L(s) = 1 | + (1.36 + 0.377i)2-s − 0.944i·3-s + (1.71 + 1.02i)4-s + (0.0976 − 2.23i)5-s + (0.356 − 1.28i)6-s + 2.88·7-s + (1.94 + 2.05i)8-s + 2.10·9-s + (0.977 − 3.00i)10-s − 2.86·11-s + (0.972 − 1.61i)12-s − 3.06·13-s + (3.93 + 1.09i)14-s + (−2.10 − 0.0922i)15-s + (1.87 + 3.53i)16-s + (−1.50 − 3.84i)17-s + ⋯ |
L(s) = 1 | + (0.963 + 0.267i)2-s − 0.545i·3-s + (0.857 + 0.514i)4-s + (0.0436 − 0.999i)5-s + (0.145 − 0.525i)6-s + 1.09·7-s + (0.688 + 0.725i)8-s + 0.702·9-s + (0.308 − 0.951i)10-s − 0.865·11-s + (0.280 − 0.467i)12-s − 0.850·13-s + (1.05 + 0.291i)14-s + (−0.544 − 0.0238i)15-s + (0.469 + 0.882i)16-s + (−0.363 − 0.931i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.885 + 0.464i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.885 + 0.464i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.92559 - 0.719892i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.92559 - 0.719892i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.36 - 0.377i)T \) |
| 5 | \( 1 + (-0.0976 + 2.23i)T \) |
| 17 | \( 1 + (1.50 + 3.84i)T \) |
good | 3 | \( 1 + 0.944iT - 3T^{2} \) |
| 7 | \( 1 - 2.88T + 7T^{2} \) |
| 11 | \( 1 + 2.86T + 11T^{2} \) |
| 13 | \( 1 + 3.06T + 13T^{2} \) |
| 19 | \( 1 - 3.89iT - 19T^{2} \) |
| 23 | \( 1 - 5.12T + 23T^{2} \) |
| 29 | \( 1 + 2.76T + 29T^{2} \) |
| 31 | \( 1 + 3.49iT - 31T^{2} \) |
| 37 | \( 1 - 7.07iT - 37T^{2} \) |
| 41 | \( 1 - 4.23iT - 41T^{2} \) |
| 43 | \( 1 - 4.28T + 43T^{2} \) |
| 47 | \( 1 - 0.586iT - 47T^{2} \) |
| 53 | \( 1 - 13.9T + 53T^{2} \) |
| 59 | \( 1 + 7.50iT - 59T^{2} \) |
| 61 | \( 1 + 12.3T + 61T^{2} \) |
| 67 | \( 1 + 5.37T + 67T^{2} \) |
| 71 | \( 1 - 7.98iT - 71T^{2} \) |
| 73 | \( 1 + 13.4T + 73T^{2} \) |
| 79 | \( 1 - 11.6iT - 79T^{2} \) |
| 83 | \( 1 - 2.53T + 83T^{2} \) |
| 89 | \( 1 + 10.2T + 89T^{2} \) |
| 97 | \( 1 + 5.19T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.63137585322996446000601850633, −9.546320284665015892188040023036, −8.264802488615142959768882666142, −7.70560979924801462255541963338, −6.98992427565629769202704398329, −5.63908606178926355193463096468, −4.91397251871179812605031797207, −4.29373045797611059690288287256, −2.57113603123406134913960703441, −1.45027487492006955087085884332,
1.91249383413762076278786861271, 2.93908495159698098129882694491, 4.16867683518058033566739464164, 4.89892896276433954755843448554, 5.79488996731718141577968950384, 7.17739927634537463432729574926, 7.44051701732786442054136115643, 8.985696628538830790821432259652, 10.19411659349935035173260224192, 10.70047517890509372596283805329