Properties

Label 2-680-680.509-c1-0-83
Degree $2$
Conductor $680$
Sign $0.885 + 0.464i$
Analytic cond. $5.42982$
Root an. cond. $2.33019$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.36 + 0.377i)2-s − 0.944i·3-s + (1.71 + 1.02i)4-s + (0.0976 − 2.23i)5-s + (0.356 − 1.28i)6-s + 2.88·7-s + (1.94 + 2.05i)8-s + 2.10·9-s + (0.977 − 3.00i)10-s − 2.86·11-s + (0.972 − 1.61i)12-s − 3.06·13-s + (3.93 + 1.09i)14-s + (−2.10 − 0.0922i)15-s + (1.87 + 3.53i)16-s + (−1.50 − 3.84i)17-s + ⋯
L(s)  = 1  + (0.963 + 0.267i)2-s − 0.545i·3-s + (0.857 + 0.514i)4-s + (0.0436 − 0.999i)5-s + (0.145 − 0.525i)6-s + 1.09·7-s + (0.688 + 0.725i)8-s + 0.702·9-s + (0.308 − 0.951i)10-s − 0.865·11-s + (0.280 − 0.467i)12-s − 0.850·13-s + (1.05 + 0.291i)14-s + (−0.544 − 0.0238i)15-s + (0.469 + 0.882i)16-s + (−0.363 − 0.931i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.885 + 0.464i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.885 + 0.464i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(680\)    =    \(2^{3} \cdot 5 \cdot 17\)
Sign: $0.885 + 0.464i$
Analytic conductor: \(5.42982\)
Root analytic conductor: \(2.33019\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{680} (509, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 680,\ (\ :1/2),\ 0.885 + 0.464i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.92559 - 0.719892i\)
\(L(\frac12)\) \(\approx\) \(2.92559 - 0.719892i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.36 - 0.377i)T \)
5 \( 1 + (-0.0976 + 2.23i)T \)
17 \( 1 + (1.50 + 3.84i)T \)
good3 \( 1 + 0.944iT - 3T^{2} \)
7 \( 1 - 2.88T + 7T^{2} \)
11 \( 1 + 2.86T + 11T^{2} \)
13 \( 1 + 3.06T + 13T^{2} \)
19 \( 1 - 3.89iT - 19T^{2} \)
23 \( 1 - 5.12T + 23T^{2} \)
29 \( 1 + 2.76T + 29T^{2} \)
31 \( 1 + 3.49iT - 31T^{2} \)
37 \( 1 - 7.07iT - 37T^{2} \)
41 \( 1 - 4.23iT - 41T^{2} \)
43 \( 1 - 4.28T + 43T^{2} \)
47 \( 1 - 0.586iT - 47T^{2} \)
53 \( 1 - 13.9T + 53T^{2} \)
59 \( 1 + 7.50iT - 59T^{2} \)
61 \( 1 + 12.3T + 61T^{2} \)
67 \( 1 + 5.37T + 67T^{2} \)
71 \( 1 - 7.98iT - 71T^{2} \)
73 \( 1 + 13.4T + 73T^{2} \)
79 \( 1 - 11.6iT - 79T^{2} \)
83 \( 1 - 2.53T + 83T^{2} \)
89 \( 1 + 10.2T + 89T^{2} \)
97 \( 1 + 5.19T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.63137585322996446000601850633, −9.546320284665015892188040023036, −8.264802488615142959768882666142, −7.70560979924801462255541963338, −6.98992427565629769202704398329, −5.63908606178926355193463096468, −4.91397251871179812605031797207, −4.29373045797611059690288287256, −2.57113603123406134913960703441, −1.45027487492006955087085884332, 1.91249383413762076278786861271, 2.93908495159698098129882694491, 4.16867683518058033566739464164, 4.89892896276433954755843448554, 5.79488996731718141577968950384, 7.17739927634537463432729574926, 7.44051701732786442054136115643, 8.985696628538830790821432259652, 10.19411659349935035173260224192, 10.70047517890509372596283805329

Graph of the $Z$-function along the critical line