L(s) = 1 | + (1.36 + 0.377i)2-s + 0.944i·3-s + (1.71 + 1.02i)4-s + (−0.0976 + 2.23i)5-s + (−0.356 + 1.28i)6-s − 2.88·7-s + (1.94 + 2.05i)8-s + 2.10·9-s + (−0.977 + 3.00i)10-s + 2.86·11-s + (−0.972 + 1.61i)12-s − 3.06·13-s + (−3.93 − 1.09i)14-s + (−2.10 − 0.0922i)15-s + (1.87 + 3.53i)16-s + (1.50 − 3.84i)17-s + ⋯ |
L(s) = 1 | + (0.963 + 0.267i)2-s + 0.545i·3-s + (0.857 + 0.514i)4-s + (−0.0436 + 0.999i)5-s + (−0.145 + 0.525i)6-s − 1.09·7-s + (0.688 + 0.725i)8-s + 0.702·9-s + (−0.308 + 0.951i)10-s + 0.865·11-s + (−0.280 + 0.467i)12-s − 0.850·13-s + (−1.05 − 0.291i)14-s + (−0.544 − 0.0238i)15-s + (0.469 + 0.882i)16-s + (0.363 − 0.931i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.336 - 0.941i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.336 - 0.941i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.46585 + 2.08099i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.46585 + 2.08099i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.36 - 0.377i)T \) |
| 5 | \( 1 + (0.0976 - 2.23i)T \) |
| 17 | \( 1 + (-1.50 + 3.84i)T \) |
good | 3 | \( 1 - 0.944iT - 3T^{2} \) |
| 7 | \( 1 + 2.88T + 7T^{2} \) |
| 11 | \( 1 - 2.86T + 11T^{2} \) |
| 13 | \( 1 + 3.06T + 13T^{2} \) |
| 19 | \( 1 - 3.89iT - 19T^{2} \) |
| 23 | \( 1 + 5.12T + 23T^{2} \) |
| 29 | \( 1 - 2.76T + 29T^{2} \) |
| 31 | \( 1 - 3.49iT - 31T^{2} \) |
| 37 | \( 1 + 7.07iT - 37T^{2} \) |
| 41 | \( 1 + 4.23iT - 41T^{2} \) |
| 43 | \( 1 - 4.28T + 43T^{2} \) |
| 47 | \( 1 - 0.586iT - 47T^{2} \) |
| 53 | \( 1 - 13.9T + 53T^{2} \) |
| 59 | \( 1 + 7.50iT - 59T^{2} \) |
| 61 | \( 1 - 12.3T + 61T^{2} \) |
| 67 | \( 1 + 5.37T + 67T^{2} \) |
| 71 | \( 1 + 7.98iT - 71T^{2} \) |
| 73 | \( 1 - 13.4T + 73T^{2} \) |
| 79 | \( 1 + 11.6iT - 79T^{2} \) |
| 83 | \( 1 - 2.53T + 83T^{2} \) |
| 89 | \( 1 + 10.2T + 89T^{2} \) |
| 97 | \( 1 - 5.19T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.63423579917575954161324180465, −10.06465497430168677668861604479, −9.300872143649549834830412995654, −7.72002057212961667191374346201, −6.99493602156242390972864849872, −6.36106853023392010198464477755, −5.32239600629773015307269284235, −4.02588158144948029425856458819, −3.50008916624140574494131264985, −2.31207984305841774243562387728,
1.05349808353575082929997280072, 2.35235284610720983396921704706, 3.81643768263130830077417798772, 4.51326932607383054723947126717, 5.73599767233299364858342048512, 6.54655859054884661926931369954, 7.28866033384924148031289663769, 8.431711292520128693449223075416, 9.783708125404453940443247310652, 9.965379513695236925748707322969