L(s) = 1 | + (1.29 − 0.564i)2-s − 2.10i·3-s + (1.36 − 1.46i)4-s + (−2.12 + 0.687i)5-s + (−1.19 − 2.73i)6-s − 2.16·7-s + (0.937 − 2.66i)8-s − 1.45·9-s + (−2.36 + 2.09i)10-s − 1.85·11-s + (−3.09 − 2.87i)12-s − 6.11·13-s + (−2.80 + 1.22i)14-s + (1.45 + 4.48i)15-s + (−0.291 − 3.98i)16-s + (0.319 − 4.11i)17-s + ⋯ |
L(s) = 1 | + (0.916 − 0.399i)2-s − 1.21i·3-s + (0.680 − 0.732i)4-s + (−0.951 + 0.307i)5-s + (−0.486 − 1.11i)6-s − 0.818·7-s + (0.331 − 0.943i)8-s − 0.483·9-s + (−0.749 + 0.662i)10-s − 0.558·11-s + (−0.892 − 0.829i)12-s − 1.69·13-s + (−0.750 + 0.327i)14-s + (0.374 + 1.15i)15-s + (−0.0729 − 0.997i)16-s + (0.0775 − 0.996i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.994 - 0.102i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.994 - 0.102i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0725707 + 1.40838i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0725707 + 1.40838i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.29 + 0.564i)T \) |
| 5 | \( 1 + (2.12 - 0.687i)T \) |
| 17 | \( 1 + (-0.319 + 4.11i)T \) |
good | 3 | \( 1 + 2.10iT - 3T^{2} \) |
| 7 | \( 1 + 2.16T + 7T^{2} \) |
| 11 | \( 1 + 1.85T + 11T^{2} \) |
| 13 | \( 1 + 6.11T + 13T^{2} \) |
| 19 | \( 1 - 2.40iT - 19T^{2} \) |
| 23 | \( 1 - 5.17T + 23T^{2} \) |
| 29 | \( 1 - 3.36T + 29T^{2} \) |
| 31 | \( 1 - 0.731iT - 31T^{2} \) |
| 37 | \( 1 + 10.8iT - 37T^{2} \) |
| 41 | \( 1 + 4.69iT - 41T^{2} \) |
| 43 | \( 1 - 5.90T + 43T^{2} \) |
| 47 | \( 1 - 3.82iT - 47T^{2} \) |
| 53 | \( 1 + 6.98T + 53T^{2} \) |
| 59 | \( 1 - 1.35iT - 59T^{2} \) |
| 61 | \( 1 + 3.71T + 61T^{2} \) |
| 67 | \( 1 - 11.7T + 67T^{2} \) |
| 71 | \( 1 - 11.1iT - 71T^{2} \) |
| 73 | \( 1 - 4.82T + 73T^{2} \) |
| 79 | \( 1 - 0.112iT - 79T^{2} \) |
| 83 | \( 1 + 10.5T + 83T^{2} \) |
| 89 | \( 1 - 10.0T + 89T^{2} \) |
| 97 | \( 1 - 10.8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.26133568915310759798549599472, −9.360544758188707063378692109473, −7.77764236363463691625565959201, −7.21747823055762125648922142915, −6.69653910694895992174257632636, −5.46262277530797280157663521878, −4.42916658517290786649228113314, −3.09692919046463074650383207262, −2.37934401485400747294140117893, −0.52447863018240266353569862227,
2.83241784938544269392240790457, 3.59446598857334785973385164329, 4.77601693991138643317203613753, 4.92990346983887862371007917265, 6.43438448295644071926899491447, 7.34760175747345522450980464684, 8.211736635473135904985181956712, 9.274105070167990341638309456977, 10.16436355830164366237615102637, 10.94880836504831603688653341118