L(s) = 1 | + (0.870 + 1.11i)2-s + 3.10i·3-s + (−0.485 + 1.94i)4-s + (−0.636 − 2.14i)5-s + (−3.46 + 2.70i)6-s − 1.38·7-s + (−2.58 + 1.14i)8-s − 6.66·9-s + (1.83 − 2.57i)10-s − 3.17·11-s + (−6.03 − 1.50i)12-s + 4.69·13-s + (−1.20 − 1.54i)14-s + (6.66 − 1.97i)15-s + (−3.52 − 1.88i)16-s + (−1.50 − 3.83i)17-s + ⋯ |
L(s) = 1 | + (0.615 + 0.788i)2-s + 1.79i·3-s + (−0.242 + 0.970i)4-s + (−0.284 − 0.958i)5-s + (−1.41 + 1.10i)6-s − 0.522·7-s + (−0.913 + 0.405i)8-s − 2.22·9-s + (0.580 − 0.814i)10-s − 0.955·11-s + (−1.74 − 0.435i)12-s + 1.30·13-s + (−0.321 − 0.412i)14-s + (1.72 − 0.511i)15-s + (−0.882 − 0.470i)16-s + (−0.366 − 0.930i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.470 + 0.882i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.470 + 0.882i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.523563 - 0.872056i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.523563 - 0.872056i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.870 - 1.11i)T \) |
| 5 | \( 1 + (0.636 + 2.14i)T \) |
| 17 | \( 1 + (1.50 + 3.83i)T \) |
good | 3 | \( 1 - 3.10iT - 3T^{2} \) |
| 7 | \( 1 + 1.38T + 7T^{2} \) |
| 11 | \( 1 + 3.17T + 11T^{2} \) |
| 13 | \( 1 - 4.69T + 13T^{2} \) |
| 19 | \( 1 - 7.70iT - 19T^{2} \) |
| 23 | \( 1 + 4.95T + 23T^{2} \) |
| 29 | \( 1 - 1.71T + 29T^{2} \) |
| 31 | \( 1 - 6.13iT - 31T^{2} \) |
| 37 | \( 1 - 3.98iT - 37T^{2} \) |
| 41 | \( 1 - 4.75iT - 41T^{2} \) |
| 43 | \( 1 - 10.3T + 43T^{2} \) |
| 47 | \( 1 - 5.75iT - 47T^{2} \) |
| 53 | \( 1 - 0.856T + 53T^{2} \) |
| 59 | \( 1 - 3.40iT - 59T^{2} \) |
| 61 | \( 1 - 4.33T + 61T^{2} \) |
| 67 | \( 1 + 7.67T + 67T^{2} \) |
| 71 | \( 1 + 12.8iT - 71T^{2} \) |
| 73 | \( 1 - 8.29T + 73T^{2} \) |
| 79 | \( 1 - 9.37iT - 79T^{2} \) |
| 83 | \( 1 + 5.94T + 83T^{2} \) |
| 89 | \( 1 + 8.65T + 89T^{2} \) |
| 97 | \( 1 - 10.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.99835970534925981091244082561, −10.04321615336208759193942789752, −9.269267829680266252891029308135, −8.467481185100334433993837077834, −7.87965951959822340646367716768, −6.16662090070433589882293254733, −5.51109233926848874066326438361, −4.64813757961639439136193067305, −3.91620415789288077966804534731, −3.09562978810251767010777608829,
0.41835407385782625999515594567, 2.08930302262105357272310702226, 2.79763933657946812805941347050, 3.93794114902513349755068534262, 5.71608781896319079462833677253, 6.30264542523258341397034320235, 7.03591543939621035461482437766, 8.028947850385965873460611352605, 8.957514628194883591448980446739, 10.32434947612065491368276176564