdot 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 680.h (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.42982733745\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
509.1 | −1.36282 | − | 0.377781i | − | 0.944008i | 1.71456 | + | 1.02970i | −0.0976904 | − | 2.23393i | −0.356628 | + | 1.28651i | 2.88614 | −1.94764 | − | 2.05102i | 2.10885 | −0.710803 | + | 3.08136i | |||||
509.2 | −1.36282 | − | 0.377781i | 0.944008i | 1.71456 | + | 1.02970i | 0.0976904 | + | 2.23393i | 0.356628 | − | 1.28651i | −2.88614 | −1.94764 | − | 2.05102i | 2.10885 | 0.710803 | − | 3.08136i | ||||||
509.3 | −1.36282 | + | 0.377781i | − | 0.944008i | 1.71456 | − | 1.02970i | 0.0976904 | − | 2.23393i | 0.356628 | + | 1.28651i | −2.88614 | −1.94764 | + | 2.05102i | 2.10885 | 0.710803 | + | 3.08136i | |||||
509.4 | −1.36282 | + | 0.377781i | 0.944008i | 1.71456 | − | 1.02970i | −0.0976904 | + | 2.23393i | −0.356628 | − | 1.28651i | 2.88614 | −1.94764 | + | 2.05102i | 2.10885 | −0.710803 | − | 3.08136i | ||||||
509.5 | −1.29647 | − | 0.564954i | − | 2.10974i | 1.36165 | + | 1.46489i | −2.12767 | + | 0.687771i | −1.19191 | + | 2.73521i | 2.16636 | −0.937746 | − | 2.66845i | −1.45102 | 3.14701 | + | 0.310361i | |||||
509.6 | −1.29647 | − | 0.564954i | 2.10974i | 1.36165 | + | 1.46489i | 2.12767 | − | 0.687771i | 1.19191 | − | 2.73521i | −2.16636 | −0.937746 | − | 2.66845i | −1.45102 | −3.14701 | − | 0.310361i | ||||||
509.7 | −1.29647 | + | 0.564954i | − | 2.10974i | 1.36165 | − | 1.46489i | 2.12767 | + | 0.687771i | 1.19191 | + | 2.73521i | −2.16636 | −0.937746 | + | 2.66845i | −1.45102 | −3.14701 | + | 0.310361i | |||||
509.8 | −1.29647 | + | 0.564954i | 2.10974i | 1.36165 | − | 1.46489i | −2.12767 | − | 0.687771i | −1.19191 | − | 2.73521i | 2.16636 | −0.937746 | + | 2.66845i | −1.45102 | 3.14701 | − | 0.310361i | ||||||
509.9 | −1.20224 | − | 0.744721i | − | 1.24640i | 0.890781 | + | 1.79067i | 1.91133 | − | 1.16052i | −0.928222 | + | 1.49848i | −1.18000 | 0.262617 | − | 2.81621i | 1.44648 | −3.16215 | − | 0.0281742i | |||||
509.10 | −1.20224 | − | 0.744721i | 1.24640i | 0.890781 | + | 1.79067i | −1.91133 | + | 1.16052i | 0.928222 | − | 1.49848i | 1.18000 | 0.262617 | − | 2.81621i | 1.44648 | 3.16215 | + | 0.0281742i | ||||||
509.11 | −1.20224 | + | 0.744721i | − | 1.24640i | 0.890781 | − | 1.79067i | −1.91133 | − | 1.16052i | 0.928222 | + | 1.49848i | 1.18000 | 0.262617 | + | 2.81621i | 1.44648 | 3.16215 | − | 0.0281742i | |||||
509.12 | −1.20224 | + | 0.744721i | 1.24640i | 0.890781 | − | 1.79067i | 1.91133 | + | 1.16052i | −0.928222 | − | 1.49848i | −1.18000 | 0.262617 | + | 2.81621i | 1.44648 | −3.16215 | + | 0.0281742i | ||||||
509.13 | −0.870262 | − | 1.11474i | − | 3.10853i | −0.485287 | + | 1.94023i | −0.636925 | + | 2.14344i | −3.46520 | + | 2.70523i | 1.38296 | 2.58518 | − | 1.14754i | −6.66293 | 2.94367 | − | 1.15535i | |||||
509.14 | −0.870262 | − | 1.11474i | 3.10853i | −0.485287 | + | 1.94023i | 0.636925 | − | 2.14344i | 3.46520 | − | 2.70523i | −1.38296 | 2.58518 | − | 1.14754i | −6.66293 | −2.94367 | + | 1.15535i | ||||||
509.15 | −0.870262 | + | 1.11474i | − | 3.10853i | −0.485287 | − | 1.94023i | 0.636925 | + | 2.14344i | 3.46520 | + | 2.70523i | −1.38296 | 2.58518 | + | 1.14754i | −6.66293 | −2.94367 | − | 1.15535i | |||||
509.16 | −0.870262 | + | 1.11474i | 3.10853i | −0.485287 | − | 1.94023i | −0.636925 | − | 2.14344i | −3.46520 | − | 2.70523i | 1.38296 | 2.58518 | + | 1.14754i | −6.66293 | 2.94367 | + | 1.15535i | ||||||
509.17 | −0.0956273 | − | 1.41098i | − | 2.33268i | −1.98171 | + | 0.269856i | 1.97601 | + | 1.04660i | −3.29135 | + | 0.223067i | 4.43533 | 0.570266 | + | 2.77034i | −2.44138 | 1.28777 | − | 2.88819i | |||||
509.18 | −0.0956273 | − | 1.41098i | 2.33268i | −1.98171 | + | 0.269856i | −1.97601 | − | 1.04660i | 3.29135 | − | 0.223067i | −4.43533 | 0.570266 | + | 2.77034i | −2.44138 | −1.28777 | + | 2.88819i | ||||||
509.19 | −0.0956273 | + | 1.41098i | − | 2.33268i | −1.98171 | − | 0.269856i | −1.97601 | + | 1.04660i | 3.29135 | + | 0.223067i | −4.43533 | 0.570266 | − | 2.77034i | −2.44138 | −1.28777 | − | 2.88819i | |||||
509.20 | −0.0956273 | + | 1.41098i | 2.33268i | −1.98171 | − | 0.269856i | 1.97601 | − | 1.04660i | −3.29135 | − | 0.223067i | 4.43533 | 0.570266 | − | 2.77034i | −2.44138 | 1.28777 | + | 2.88819i | ||||||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
8.b | even | 2 | 1 | inner |
17.b | even | 2 | 1 | inner |
40.f | even | 2 | 1 | inner |
85.c | even | 2 | 1 | inner |
136.h | even | 2 | 1 | inner |
680.h | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 680.2.h.b | ✓ | 40 |
5.b | even | 2 | 1 | inner | 680.2.h.b | ✓ | 40 |
8.b | even | 2 | 1 | inner | 680.2.h.b | ✓ | 40 |
17.b | even | 2 | 1 | inner | 680.2.h.b | ✓ | 40 |
40.f | even | 2 | 1 | inner | 680.2.h.b | ✓ | 40 |
85.c | even | 2 | 1 | inner | 680.2.h.b | ✓ | 40 |
136.h | even | 2 | 1 | inner | 680.2.h.b | ✓ | 40 |
680.h | even | 2 | 1 | inner | 680.2.h.b | ✓ | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
680.2.h.b | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
680.2.h.b | ✓ | 40 | 5.b | even | 2 | 1 | inner |
680.2.h.b | ✓ | 40 | 8.b | even | 2 | 1 | inner |
680.2.h.b | ✓ | 40 | 17.b | even | 2 | 1 | inner |
680.2.h.b | ✓ | 40 | 40.f | even | 2 | 1 | inner |
680.2.h.b | ✓ | 40 | 85.c | even | 2 | 1 | inner |
680.2.h.b | ✓ | 40 | 136.h | even | 2 | 1 | inner |
680.2.h.b | ✓ | 40 | 680.h | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{10} + 22T_{3}^{8} + 169T_{3}^{6} + 554T_{3}^{4} + 738T_{3}^{2} + 324 \)
acting on \(S_{2}^{\mathrm{new}}(680, [\chi])\).