L(s) = 1 | + (−1.36 + 0.377i)2-s − 0.944i·3-s + (1.71 − 1.02i)4-s + (0.0976 − 2.23i)5-s + (0.356 + 1.28i)6-s − 2.88·7-s + (−1.94 + 2.05i)8-s + 2.10·9-s + (0.710 + 3.08i)10-s − 2.86·11-s + (−0.972 − 1.61i)12-s + 3.06·13-s + (3.93 − 1.09i)14-s + (−2.10 − 0.0922i)15-s + (1.87 − 3.53i)16-s + (1.50 − 3.84i)17-s + ⋯ |
L(s) = 1 | + (−0.963 + 0.267i)2-s − 0.545i·3-s + (0.857 − 0.514i)4-s + (0.0436 − 0.999i)5-s + (0.145 + 0.525i)6-s − 1.09·7-s + (−0.688 + 0.725i)8-s + 0.702·9-s + (0.224 + 0.974i)10-s − 0.865·11-s + (−0.280 − 0.467i)12-s + 0.850·13-s + (1.05 − 0.291i)14-s + (−0.544 − 0.0238i)15-s + (0.469 − 0.882i)16-s + (0.363 − 0.931i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.922 + 0.384i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.922 + 0.384i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.102517 - 0.512117i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.102517 - 0.512117i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.36 - 0.377i)T \) |
| 5 | \( 1 + (-0.0976 + 2.23i)T \) |
| 17 | \( 1 + (-1.50 + 3.84i)T \) |
good | 3 | \( 1 + 0.944iT - 3T^{2} \) |
| 7 | \( 1 + 2.88T + 7T^{2} \) |
| 11 | \( 1 + 2.86T + 11T^{2} \) |
| 13 | \( 1 - 3.06T + 13T^{2} \) |
| 19 | \( 1 + 3.89iT - 19T^{2} \) |
| 23 | \( 1 + 5.12T + 23T^{2} \) |
| 29 | \( 1 + 2.76T + 29T^{2} \) |
| 31 | \( 1 - 3.49iT - 31T^{2} \) |
| 37 | \( 1 - 7.07iT - 37T^{2} \) |
| 41 | \( 1 + 4.23iT - 41T^{2} \) |
| 43 | \( 1 + 4.28T + 43T^{2} \) |
| 47 | \( 1 - 0.586iT - 47T^{2} \) |
| 53 | \( 1 + 13.9T + 53T^{2} \) |
| 59 | \( 1 - 7.50iT - 59T^{2} \) |
| 61 | \( 1 + 12.3T + 61T^{2} \) |
| 67 | \( 1 - 5.37T + 67T^{2} \) |
| 71 | \( 1 + 7.98iT - 71T^{2} \) |
| 73 | \( 1 - 13.4T + 73T^{2} \) |
| 79 | \( 1 + 11.6iT - 79T^{2} \) |
| 83 | \( 1 + 2.53T + 83T^{2} \) |
| 89 | \( 1 + 10.2T + 89T^{2} \) |
| 97 | \( 1 - 5.19T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.825035410312794449819294219921, −9.323489326312091693292876456197, −8.333492135787434121383016298951, −7.61009095765210246867826606934, −6.70666214938179093128194713251, −5.90339712121450814315870513141, −4.79209922052341194325946775813, −3.12819480445523404869977710863, −1.69148499810511319790718379359, −0.36667894487135018956446237612,
1.92647384158513698695825470545, 3.31038012299531204959335985527, 3.85604988771362063864679147927, 5.89186771553388683863997139795, 6.48164371205840927749166364695, 7.56399477619580704608072894337, 8.230566229654759249741914883496, 9.634812669896409955812374964389, 9.885972352465344976209684793146, 10.65751950010327109220787116922