L(s) = 1 | + (1.20 − 0.744i)2-s − 1.24i·3-s + (0.890 − 1.79i)4-s + (1.91 − 1.16i)5-s + (−0.928 − 1.49i)6-s + 1.17·7-s + (−0.262 − 2.81i)8-s + 1.44·9-s + (1.43 − 2.81i)10-s − 6.18·11-s + (−2.23 − 1.11i)12-s + 3.23·13-s + (1.41 − 0.878i)14-s + (−1.44 − 2.38i)15-s + (−2.41 − 3.19i)16-s + (2.20 + 3.48i)17-s + ⋯ |
L(s) = 1 | + (0.850 − 0.526i)2-s − 0.719i·3-s + (0.445 − 0.895i)4-s + (0.854 − 0.519i)5-s + (−0.378 − 0.611i)6-s + 0.445·7-s + (−0.0928 − 0.995i)8-s + 0.482·9-s + (0.453 − 0.891i)10-s − 1.86·11-s + (−0.644 − 0.320i)12-s + 0.897·13-s + (0.379 − 0.234i)14-s + (−0.373 − 0.615i)15-s + (−0.603 − 0.797i)16-s + (0.535 + 0.844i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.358 + 0.933i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.358 + 0.933i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.62302 - 2.36142i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.62302 - 2.36142i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.20 + 0.744i)T \) |
| 5 | \( 1 + (-1.91 + 1.16i)T \) |
| 17 | \( 1 + (-2.20 - 3.48i)T \) |
good | 3 | \( 1 + 1.24iT - 3T^{2} \) |
| 7 | \( 1 - 1.17T + 7T^{2} \) |
| 11 | \( 1 + 6.18T + 11T^{2} \) |
| 13 | \( 1 - 3.23T + 13T^{2} \) |
| 19 | \( 1 - 6.25iT - 19T^{2} \) |
| 23 | \( 1 + 1.23T + 23T^{2} \) |
| 29 | \( 1 + 5.33T + 29T^{2} \) |
| 31 | \( 1 - 10.1iT - 31T^{2} \) |
| 37 | \( 1 + 3.17iT - 37T^{2} \) |
| 41 | \( 1 + 0.353iT - 41T^{2} \) |
| 43 | \( 1 - 7.73T + 43T^{2} \) |
| 47 | \( 1 - 3.04iT - 47T^{2} \) |
| 53 | \( 1 + 11.1T + 53T^{2} \) |
| 59 | \( 1 + 12.0iT - 59T^{2} \) |
| 61 | \( 1 - 6.46T + 61T^{2} \) |
| 67 | \( 1 + 8.64T + 67T^{2} \) |
| 71 | \( 1 - 5.66iT - 71T^{2} \) |
| 73 | \( 1 - 7.46T + 73T^{2} \) |
| 79 | \( 1 + 1.11iT - 79T^{2} \) |
| 83 | \( 1 - 10.9T + 83T^{2} \) |
| 89 | \( 1 - 1.72T + 89T^{2} \) |
| 97 | \( 1 + 3.78T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.44022026375154474762911031400, −9.686736936040525213710333156385, −8.315467348440869276285907713409, −7.61045244612597410018212921751, −6.30045577210757681679545584378, −5.64801298625242918157624151261, −4.83830416324821667001204563763, −3.53537485584305262231487697696, −2.09731880314056642516948718049, −1.36269003233897287720649559606,
2.29161556699309870749359489317, 3.24543609271839534078874871982, 4.55184213482457256237400013482, 5.26684873889002796314218365696, 6.02817446907460486467834480208, 7.23667338707108446599275691001, 7.84744023619958237270559452689, 9.097520002012090967806950776907, 9.970394727994906768850563829538, 10.93361924529398181502170358129