Properties

Label 680.2
Level 680
Weight 2
Dimension 6898
Nonzero newspaces 28
Newform subspaces 63
Sturm bound 55296
Trace bound 27

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 28 \)
Newform subspaces: \( 63 \)
Sturm bound: \(55296\)
Trace bound: \(27\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(680))\).

Total New Old
Modular forms 14592 7258 7334
Cusp forms 13057 6898 6159
Eisenstein series 1535 360 1175

Trace form

\( 6898 q - 24 q^{2} - 24 q^{3} - 24 q^{4} + 2 q^{5} - 80 q^{6} - 16 q^{7} - 24 q^{8} - 38 q^{9} - 40 q^{10} - 72 q^{11} - 48 q^{12} + 4 q^{13} - 48 q^{14} - 56 q^{15} - 112 q^{16} - 58 q^{17} - 112 q^{18}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(680))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
680.2.a \(\chi_{680}(1, \cdot)\) 680.2.a.a 1 1
680.2.a.b 1
680.2.a.c 1
680.2.a.d 2
680.2.a.e 2
680.2.a.f 3
680.2.a.g 3
680.2.a.h 3
680.2.c \(\chi_{680}(441, \cdot)\) 680.2.c.a 2 1
680.2.c.b 8
680.2.c.c 8
680.2.e \(\chi_{680}(409, \cdot)\) 680.2.e.a 2 1
680.2.e.b 10
680.2.e.c 12
680.2.f \(\chi_{680}(341, \cdot)\) 680.2.f.a 2 1
680.2.f.b 2
680.2.f.c 6
680.2.f.d 24
680.2.f.e 30
680.2.h \(\chi_{680}(509, \cdot)\) 680.2.h.a 16 1
680.2.h.b 40
680.2.h.c 48
680.2.j \(\chi_{680}(69, \cdot)\) 680.2.j.a 2 1
680.2.j.b 2
680.2.j.c 4
680.2.j.d 4
680.2.j.e 84
680.2.l \(\chi_{680}(101, \cdot)\) 680.2.l.a 36 1
680.2.l.b 36
680.2.o \(\chi_{680}(169, \cdot)\) 680.2.o.a 4 1
680.2.o.b 24
680.2.q \(\chi_{680}(47, \cdot)\) None 0 2
680.2.t \(\chi_{680}(523, \cdot)\) 680.2.t.a 208 2
680.2.u \(\chi_{680}(67, \cdot)\) 680.2.u.a 8 2
680.2.u.b 8
680.2.u.c 8
680.2.u.d 184
680.2.x \(\chi_{680}(103, \cdot)\) None 0 2
680.2.z \(\chi_{680}(89, \cdot)\) 680.2.z.a 2 2
680.2.z.b 2
680.2.z.c 26
680.2.z.d 26
680.2.ba \(\chi_{680}(21, \cdot)\) 680.2.ba.a 4 2
680.2.ba.b 140
680.2.bd \(\chi_{680}(81, \cdot)\) 680.2.bd.a 16 2
680.2.bd.b 20
680.2.be \(\chi_{680}(149, \cdot)\) 680.2.be.a 208 2
680.2.bg \(\chi_{680}(307, \cdot)\) 680.2.bg.a 192 2
680.2.bj \(\chi_{680}(407, \cdot)\) None 0 2
680.2.bl \(\chi_{680}(123, \cdot)\) 680.2.bl.a 208 2
680.2.bm \(\chi_{680}(183, \cdot)\) None 0 2
680.2.bo \(\chi_{680}(121, \cdot)\) 680.2.bo.a 32 4
680.2.bo.b 40
680.2.br \(\chi_{680}(189, \cdot)\) 680.2.br.a 416 4
680.2.bs \(\chi_{680}(127, \cdot)\) None 0 4
680.2.bv \(\chi_{680}(87, \cdot)\) None 0 4
680.2.bw \(\chi_{680}(43, \cdot)\) 680.2.bw.a 416 4
680.2.bz \(\chi_{680}(83, \cdot)\) 680.2.bz.a 416 4
680.2.cb \(\chi_{680}(9, \cdot)\) 680.2.cb.a 52 4
680.2.cb.b 52
680.2.cc \(\chi_{680}(461, \cdot)\) 680.2.cc.a 288 4
680.2.cf \(\chi_{680}(37, \cdot)\) 680.2.cf.a 832 8
680.2.cg \(\chi_{680}(57, \cdot)\) 680.2.cg.a 104 8
680.2.cg.b 112
680.2.ci \(\chi_{680}(11, \cdot)\) 680.2.ci.a 576 8
680.2.cl \(\chi_{680}(31, \cdot)\) None 0 8
680.2.cn \(\chi_{680}(39, \cdot)\) None 0 8
680.2.co \(\chi_{680}(99, \cdot)\) 680.2.co.a 832 8
680.2.cq \(\chi_{680}(97, \cdot)\) 680.2.cq.a 104 8
680.2.cq.b 112
680.2.ct \(\chi_{680}(133, \cdot)\) 680.2.ct.a 832 8

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(680))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(680)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(34))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(68))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(85))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(136))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(170))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(340))\)\(^{\oplus 2}\)