Defining parameters
Level: | \( N \) | = | \( 680 = 2^{3} \cdot 5 \cdot 17 \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 28 \) | ||
Newform subspaces: | \( 63 \) | ||
Sturm bound: | \(55296\) | ||
Trace bound: | \(27\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(680))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 14592 | 7258 | 7334 |
Cusp forms | 13057 | 6898 | 6159 |
Eisenstein series | 1535 | 360 | 1175 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(680))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(680))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(680)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(34))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(68))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(85))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(136))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(170))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(340))\)\(^{\oplus 2}\)