Properties

Label 585.2.w.b.577.1
Level $585$
Weight $2$
Character 585.577
Analytic conductor $4.671$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [585,2,Mod(73,585)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(585, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("585.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.w (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,0,-2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 577.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 585.577
Dual form 585.2.w.b.73.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{4} +(1.00000 - 2.00000i) q^{5} -2.00000i q^{7} +3.00000 q^{8} +(-1.00000 + 2.00000i) q^{10} +(1.00000 + 1.00000i) q^{11} +(3.00000 + 2.00000i) q^{13} +2.00000i q^{14} -1.00000 q^{16} +(-1.00000 + 1.00000i) q^{17} +(-5.00000 - 5.00000i) q^{19} +(-1.00000 + 2.00000i) q^{20} +(-1.00000 - 1.00000i) q^{22} +(-3.00000 - 3.00000i) q^{23} +(-3.00000 - 4.00000i) q^{25} +(-3.00000 - 2.00000i) q^{26} +2.00000i q^{28} +(5.00000 - 5.00000i) q^{31} -5.00000 q^{32} +(1.00000 - 1.00000i) q^{34} +(-4.00000 - 2.00000i) q^{35} +(5.00000 + 5.00000i) q^{38} +(3.00000 - 6.00000i) q^{40} +(7.00000 - 7.00000i) q^{41} +(-1.00000 - 1.00000i) q^{43} +(-1.00000 - 1.00000i) q^{44} +(3.00000 + 3.00000i) q^{46} -6.00000i q^{47} +3.00000 q^{49} +(3.00000 + 4.00000i) q^{50} +(-3.00000 - 2.00000i) q^{52} +(-5.00000 + 5.00000i) q^{53} +(3.00000 - 1.00000i) q^{55} -6.00000i q^{56} +(7.00000 - 7.00000i) q^{59} -14.0000 q^{61} +(-5.00000 + 5.00000i) q^{62} +7.00000 q^{64} +(7.00000 - 4.00000i) q^{65} -4.00000 q^{67} +(1.00000 - 1.00000i) q^{68} +(4.00000 + 2.00000i) q^{70} +(-1.00000 + 1.00000i) q^{71} -10.0000 q^{73} +(5.00000 + 5.00000i) q^{76} +(2.00000 - 2.00000i) q^{77} -2.00000i q^{79} +(-1.00000 + 2.00000i) q^{80} +(-7.00000 + 7.00000i) q^{82} +6.00000i q^{83} +(1.00000 + 3.00000i) q^{85} +(1.00000 + 1.00000i) q^{86} +(3.00000 + 3.00000i) q^{88} +(-5.00000 + 5.00000i) q^{89} +(4.00000 - 6.00000i) q^{91} +(3.00000 + 3.00000i) q^{92} +6.00000i q^{94} +(-15.0000 + 5.00000i) q^{95} +2.00000 q^{97} -3.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{4} + 2 q^{5} + 6 q^{8} - 2 q^{10} + 2 q^{11} + 6 q^{13} - 2 q^{16} - 2 q^{17} - 10 q^{19} - 2 q^{20} - 2 q^{22} - 6 q^{23} - 6 q^{25} - 6 q^{26} + 10 q^{31} - 10 q^{32} + 2 q^{34} - 8 q^{35}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107 −0.353553 0.935414i \(-0.615027\pi\)
−0.353553 + 0.935414i \(0.615027\pi\)
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 1.00000 2.00000i 0.447214 0.894427i
\(6\) 0 0
\(7\) 2.00000i 0.755929i −0.925820 0.377964i \(-0.876624\pi\)
0.925820 0.377964i \(-0.123376\pi\)
\(8\) 3.00000 1.06066
\(9\) 0 0
\(10\) −1.00000 + 2.00000i −0.316228 + 0.632456i
\(11\) 1.00000 + 1.00000i 0.301511 + 0.301511i 0.841605 0.540094i \(-0.181611\pi\)
−0.540094 + 0.841605i \(0.681611\pi\)
\(12\) 0 0
\(13\) 3.00000 + 2.00000i 0.832050 + 0.554700i
\(14\) 2.00000i 0.534522i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −1.00000 + 1.00000i −0.242536 + 0.242536i −0.817898 0.575363i \(-0.804861\pi\)
0.575363 + 0.817898i \(0.304861\pi\)
\(18\) 0 0
\(19\) −5.00000 5.00000i −1.14708 1.14708i −0.987124 0.159954i \(-0.948865\pi\)
−0.159954 0.987124i \(-0.551135\pi\)
\(20\) −1.00000 + 2.00000i −0.223607 + 0.447214i
\(21\) 0 0
\(22\) −1.00000 1.00000i −0.213201 0.213201i
\(23\) −3.00000 3.00000i −0.625543 0.625543i 0.321400 0.946943i \(-0.395847\pi\)
−0.946943 + 0.321400i \(0.895847\pi\)
\(24\) 0 0
\(25\) −3.00000 4.00000i −0.600000 0.800000i
\(26\) −3.00000 2.00000i −0.588348 0.392232i
\(27\) 0 0
\(28\) 2.00000i 0.377964i
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 5.00000 5.00000i 0.898027 0.898027i −0.0972349 0.995261i \(-0.531000\pi\)
0.995261 + 0.0972349i \(0.0309998\pi\)
\(32\) −5.00000 −0.883883
\(33\) 0 0
\(34\) 1.00000 1.00000i 0.171499 0.171499i
\(35\) −4.00000 2.00000i −0.676123 0.338062i
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 5.00000 + 5.00000i 0.811107 + 0.811107i
\(39\) 0 0
\(40\) 3.00000 6.00000i 0.474342 0.948683i
\(41\) 7.00000 7.00000i 1.09322 1.09322i 0.0980332 0.995183i \(-0.468745\pi\)
0.995183 0.0980332i \(-0.0312551\pi\)
\(42\) 0 0
\(43\) −1.00000 1.00000i −0.152499 0.152499i 0.626734 0.779233i \(-0.284391\pi\)
−0.779233 + 0.626734i \(0.784391\pi\)
\(44\) −1.00000 1.00000i −0.150756 0.150756i
\(45\) 0 0
\(46\) 3.00000 + 3.00000i 0.442326 + 0.442326i
\(47\) 6.00000i 0.875190i −0.899172 0.437595i \(-0.855830\pi\)
0.899172 0.437595i \(-0.144170\pi\)
\(48\) 0 0
\(49\) 3.00000 0.428571
\(50\) 3.00000 + 4.00000i 0.424264 + 0.565685i
\(51\) 0 0
\(52\) −3.00000 2.00000i −0.416025 0.277350i
\(53\) −5.00000 + 5.00000i −0.686803 + 0.686803i −0.961524 0.274721i \(-0.911414\pi\)
0.274721 + 0.961524i \(0.411414\pi\)
\(54\) 0 0
\(55\) 3.00000 1.00000i 0.404520 0.134840i
\(56\) 6.00000i 0.801784i
\(57\) 0 0
\(58\) 0 0
\(59\) 7.00000 7.00000i 0.911322 0.911322i −0.0850540 0.996376i \(-0.527106\pi\)
0.996376 + 0.0850540i \(0.0271063\pi\)
\(60\) 0 0
\(61\) −14.0000 −1.79252 −0.896258 0.443533i \(-0.853725\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) −5.00000 + 5.00000i −0.635001 + 0.635001i
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) 7.00000 4.00000i 0.868243 0.496139i
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 1.00000 1.00000i 0.121268 0.121268i
\(69\) 0 0
\(70\) 4.00000 + 2.00000i 0.478091 + 0.239046i
\(71\) −1.00000 + 1.00000i −0.118678 + 0.118678i −0.763952 0.645273i \(-0.776743\pi\)
0.645273 + 0.763952i \(0.276743\pi\)
\(72\) 0 0
\(73\) −10.0000 −1.17041 −0.585206 0.810885i \(-0.698986\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 5.00000 + 5.00000i 0.573539 + 0.573539i
\(77\) 2.00000 2.00000i 0.227921 0.227921i
\(78\) 0 0
\(79\) 2.00000i 0.225018i −0.993651 0.112509i \(-0.964111\pi\)
0.993651 0.112509i \(-0.0358886\pi\)
\(80\) −1.00000 + 2.00000i −0.111803 + 0.223607i
\(81\) 0 0
\(82\) −7.00000 + 7.00000i −0.773021 + 0.773021i
\(83\) 6.00000i 0.658586i 0.944228 + 0.329293i \(0.106810\pi\)
−0.944228 + 0.329293i \(0.893190\pi\)
\(84\) 0 0
\(85\) 1.00000 + 3.00000i 0.108465 + 0.325396i
\(86\) 1.00000 + 1.00000i 0.107833 + 0.107833i
\(87\) 0 0
\(88\) 3.00000 + 3.00000i 0.319801 + 0.319801i
\(89\) −5.00000 + 5.00000i −0.529999 + 0.529999i −0.920572 0.390573i \(-0.872277\pi\)
0.390573 + 0.920572i \(0.372277\pi\)
\(90\) 0 0
\(91\) 4.00000 6.00000i 0.419314 0.628971i
\(92\) 3.00000 + 3.00000i 0.312772 + 0.312772i
\(93\) 0 0
\(94\) 6.00000i 0.618853i
\(95\) −15.0000 + 5.00000i −1.53897 + 0.512989i
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) −3.00000 −0.303046
\(99\) 0 0
\(100\) 3.00000 + 4.00000i 0.300000 + 0.400000i
\(101\) 12.0000i 1.19404i −0.802225 0.597022i \(-0.796350\pi\)
0.802225 0.597022i \(-0.203650\pi\)
\(102\) 0 0
\(103\) 7.00000 + 7.00000i 0.689730 + 0.689730i 0.962172 0.272442i \(-0.0878312\pi\)
−0.272442 + 0.962172i \(0.587831\pi\)
\(104\) 9.00000 + 6.00000i 0.882523 + 0.588348i
\(105\) 0 0
\(106\) 5.00000 5.00000i 0.485643 0.485643i
\(107\) −7.00000 7.00000i −0.676716 0.676716i 0.282540 0.959256i \(-0.408823\pi\)
−0.959256 + 0.282540i \(0.908823\pi\)
\(108\) 0 0
\(109\) 9.00000 + 9.00000i 0.862044 + 0.862044i 0.991575 0.129532i \(-0.0413474\pi\)
−0.129532 + 0.991575i \(0.541347\pi\)
\(110\) −3.00000 + 1.00000i −0.286039 + 0.0953463i
\(111\) 0 0
\(112\) 2.00000i 0.188982i
\(113\) −5.00000 + 5.00000i −0.470360 + 0.470360i −0.902031 0.431671i \(-0.857924\pi\)
0.431671 + 0.902031i \(0.357924\pi\)
\(114\) 0 0
\(115\) −9.00000 + 3.00000i −0.839254 + 0.279751i
\(116\) 0 0
\(117\) 0 0
\(118\) −7.00000 + 7.00000i −0.644402 + 0.644402i
\(119\) 2.00000 + 2.00000i 0.183340 + 0.183340i
\(120\) 0 0
\(121\) 9.00000i 0.818182i
\(122\) 14.0000 1.26750
\(123\) 0 0
\(124\) −5.00000 + 5.00000i −0.449013 + 0.449013i
\(125\) −11.0000 + 2.00000i −0.983870 + 0.178885i
\(126\) 0 0
\(127\) 9.00000 9.00000i 0.798621 0.798621i −0.184257 0.982878i \(-0.558988\pi\)
0.982878 + 0.184257i \(0.0589879\pi\)
\(128\) 3.00000 0.265165
\(129\) 0 0
\(130\) −7.00000 + 4.00000i −0.613941 + 0.350823i
\(131\) 20.0000 1.74741 0.873704 0.486458i \(-0.161711\pi\)
0.873704 + 0.486458i \(0.161711\pi\)
\(132\) 0 0
\(133\) −10.0000 + 10.0000i −0.867110 + 0.867110i
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) −3.00000 + 3.00000i −0.257248 + 0.257248i
\(137\) 16.0000i 1.36697i 0.729964 + 0.683486i \(0.239537\pi\)
−0.729964 + 0.683486i \(0.760463\pi\)
\(138\) 0 0
\(139\) 14.0000i 1.18746i −0.804663 0.593732i \(-0.797654\pi\)
0.804663 0.593732i \(-0.202346\pi\)
\(140\) 4.00000 + 2.00000i 0.338062 + 0.169031i
\(141\) 0 0
\(142\) 1.00000 1.00000i 0.0839181 0.0839181i
\(143\) 1.00000 + 5.00000i 0.0836242 + 0.418121i
\(144\) 0 0
\(145\) 0 0
\(146\) 10.0000 0.827606
\(147\) 0 0
\(148\) 0 0
\(149\) 3.00000 + 3.00000i 0.245770 + 0.245770i 0.819232 0.573462i \(-0.194400\pi\)
−0.573462 + 0.819232i \(0.694400\pi\)
\(150\) 0 0
\(151\) 7.00000 + 7.00000i 0.569652 + 0.569652i 0.932031 0.362379i \(-0.118035\pi\)
−0.362379 + 0.932031i \(0.618035\pi\)
\(152\) −15.0000 15.0000i −1.21666 1.21666i
\(153\) 0 0
\(154\) −2.00000 + 2.00000i −0.161165 + 0.161165i
\(155\) −5.00000 15.0000i −0.401610 1.20483i
\(156\) 0 0
\(157\) 13.0000 + 13.0000i 1.03751 + 1.03751i 0.999268 + 0.0382445i \(0.0121766\pi\)
0.0382445 + 0.999268i \(0.487823\pi\)
\(158\) 2.00000i 0.159111i
\(159\) 0 0
\(160\) −5.00000 + 10.0000i −0.395285 + 0.790569i
\(161\) −6.00000 + 6.00000i −0.472866 + 0.472866i
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) −7.00000 + 7.00000i −0.546608 + 0.546608i
\(165\) 0 0
\(166\) 6.00000i 0.465690i
\(167\) 18.0000i 1.39288i 0.717614 + 0.696441i \(0.245234\pi\)
−0.717614 + 0.696441i \(0.754766\pi\)
\(168\) 0 0
\(169\) 5.00000 + 12.0000i 0.384615 + 0.923077i
\(170\) −1.00000 3.00000i −0.0766965 0.230089i
\(171\) 0 0
\(172\) 1.00000 + 1.00000i 0.0762493 + 0.0762493i
\(173\) 11.0000 + 11.0000i 0.836315 + 0.836315i 0.988372 0.152057i \(-0.0485898\pi\)
−0.152057 + 0.988372i \(0.548590\pi\)
\(174\) 0 0
\(175\) −8.00000 + 6.00000i −0.604743 + 0.453557i
\(176\) −1.00000 1.00000i −0.0753778 0.0753778i
\(177\) 0 0
\(178\) 5.00000 5.00000i 0.374766 0.374766i
\(179\) 20.0000 1.49487 0.747435 0.664335i \(-0.231285\pi\)
0.747435 + 0.664335i \(0.231285\pi\)
\(180\) 0 0
\(181\) 8.00000i 0.594635i −0.954779 0.297318i \(-0.903908\pi\)
0.954779 0.297318i \(-0.0960920\pi\)
\(182\) −4.00000 + 6.00000i −0.296500 + 0.444750i
\(183\) 0 0
\(184\) −9.00000 9.00000i −0.663489 0.663489i
\(185\) 0 0
\(186\) 0 0
\(187\) −2.00000 −0.146254
\(188\) 6.00000i 0.437595i
\(189\) 0 0
\(190\) 15.0000 5.00000i 1.08821 0.362738i
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 0 0
\(193\) 18.0000 1.29567 0.647834 0.761781i \(-0.275675\pi\)
0.647834 + 0.761781i \(0.275675\pi\)
\(194\) −2.00000 −0.143592
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) −9.00000 12.0000i −0.636396 0.848528i
\(201\) 0 0
\(202\) 12.0000i 0.844317i
\(203\) 0 0
\(204\) 0 0
\(205\) −7.00000 21.0000i −0.488901 1.46670i
\(206\) −7.00000 7.00000i −0.487713 0.487713i
\(207\) 0 0
\(208\) −3.00000 2.00000i −0.208013 0.138675i
\(209\) 10.0000i 0.691714i
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 5.00000 5.00000i 0.343401 0.343401i
\(213\) 0 0
\(214\) 7.00000 + 7.00000i 0.478510 + 0.478510i
\(215\) −3.00000 + 1.00000i −0.204598 + 0.0681994i
\(216\) 0 0
\(217\) −10.0000 10.0000i −0.678844 0.678844i
\(218\) −9.00000 9.00000i −0.609557 0.609557i
\(219\) 0 0
\(220\) −3.00000 + 1.00000i −0.202260 + 0.0674200i
\(221\) −5.00000 + 1.00000i −0.336336 + 0.0672673i
\(222\) 0 0
\(223\) 2.00000i 0.133930i −0.997755 0.0669650i \(-0.978668\pi\)
0.997755 0.0669650i \(-0.0213316\pi\)
\(224\) 10.0000i 0.668153i
\(225\) 0 0
\(226\) 5.00000 5.00000i 0.332595 0.332595i
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 0 0
\(229\) −3.00000 + 3.00000i −0.198246 + 0.198246i −0.799248 0.601002i \(-0.794768\pi\)
0.601002 + 0.799248i \(0.294768\pi\)
\(230\) 9.00000 3.00000i 0.593442 0.197814i
\(231\) 0 0
\(232\) 0 0
\(233\) −1.00000 1.00000i −0.0655122 0.0655122i 0.673592 0.739104i \(-0.264751\pi\)
−0.739104 + 0.673592i \(0.764751\pi\)
\(234\) 0 0
\(235\) −12.0000 6.00000i −0.782794 0.391397i
\(236\) −7.00000 + 7.00000i −0.455661 + 0.455661i
\(237\) 0 0
\(238\) −2.00000 2.00000i −0.129641 0.129641i
\(239\) −3.00000 3.00000i −0.194054 0.194054i 0.603391 0.797445i \(-0.293816\pi\)
−0.797445 + 0.603391i \(0.793816\pi\)
\(240\) 0 0
\(241\) 17.0000 + 17.0000i 1.09507 + 1.09507i 0.994979 + 0.100088i \(0.0319123\pi\)
0.100088 + 0.994979i \(0.468088\pi\)
\(242\) 9.00000i 0.578542i
\(243\) 0 0
\(244\) 14.0000 0.896258
\(245\) 3.00000 6.00000i 0.191663 0.383326i
\(246\) 0 0
\(247\) −5.00000 25.0000i −0.318142 1.59071i
\(248\) 15.0000 15.0000i 0.952501 0.952501i
\(249\) 0 0
\(250\) 11.0000 2.00000i 0.695701 0.126491i
\(251\) 2.00000i 0.126239i −0.998006 0.0631194i \(-0.979895\pi\)
0.998006 0.0631194i \(-0.0201049\pi\)
\(252\) 0 0
\(253\) 6.00000i 0.377217i
\(254\) −9.00000 + 9.00000i −0.564710 + 0.564710i
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) 11.0000 11.0000i 0.686161 0.686161i −0.275220 0.961381i \(-0.588751\pi\)
0.961381 + 0.275220i \(0.0887507\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −7.00000 + 4.00000i −0.434122 + 0.248069i
\(261\) 0 0
\(262\) −20.0000 −1.23560
\(263\) −1.00000 + 1.00000i −0.0616626 + 0.0616626i −0.737266 0.675603i \(-0.763883\pi\)
0.675603 + 0.737266i \(0.263883\pi\)
\(264\) 0 0
\(265\) 5.00000 + 15.0000i 0.307148 + 0.921443i
\(266\) 10.0000 10.0000i 0.613139 0.613139i
\(267\) 0 0
\(268\) 4.00000 0.244339
\(269\) 12.0000i 0.731653i −0.930683 0.365826i \(-0.880786\pi\)
0.930683 0.365826i \(-0.119214\pi\)
\(270\) 0 0
\(271\) −9.00000 9.00000i −0.546711 0.546711i 0.378777 0.925488i \(-0.376345\pi\)
−0.925488 + 0.378777i \(0.876345\pi\)
\(272\) 1.00000 1.00000i 0.0606339 0.0606339i
\(273\) 0 0
\(274\) 16.0000i 0.966595i
\(275\) 1.00000 7.00000i 0.0603023 0.422116i
\(276\) 0 0
\(277\) −15.0000 + 15.0000i −0.901263 + 0.901263i −0.995545 0.0942828i \(-0.969944\pi\)
0.0942828 + 0.995545i \(0.469944\pi\)
\(278\) 14.0000i 0.839664i
\(279\) 0 0
\(280\) −12.0000 6.00000i −0.717137 0.358569i
\(281\) −1.00000 1.00000i −0.0596550 0.0596550i 0.676650 0.736305i \(-0.263431\pi\)
−0.736305 + 0.676650i \(0.763431\pi\)
\(282\) 0 0
\(283\) −9.00000 9.00000i −0.534994 0.534994i 0.387060 0.922055i \(-0.373491\pi\)
−0.922055 + 0.387060i \(0.873491\pi\)
\(284\) 1.00000 1.00000i 0.0593391 0.0593391i
\(285\) 0 0
\(286\) −1.00000 5.00000i −0.0591312 0.295656i
\(287\) −14.0000 14.0000i −0.826394 0.826394i
\(288\) 0 0
\(289\) 15.0000i 0.882353i
\(290\) 0 0
\(291\) 0 0
\(292\) 10.0000 0.585206
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) 0 0
\(295\) −7.00000 21.0000i −0.407556 1.22267i
\(296\) 0 0
\(297\) 0 0
\(298\) −3.00000 3.00000i −0.173785 0.173785i
\(299\) −3.00000 15.0000i −0.173494 0.867472i
\(300\) 0 0
\(301\) −2.00000 + 2.00000i −0.115278 + 0.115278i
\(302\) −7.00000 7.00000i −0.402805 0.402805i
\(303\) 0 0
\(304\) 5.00000 + 5.00000i 0.286770 + 0.286770i
\(305\) −14.0000 + 28.0000i −0.801638 + 1.60328i
\(306\) 0 0
\(307\) 18.0000i 1.02731i 0.857996 + 0.513657i \(0.171710\pi\)
−0.857996 + 0.513657i \(0.828290\pi\)
\(308\) −2.00000 + 2.00000i −0.113961 + 0.113961i
\(309\) 0 0
\(310\) 5.00000 + 15.0000i 0.283981 + 0.851943i
\(311\) 6.00000i 0.340229i −0.985424 0.170114i \(-0.945586\pi\)
0.985424 0.170114i \(-0.0544137\pi\)
\(312\) 0 0
\(313\) 9.00000 9.00000i 0.508710 0.508710i −0.405420 0.914130i \(-0.632875\pi\)
0.914130 + 0.405420i \(0.132875\pi\)
\(314\) −13.0000 13.0000i −0.733632 0.733632i
\(315\) 0 0
\(316\) 2.00000i 0.112509i
\(317\) 14.0000 0.786318 0.393159 0.919470i \(-0.371382\pi\)
0.393159 + 0.919470i \(0.371382\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 7.00000 14.0000i 0.391312 0.782624i
\(321\) 0 0
\(322\) 6.00000 6.00000i 0.334367 0.334367i
\(323\) 10.0000 0.556415
\(324\) 0 0
\(325\) −1.00000 18.0000i −0.0554700 0.998460i
\(326\) −4.00000 −0.221540
\(327\) 0 0
\(328\) 21.0000 21.0000i 1.15953 1.15953i
\(329\) −12.0000 −0.661581
\(330\) 0 0
\(331\) −3.00000 + 3.00000i −0.164895 + 0.164895i −0.784731 0.619836i \(-0.787199\pi\)
0.619836 + 0.784731i \(0.287199\pi\)
\(332\) 6.00000i 0.329293i
\(333\) 0 0
\(334\) 18.0000i 0.984916i
\(335\) −4.00000 + 8.00000i −0.218543 + 0.437087i
\(336\) 0 0
\(337\) 13.0000 13.0000i 0.708155 0.708155i −0.257992 0.966147i \(-0.583061\pi\)
0.966147 + 0.257992i \(0.0830608\pi\)
\(338\) −5.00000 12.0000i −0.271964 0.652714i
\(339\) 0 0
\(340\) −1.00000 3.00000i −0.0542326 0.162698i
\(341\) 10.0000 0.541530
\(342\) 0 0
\(343\) 20.0000i 1.07990i
\(344\) −3.00000 3.00000i −0.161749 0.161749i
\(345\) 0 0
\(346\) −11.0000 11.0000i −0.591364 0.591364i
\(347\) −3.00000 3.00000i −0.161048 0.161048i 0.621983 0.783031i \(-0.286327\pi\)
−0.783031 + 0.621983i \(0.786327\pi\)
\(348\) 0 0
\(349\) 9.00000 9.00000i 0.481759 0.481759i −0.423934 0.905693i \(-0.639351\pi\)
0.905693 + 0.423934i \(0.139351\pi\)
\(350\) 8.00000 6.00000i 0.427618 0.320713i
\(351\) 0 0
\(352\) −5.00000 5.00000i −0.266501 0.266501i
\(353\) 12.0000i 0.638696i −0.947638 0.319348i \(-0.896536\pi\)
0.947638 0.319348i \(-0.103464\pi\)
\(354\) 0 0
\(355\) 1.00000 + 3.00000i 0.0530745 + 0.159223i
\(356\) 5.00000 5.00000i 0.264999 0.264999i
\(357\) 0 0
\(358\) −20.0000 −1.05703
\(359\) −1.00000 + 1.00000i −0.0527780 + 0.0527780i −0.733003 0.680225i \(-0.761882\pi\)
0.680225 + 0.733003i \(0.261882\pi\)
\(360\) 0 0
\(361\) 31.0000i 1.63158i
\(362\) 8.00000i 0.420471i
\(363\) 0 0
\(364\) −4.00000 + 6.00000i −0.209657 + 0.314485i
\(365\) −10.0000 + 20.0000i −0.523424 + 1.04685i
\(366\) 0 0
\(367\) −1.00000 1.00000i −0.0521996 0.0521996i 0.680525 0.732725i \(-0.261752\pi\)
−0.732725 + 0.680525i \(0.761752\pi\)
\(368\) 3.00000 + 3.00000i 0.156386 + 0.156386i
\(369\) 0 0
\(370\) 0 0
\(371\) 10.0000 + 10.0000i 0.519174 + 0.519174i
\(372\) 0 0
\(373\) −15.0000 + 15.0000i −0.776671 + 0.776671i −0.979263 0.202593i \(-0.935063\pi\)
0.202593 + 0.979263i \(0.435063\pi\)
\(374\) 2.00000 0.103418
\(375\) 0 0
\(376\) 18.0000i 0.928279i
\(377\) 0 0
\(378\) 0 0
\(379\) −1.00000 1.00000i −0.0513665 0.0513665i 0.680957 0.732323i \(-0.261564\pi\)
−0.732323 + 0.680957i \(0.761564\pi\)
\(380\) 15.0000 5.00000i 0.769484 0.256495i
\(381\) 0 0
\(382\) 8.00000 0.409316
\(383\) 30.0000i 1.53293i −0.642287 0.766464i \(-0.722014\pi\)
0.642287 0.766464i \(-0.277986\pi\)
\(384\) 0 0
\(385\) −2.00000 6.00000i −0.101929 0.305788i
\(386\) −18.0000 −0.916176
\(387\) 0 0
\(388\) −2.00000 −0.101535
\(389\) 18.0000 0.912636 0.456318 0.889817i \(-0.349168\pi\)
0.456318 + 0.889817i \(0.349168\pi\)
\(390\) 0 0
\(391\) 6.00000 0.303433
\(392\) 9.00000 0.454569
\(393\) 0 0
\(394\) 6.00000 0.302276
\(395\) −4.00000 2.00000i −0.201262 0.100631i
\(396\) 0 0
\(397\) 16.0000i 0.803017i 0.915855 + 0.401508i \(0.131514\pi\)
−0.915855 + 0.401508i \(0.868486\pi\)
\(398\) 8.00000 0.401004
\(399\) 0 0
\(400\) 3.00000 + 4.00000i 0.150000 + 0.200000i
\(401\) 11.0000 + 11.0000i 0.549314 + 0.549314i 0.926242 0.376929i \(-0.123020\pi\)
−0.376929 + 0.926242i \(0.623020\pi\)
\(402\) 0 0
\(403\) 25.0000 5.00000i 1.24534 0.249068i
\(404\) 12.0000i 0.597022i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −7.00000 7.00000i −0.346128 0.346128i 0.512537 0.858665i \(-0.328706\pi\)
−0.858665 + 0.512537i \(0.828706\pi\)
\(410\) 7.00000 + 21.0000i 0.345705 + 1.03712i
\(411\) 0 0
\(412\) −7.00000 7.00000i −0.344865 0.344865i
\(413\) −14.0000 14.0000i −0.688895 0.688895i
\(414\) 0 0
\(415\) 12.0000 + 6.00000i 0.589057 + 0.294528i
\(416\) −15.0000 10.0000i −0.735436 0.490290i
\(417\) 0 0
\(418\) 10.0000i 0.489116i
\(419\) 38.0000i 1.85642i 0.372055 + 0.928211i \(0.378653\pi\)
−0.372055 + 0.928211i \(0.621347\pi\)
\(420\) 0 0
\(421\) −11.0000 + 11.0000i −0.536107 + 0.536107i −0.922383 0.386276i \(-0.873761\pi\)
0.386276 + 0.922383i \(0.373761\pi\)
\(422\) −4.00000 −0.194717
\(423\) 0 0
\(424\) −15.0000 + 15.0000i −0.728464 + 0.728464i
\(425\) 7.00000 + 1.00000i 0.339550 + 0.0485071i
\(426\) 0 0
\(427\) 28.0000i 1.35501i
\(428\) 7.00000 + 7.00000i 0.338358 + 0.338358i
\(429\) 0 0
\(430\) 3.00000 1.00000i 0.144673 0.0482243i
\(431\) −13.0000 + 13.0000i −0.626188 + 0.626188i −0.947107 0.320919i \(-0.896008\pi\)
0.320919 + 0.947107i \(0.396008\pi\)
\(432\) 0 0
\(433\) 17.0000 + 17.0000i 0.816968 + 0.816968i 0.985668 0.168700i \(-0.0539568\pi\)
−0.168700 + 0.985668i \(0.553957\pi\)
\(434\) 10.0000 + 10.0000i 0.480015 + 0.480015i
\(435\) 0 0
\(436\) −9.00000 9.00000i −0.431022 0.431022i
\(437\) 30.0000i 1.43509i
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 9.00000 3.00000i 0.429058 0.143019i
\(441\) 0 0
\(442\) 5.00000 1.00000i 0.237826 0.0475651i
\(443\) −25.0000 + 25.0000i −1.18779 + 1.18779i −0.210108 + 0.977678i \(0.567381\pi\)
−0.977678 + 0.210108i \(0.932619\pi\)
\(444\) 0 0
\(445\) 5.00000 + 15.0000i 0.237023 + 0.711068i
\(446\) 2.00000i 0.0947027i
\(447\) 0 0
\(448\) 14.0000i 0.661438i
\(449\) 3.00000 3.00000i 0.141579 0.141579i −0.632765 0.774344i \(-0.718080\pi\)
0.774344 + 0.632765i \(0.218080\pi\)
\(450\) 0 0
\(451\) 14.0000 0.659234
\(452\) 5.00000 5.00000i 0.235180 0.235180i
\(453\) 0 0
\(454\) −12.0000 −0.563188
\(455\) −8.00000 14.0000i −0.375046 0.656330i
\(456\) 0 0
\(457\) 2.00000 0.0935561 0.0467780 0.998905i \(-0.485105\pi\)
0.0467780 + 0.998905i \(0.485105\pi\)
\(458\) 3.00000 3.00000i 0.140181 0.140181i
\(459\) 0 0
\(460\) 9.00000 3.00000i 0.419627 0.139876i
\(461\) −17.0000 + 17.0000i −0.791769 + 0.791769i −0.981782 0.190013i \(-0.939147\pi\)
0.190013 + 0.981782i \(0.439147\pi\)
\(462\) 0 0
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 1.00000 + 1.00000i 0.0463241 + 0.0463241i
\(467\) −9.00000 + 9.00000i −0.416470 + 0.416470i −0.883985 0.467515i \(-0.845149\pi\)
0.467515 + 0.883985i \(0.345149\pi\)
\(468\) 0 0
\(469\) 8.00000i 0.369406i
\(470\) 12.0000 + 6.00000i 0.553519 + 0.276759i
\(471\) 0 0
\(472\) 21.0000 21.0000i 0.966603 0.966603i
\(473\) 2.00000i 0.0919601i
\(474\) 0 0
\(475\) −5.00000 + 35.0000i −0.229416 + 1.60591i
\(476\) −2.00000 2.00000i −0.0916698 0.0916698i
\(477\) 0 0
\(478\) 3.00000 + 3.00000i 0.137217 + 0.137217i
\(479\) 7.00000 7.00000i 0.319838 0.319838i −0.528867 0.848705i \(-0.677383\pi\)
0.848705 + 0.528867i \(0.177383\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −17.0000 17.0000i −0.774329 0.774329i
\(483\) 0 0
\(484\) 9.00000i 0.409091i
\(485\) 2.00000 4.00000i 0.0908153 0.181631i
\(486\) 0 0
\(487\) 16.0000 0.725029 0.362515 0.931978i \(-0.381918\pi\)
0.362515 + 0.931978i \(0.381918\pi\)
\(488\) −42.0000 −1.90125
\(489\) 0 0
\(490\) −3.00000 + 6.00000i −0.135526 + 0.271052i
\(491\) 22.0000i 0.992846i 0.868081 + 0.496423i \(0.165354\pi\)
−0.868081 + 0.496423i \(0.834646\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 5.00000 + 25.0000i 0.224961 + 1.12480i
\(495\) 0 0
\(496\) −5.00000 + 5.00000i −0.224507 + 0.224507i
\(497\) 2.00000 + 2.00000i 0.0897123 + 0.0897123i
\(498\) 0 0
\(499\) 3.00000 + 3.00000i 0.134298 + 0.134298i 0.771060 0.636762i \(-0.219727\pi\)
−0.636762 + 0.771060i \(0.719727\pi\)
\(500\) 11.0000 2.00000i 0.491935 0.0894427i
\(501\) 0 0
\(502\) 2.00000i 0.0892644i
\(503\) 3.00000 3.00000i 0.133763 0.133763i −0.637055 0.770818i \(-0.719848\pi\)
0.770818 + 0.637055i \(0.219848\pi\)
\(504\) 0 0
\(505\) −24.0000 12.0000i −1.06799 0.533993i
\(506\) 6.00000i 0.266733i
\(507\) 0 0
\(508\) −9.00000 + 9.00000i −0.399310 + 0.399310i
\(509\) −13.0000 13.0000i −0.576215 0.576215i 0.357643 0.933858i \(-0.383580\pi\)
−0.933858 + 0.357643i \(0.883580\pi\)
\(510\) 0 0
\(511\) 20.0000i 0.884748i
\(512\) 11.0000 0.486136
\(513\) 0 0
\(514\) −11.0000 + 11.0000i −0.485189 + 0.485189i
\(515\) 21.0000 7.00000i 0.925371 0.308457i
\(516\) 0 0
\(517\) 6.00000 6.00000i 0.263880 0.263880i
\(518\) 0 0
\(519\) 0 0
\(520\) 21.0000 12.0000i 0.920911 0.526235i
\(521\) 10.0000 0.438108 0.219054 0.975713i \(-0.429703\pi\)
0.219054 + 0.975713i \(0.429703\pi\)
\(522\) 0 0
\(523\) 9.00000 9.00000i 0.393543 0.393543i −0.482405 0.875948i \(-0.660237\pi\)
0.875948 + 0.482405i \(0.160237\pi\)
\(524\) −20.0000 −0.873704
\(525\) 0 0
\(526\) 1.00000 1.00000i 0.0436021 0.0436021i
\(527\) 10.0000i 0.435607i
\(528\) 0 0
\(529\) 5.00000i 0.217391i
\(530\) −5.00000 15.0000i −0.217186 0.651558i
\(531\) 0 0
\(532\) 10.0000 10.0000i 0.433555 0.433555i
\(533\) 35.0000 7.00000i 1.51602 0.303204i
\(534\) 0 0
\(535\) −21.0000 + 7.00000i −0.907909 + 0.302636i
\(536\) −12.0000 −0.518321
\(537\) 0 0
\(538\) 12.0000i 0.517357i
\(539\) 3.00000 + 3.00000i 0.129219 + 0.129219i
\(540\) 0 0
\(541\) 9.00000 + 9.00000i 0.386940 + 0.386940i 0.873595 0.486654i \(-0.161783\pi\)
−0.486654 + 0.873595i \(0.661783\pi\)
\(542\) 9.00000 + 9.00000i 0.386583 + 0.386583i
\(543\) 0 0
\(544\) 5.00000 5.00000i 0.214373 0.214373i
\(545\) 27.0000 9.00000i 1.15655 0.385518i
\(546\) 0 0
\(547\) −9.00000 9.00000i −0.384812 0.384812i 0.488020 0.872832i \(-0.337719\pi\)
−0.872832 + 0.488020i \(0.837719\pi\)
\(548\) 16.0000i 0.683486i
\(549\) 0 0
\(550\) −1.00000 + 7.00000i −0.0426401 + 0.298481i
\(551\) 0 0
\(552\) 0 0
\(553\) −4.00000 −0.170097
\(554\) 15.0000 15.0000i 0.637289 0.637289i
\(555\) 0 0
\(556\) 14.0000i 0.593732i
\(557\) 24.0000i 1.01691i −0.861088 0.508456i \(-0.830216\pi\)
0.861088 0.508456i \(-0.169784\pi\)
\(558\) 0 0
\(559\) −1.00000 5.00000i −0.0422955 0.211477i
\(560\) 4.00000 + 2.00000i 0.169031 + 0.0845154i
\(561\) 0 0
\(562\) 1.00000 + 1.00000i 0.0421825 + 0.0421825i
\(563\) −15.0000 15.0000i −0.632175 0.632175i 0.316438 0.948613i \(-0.397513\pi\)
−0.948613 + 0.316438i \(0.897513\pi\)
\(564\) 0 0
\(565\) 5.00000 + 15.0000i 0.210352 + 0.631055i
\(566\) 9.00000 + 9.00000i 0.378298 + 0.378298i
\(567\) 0 0
\(568\) −3.00000 + 3.00000i −0.125877 + 0.125877i
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) 6.00000i 0.251092i −0.992088 0.125546i \(-0.959932\pi\)
0.992088 0.125546i \(-0.0400683\pi\)
\(572\) −1.00000 5.00000i −0.0418121 0.209061i
\(573\) 0 0
\(574\) 14.0000 + 14.0000i 0.584349 + 0.584349i
\(575\) −3.00000 + 21.0000i −0.125109 + 0.875761i
\(576\) 0 0
\(577\) 46.0000 1.91501 0.957503 0.288425i \(-0.0931316\pi\)
0.957503 + 0.288425i \(0.0931316\pi\)
\(578\) 15.0000i 0.623918i
\(579\) 0 0
\(580\) 0 0
\(581\) 12.0000 0.497844
\(582\) 0 0
\(583\) −10.0000 −0.414158
\(584\) −30.0000 −1.24141
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) 4.00000 0.165098 0.0825488 0.996587i \(-0.473694\pi\)
0.0825488 + 0.996587i \(0.473694\pi\)
\(588\) 0 0
\(589\) −50.0000 −2.06021
\(590\) 7.00000 + 21.0000i 0.288185 + 0.864556i
\(591\) 0 0
\(592\) 0 0
\(593\) −10.0000 −0.410651 −0.205325 0.978694i \(-0.565825\pi\)
−0.205325 + 0.978694i \(0.565825\pi\)
\(594\) 0 0
\(595\) 6.00000 2.00000i 0.245976 0.0819920i
\(596\) −3.00000 3.00000i −0.122885 0.122885i
\(597\) 0 0
\(598\) 3.00000 + 15.0000i 0.122679 + 0.613396i
\(599\) 30.0000i 1.22577i −0.790173 0.612883i \(-0.790010\pi\)
0.790173 0.612883i \(-0.209990\pi\)
\(600\) 0 0
\(601\) −38.0000 −1.55005 −0.775026 0.631929i \(-0.782263\pi\)
−0.775026 + 0.631929i \(0.782263\pi\)
\(602\) 2.00000 2.00000i 0.0815139 0.0815139i
\(603\) 0 0
\(604\) −7.00000 7.00000i −0.284826 0.284826i
\(605\) −18.0000 9.00000i −0.731804 0.365902i
\(606\) 0 0
\(607\) −13.0000 13.0000i −0.527654 0.527654i 0.392218 0.919872i \(-0.371708\pi\)
−0.919872 + 0.392218i \(0.871708\pi\)
\(608\) 25.0000 + 25.0000i 1.01388 + 1.01388i
\(609\) 0 0
\(610\) 14.0000 28.0000i 0.566843 1.13369i
\(611\) 12.0000 18.0000i 0.485468 0.728202i
\(612\) 0 0
\(613\) 20.0000i 0.807792i 0.914805 + 0.403896i \(0.132344\pi\)
−0.914805 + 0.403896i \(0.867656\pi\)
\(614\) 18.0000i 0.726421i
\(615\) 0 0
\(616\) 6.00000 6.00000i 0.241747 0.241747i
\(617\) 22.0000 0.885687 0.442843 0.896599i \(-0.353970\pi\)
0.442843 + 0.896599i \(0.353970\pi\)
\(618\) 0 0
\(619\) 25.0000 25.0000i 1.00483 1.00483i 0.00484658 0.999988i \(-0.498457\pi\)
0.999988 0.00484658i \(-0.00154272\pi\)
\(620\) 5.00000 + 15.0000i 0.200805 + 0.602414i
\(621\) 0 0
\(622\) 6.00000i 0.240578i
\(623\) 10.0000 + 10.0000i 0.400642 + 0.400642i
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) −9.00000 + 9.00000i −0.359712 + 0.359712i
\(627\) 0 0
\(628\) −13.0000 13.0000i −0.518756 0.518756i
\(629\) 0 0
\(630\) 0 0
\(631\) 11.0000 + 11.0000i 0.437903 + 0.437903i 0.891306 0.453403i \(-0.149790\pi\)
−0.453403 + 0.891306i \(0.649790\pi\)
\(632\) 6.00000i 0.238667i
\(633\) 0 0
\(634\) −14.0000 −0.556011
\(635\) −9.00000 27.0000i −0.357154 1.07146i
\(636\) 0 0
\(637\) 9.00000 + 6.00000i 0.356593 + 0.237729i
\(638\) 0 0
\(639\) 0 0
\(640\) 3.00000 6.00000i 0.118585 0.237171i
\(641\) 24.0000i 0.947943i 0.880540 + 0.473972i \(0.157180\pi\)
−0.880540 + 0.473972i \(0.842820\pi\)
\(642\) 0 0
\(643\) 34.0000i 1.34083i 0.741987 + 0.670415i \(0.233884\pi\)
−0.741987 + 0.670415i \(0.766116\pi\)
\(644\) 6.00000 6.00000i 0.236433 0.236433i
\(645\) 0 0
\(646\) −10.0000 −0.393445
\(647\) −1.00000 + 1.00000i −0.0393141 + 0.0393141i −0.726491 0.687176i \(-0.758850\pi\)
0.687176 + 0.726491i \(0.258850\pi\)
\(648\) 0 0
\(649\) 14.0000 0.549548
\(650\) 1.00000 + 18.0000i 0.0392232 + 0.706018i
\(651\) 0 0
\(652\) −4.00000 −0.156652
\(653\) −13.0000 + 13.0000i −0.508729 + 0.508729i −0.914136 0.405407i \(-0.867130\pi\)
0.405407 + 0.914136i \(0.367130\pi\)
\(654\) 0 0
\(655\) 20.0000 40.0000i 0.781465 1.56293i
\(656\) −7.00000 + 7.00000i −0.273304 + 0.273304i
\(657\) 0 0
\(658\) 12.0000 0.467809
\(659\) 26.0000i 1.01282i −0.862294 0.506408i \(-0.830973\pi\)
0.862294 0.506408i \(-0.169027\pi\)
\(660\) 0 0
\(661\) 17.0000 + 17.0000i 0.661223 + 0.661223i 0.955668 0.294445i \(-0.0951348\pi\)
−0.294445 + 0.955668i \(0.595135\pi\)
\(662\) 3.00000 3.00000i 0.116598 0.116598i
\(663\) 0 0
\(664\) 18.0000i 0.698535i
\(665\) 10.0000 + 30.0000i 0.387783 + 1.16335i
\(666\) 0 0
\(667\) 0 0
\(668\) 18.0000i 0.696441i
\(669\) 0 0
\(670\) 4.00000 8.00000i 0.154533 0.309067i
\(671\) −14.0000 14.0000i −0.540464 0.540464i
\(672\) 0 0
\(673\) −15.0000 15.0000i −0.578208 0.578208i 0.356202 0.934409i \(-0.384072\pi\)
−0.934409 + 0.356202i \(0.884072\pi\)
\(674\) −13.0000 + 13.0000i −0.500741 + 0.500741i
\(675\) 0 0
\(676\) −5.00000 12.0000i −0.192308 0.461538i
\(677\) 23.0000 + 23.0000i 0.883962 + 0.883962i 0.993935 0.109973i \(-0.0350764\pi\)
−0.109973 + 0.993935i \(0.535076\pi\)
\(678\) 0 0
\(679\) 4.00000i 0.153506i
\(680\) 3.00000 + 9.00000i 0.115045 + 0.345134i
\(681\) 0 0
\(682\) −10.0000 −0.382920
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) 0 0
\(685\) 32.0000 + 16.0000i 1.22266 + 0.611329i
\(686\) 20.0000i 0.763604i
\(687\) 0 0
\(688\) 1.00000 + 1.00000i 0.0381246 + 0.0381246i
\(689\) −25.0000 + 5.00000i −0.952424 + 0.190485i
\(690\) 0 0
\(691\) −3.00000 + 3.00000i −0.114125 + 0.114125i −0.761863 0.647738i \(-0.775715\pi\)
0.647738 + 0.761863i \(0.275715\pi\)
\(692\) −11.0000 11.0000i −0.418157 0.418157i
\(693\) 0 0
\(694\) 3.00000 + 3.00000i 0.113878 + 0.113878i
\(695\) −28.0000 14.0000i −1.06210 0.531050i
\(696\) 0 0
\(697\) 14.0000i 0.530288i
\(698\) −9.00000 + 9.00000i −0.340655 + 0.340655i
\(699\) 0 0
\(700\) 8.00000 6.00000i 0.302372 0.226779i
\(701\) 12.0000i 0.453234i −0.973984 0.226617i \(-0.927233\pi\)
0.973984 0.226617i \(-0.0727665\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 7.00000 + 7.00000i 0.263822 + 0.263822i
\(705\) 0 0
\(706\) 12.0000i 0.451626i
\(707\) −24.0000 −0.902613
\(708\) 0 0
\(709\) 29.0000 29.0000i 1.08912 1.08912i 0.0934984 0.995619i \(-0.470195\pi\)
0.995619 0.0934984i \(-0.0298050\pi\)
\(710\) −1.00000 3.00000i −0.0375293 0.112588i
\(711\) 0 0
\(712\) −15.0000 + 15.0000i −0.562149 + 0.562149i
\(713\) −30.0000 −1.12351
\(714\) 0 0
\(715\) 11.0000 + 3.00000i 0.411377 + 0.112194i
\(716\) −20.0000 −0.747435
\(717\) 0 0
\(718\) 1.00000 1.00000i 0.0373197 0.0373197i
\(719\) 8.00000 0.298350 0.149175 0.988811i \(-0.452338\pi\)
0.149175 + 0.988811i \(0.452338\pi\)
\(720\) 0 0
\(721\) 14.0000 14.0000i 0.521387 0.521387i
\(722\) 31.0000i 1.15370i
\(723\) 0 0
\(724\) 8.00000i 0.297318i
\(725\) 0 0
\(726\) 0 0
\(727\) −35.0000 + 35.0000i −1.29808 + 1.29808i −0.368418 + 0.929660i \(0.620100\pi\)
−0.929660 + 0.368418i \(0.879900\pi\)
\(728\) 12.0000 18.0000i 0.444750 0.667124i
\(729\) 0 0
\(730\) 10.0000 20.0000i 0.370117 0.740233i
\(731\) 2.00000 0.0739727
\(732\) 0 0
\(733\) 4.00000i 0.147743i 0.997268 + 0.0738717i \(0.0235355\pi\)
−0.997268 + 0.0738717i \(0.976464\pi\)
\(734\) 1.00000 + 1.00000i 0.0369107 + 0.0369107i
\(735\) 0 0
\(736\) 15.0000 + 15.0000i 0.552907 + 0.552907i
\(737\) −4.00000 4.00000i −0.147342 0.147342i
\(738\) 0 0
\(739\) −3.00000 + 3.00000i −0.110357 + 0.110357i −0.760129 0.649772i \(-0.774864\pi\)
0.649772 + 0.760129i \(0.274864\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −10.0000 10.0000i −0.367112 0.367112i
\(743\) 34.0000i 1.24734i 0.781688 + 0.623670i \(0.214359\pi\)
−0.781688 + 0.623670i \(0.785641\pi\)
\(744\) 0 0
\(745\) 9.00000 3.00000i 0.329734 0.109911i
\(746\) 15.0000 15.0000i 0.549189 0.549189i
\(747\) 0 0
\(748\) 2.00000 0.0731272
\(749\) −14.0000 + 14.0000i −0.511549 + 0.511549i
\(750\) 0 0
\(751\) 50.0000i 1.82453i −0.409605 0.912263i \(-0.634333\pi\)
0.409605 0.912263i \(-0.365667\pi\)
\(752\) 6.00000i 0.218797i
\(753\) 0 0
\(754\) 0 0
\(755\) 21.0000 7.00000i 0.764268 0.254756i
\(756\) 0 0
\(757\) −35.0000 35.0000i −1.27210 1.27210i −0.944986 0.327111i \(-0.893925\pi\)
−0.327111 0.944986i \(-0.606075\pi\)
\(758\) 1.00000 + 1.00000i 0.0363216 + 0.0363216i
\(759\) 0 0
\(760\) −45.0000 + 15.0000i −1.63232 + 0.544107i
\(761\) 7.00000 + 7.00000i 0.253750 + 0.253750i 0.822506 0.568756i \(-0.192575\pi\)
−0.568756 + 0.822506i \(0.692575\pi\)
\(762\) 0 0
\(763\) 18.0000 18.0000i 0.651644 0.651644i
\(764\) 8.00000 0.289430
\(765\) 0 0
\(766\) 30.0000i 1.08394i
\(767\) 35.0000 7.00000i 1.26378 0.252755i
\(768\) 0 0
\(769\) −15.0000 15.0000i −0.540914 0.540914i 0.382883 0.923797i \(-0.374931\pi\)
−0.923797 + 0.382883i \(0.874931\pi\)
\(770\) 2.00000 + 6.00000i 0.0720750 + 0.216225i
\(771\) 0 0
\(772\) −18.0000 −0.647834
\(773\) 32.0000i 1.15096i −0.817816 0.575480i \(-0.804815\pi\)
0.817816 0.575480i \(-0.195185\pi\)
\(774\) 0 0
\(775\) −35.0000 5.00000i −1.25724 0.179605i
\(776\) 6.00000 0.215387
\(777\) 0 0
\(778\) −18.0000 −0.645331
\(779\) −70.0000 −2.50801
\(780\) 0 0
\(781\) −2.00000 −0.0715656
\(782\) −6.00000 −0.214560
\(783\) 0 0
\(784\) −3.00000 −0.107143
\(785\) 39.0000 13.0000i 1.39197 0.463990i
\(786\) 0 0
\(787\) 22.0000i 0.784215i −0.919919 0.392108i \(-0.871746\pi\)
0.919919 0.392108i \(-0.128254\pi\)
\(788\) 6.00000 0.213741
\(789\) 0 0
\(790\) 4.00000 + 2.00000i 0.142314 + 0.0711568i
\(791\) 10.0000 + 10.0000i 0.355559 + 0.355559i
\(792\) 0 0
\(793\) −42.0000 28.0000i −1.49146 0.994309i
\(794\) 16.0000i 0.567819i
\(795\) 0 0
\(796\) 8.00000 0.283552
\(797\) −17.0000 + 17.0000i −0.602171 + 0.602171i −0.940888 0.338717i \(-0.890007\pi\)
0.338717 + 0.940888i \(0.390007\pi\)
\(798\) 0 0
\(799\) 6.00000 + 6.00000i 0.212265 + 0.212265i
\(800\) 15.0000 + 20.0000i 0.530330 + 0.707107i
\(801\) 0 0
\(802\) −11.0000 11.0000i −0.388424 0.388424i
\(803\) −10.0000 10.0000i −0.352892 0.352892i
\(804\) 0 0
\(805\) 6.00000 + 18.0000i 0.211472 + 0.634417i
\(806\) −25.0000 + 5.00000i −0.880587 + 0.176117i
\(807\) 0 0
\(808\) 36.0000i 1.26648i
\(809\) 28.0000i 0.984428i −0.870474 0.492214i \(-0.836188\pi\)
0.870474 0.492214i \(-0.163812\pi\)
\(810\) 0 0
\(811\) −27.0000 + 27.0000i −0.948098 + 0.948098i −0.998718 0.0506198i \(-0.983880\pi\)
0.0506198 + 0.998718i \(0.483880\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 4.00000 8.00000i 0.140114 0.280228i
\(816\) 0 0
\(817\) 10.0000i 0.349856i
\(818\) 7.00000 + 7.00000i 0.244749 + 0.244749i
\(819\) 0 0
\(820\) 7.00000 + 21.0000i 0.244451 + 0.733352i
\(821\) −9.00000 + 9.00000i −0.314102 + 0.314102i −0.846496 0.532394i \(-0.821292\pi\)
0.532394 + 0.846496i \(0.321292\pi\)
\(822\) 0 0
\(823\) −9.00000 9.00000i −0.313720 0.313720i 0.532629 0.846349i \(-0.321204\pi\)
−0.846349 + 0.532629i \(0.821204\pi\)
\(824\) 21.0000 + 21.0000i 0.731570 + 0.731570i
\(825\) 0 0
\(826\) 14.0000 + 14.0000i 0.487122 + 0.487122i
\(827\) 46.0000i 1.59958i 0.600282 + 0.799788i \(0.295055\pi\)
−0.600282 + 0.799788i \(0.704945\pi\)
\(828\) 0 0
\(829\) 34.0000 1.18087 0.590434 0.807086i \(-0.298956\pi\)
0.590434 + 0.807086i \(0.298956\pi\)
\(830\) −12.0000 6.00000i −0.416526 0.208263i
\(831\) 0 0
\(832\) 21.0000 + 14.0000i 0.728044 + 0.485363i
\(833\) −3.00000 + 3.00000i −0.103944 + 0.103944i
\(834\) 0 0
\(835\) 36.0000 + 18.0000i 1.24583 + 0.622916i
\(836\) 10.0000i 0.345857i
\(837\) 0 0
\(838\) 38.0000i 1.31269i
\(839\) 35.0000 35.0000i 1.20833 1.20833i 0.236768 0.971566i \(-0.423912\pi\)
0.971566 0.236768i \(-0.0760881\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 11.0000 11.0000i 0.379085 0.379085i
\(843\) 0 0
\(844\) −4.00000 −0.137686
\(845\) 29.0000 + 2.00000i 0.997630 + 0.0688021i
\(846\) 0 0
\(847\) −18.0000 −0.618487
\(848\) 5.00000 5.00000i 0.171701 0.171701i
\(849\) 0 0
\(850\) −7.00000 1.00000i −0.240098 0.0342997i
\(851\) 0 0
\(852\) 0 0
\(853\) 26.0000 0.890223 0.445112 0.895475i \(-0.353164\pi\)
0.445112 + 0.895475i \(0.353164\pi\)
\(854\) 28.0000i 0.958140i
\(855\) 0 0
\(856\) −21.0000 21.0000i −0.717765 0.717765i
\(857\) 3.00000 3.00000i 0.102478 0.102478i −0.654009 0.756487i \(-0.726914\pi\)
0.756487 + 0.654009i \(0.226914\pi\)
\(858\) 0 0
\(859\) 30.0000i 1.02359i −0.859109 0.511793i \(-0.828981\pi\)
0.859109 0.511793i \(-0.171019\pi\)
\(860\) 3.00000 1.00000i 0.102299 0.0340997i
\(861\) 0 0
\(862\) 13.0000 13.0000i 0.442782 0.442782i
\(863\) 30.0000i 1.02121i −0.859815 0.510606i \(-0.829421\pi\)
0.859815 0.510606i \(-0.170579\pi\)
\(864\) 0 0
\(865\) 33.0000 11.0000i 1.12203 0.374011i
\(866\) −17.0000 17.0000i −0.577684 0.577684i
\(867\) 0 0
\(868\) 10.0000 + 10.0000i 0.339422 + 0.339422i
\(869\) 2.00000 2.00000i 0.0678454 0.0678454i
\(870\) 0 0
\(871\) −12.0000 8.00000i −0.406604 0.271070i
\(872\) 27.0000 + 27.0000i 0.914335 + 0.914335i
\(873\) 0 0
\(874\) 30.0000i 1.01477i
\(875\) 4.00000 + 22.0000i 0.135225 + 0.743736i
\(876\) 0 0
\(877\) 38.0000 1.28317 0.641584 0.767052i \(-0.278277\pi\)
0.641584 + 0.767052i \(0.278277\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) −3.00000 + 1.00000i −0.101130 + 0.0337100i
\(881\) 52.0000i 1.75192i 0.482380 + 0.875962i \(0.339773\pi\)
−0.482380 + 0.875962i \(0.660227\pi\)
\(882\) 0 0
\(883\) 39.0000 + 39.0000i 1.31245 + 1.31245i 0.919601 + 0.392853i \(0.128512\pi\)
0.392853 + 0.919601i \(0.371488\pi\)
\(884\) 5.00000 1.00000i 0.168168 0.0336336i
\(885\) 0 0
\(886\) 25.0000 25.0000i 0.839891 0.839891i
\(887\) 1.00000 + 1.00000i 0.0335767 + 0.0335767i 0.723696 0.690119i \(-0.242442\pi\)
−0.690119 + 0.723696i \(0.742442\pi\)
\(888\) 0 0
\(889\) −18.0000 18.0000i −0.603701 0.603701i
\(890\) −5.00000 15.0000i −0.167600 0.502801i
\(891\) 0 0
\(892\) 2.00000i 0.0669650i
\(893\) −30.0000 + 30.0000i −1.00391 + 1.00391i
\(894\) 0 0
\(895\) 20.0000 40.0000i 0.668526 1.33705i
\(896\) 6.00000i 0.200446i
\(897\) 0 0
\(898\) −3.00000 + 3.00000i −0.100111 + 0.100111i
\(899\) 0 0
\(900\) 0 0
\(901\) 10.0000i 0.333148i
\(902\) −14.0000 −0.466149
\(903\) 0 0
\(904\) −15.0000 + 15.0000i −0.498893 + 0.498893i
\(905\) −16.0000 8.00000i −0.531858 0.265929i
\(906\) 0 0
\(907\) −39.0000 + 39.0000i −1.29497 + 1.29497i −0.363303 + 0.931671i \(0.618351\pi\)
−0.931671 + 0.363303i \(0.881649\pi\)
\(908\) −12.0000 −0.398234
\(909\) 0 0
\(910\) 8.00000 + 14.0000i 0.265197 + 0.464095i
\(911\) −24.0000 −0.795155 −0.397578 0.917568i \(-0.630149\pi\)
−0.397578 + 0.917568i \(0.630149\pi\)
\(912\) 0 0
\(913\) −6.00000 + 6.00000i −0.198571 + 0.198571i
\(914\) −2.00000 −0.0661541
\(915\) 0 0
\(916\) 3.00000 3.00000i 0.0991228 0.0991228i
\(917\) 40.0000i 1.32092i
\(918\) 0 0
\(919\) 10.0000i 0.329870i −0.986304 0.164935i \(-0.947259\pi\)
0.986304 0.164935i \(-0.0527414\pi\)
\(920\) −27.0000 + 9.00000i −0.890164 + 0.296721i
\(921\) 0 0
\(922\) 17.0000 17.0000i 0.559865 0.559865i
\(923\) −5.00000 + 1.00000i −0.164577 + 0.0329154i
\(924\) 0 0
\(925\) 0 0
\(926\) 24.0000 0.788689
\(927\) 0 0
\(928\) 0 0
\(929\) 19.0000 + 19.0000i 0.623370 + 0.623370i 0.946392 0.323022i \(-0.104699\pi\)
−0.323022 + 0.946392i \(0.604699\pi\)
\(930\) 0 0
\(931\) −15.0000 15.0000i −0.491605 0.491605i
\(932\) 1.00000 + 1.00000i 0.0327561 + 0.0327561i
\(933\) 0 0
\(934\) 9.00000 9.00000i 0.294489 0.294489i
\(935\) −2.00000 + 4.00000i −0.0654070 + 0.130814i
\(936\) 0 0
\(937\) −7.00000 7.00000i −0.228680 0.228680i 0.583461 0.812141i \(-0.301698\pi\)
−0.812141 + 0.583461i \(0.801698\pi\)
\(938\) 8.00000i 0.261209i
\(939\) 0 0
\(940\) 12.0000 + 6.00000i 0.391397 + 0.195698i
\(941\) −21.0000 + 21.0000i −0.684580 + 0.684580i −0.961029 0.276448i \(-0.910843\pi\)
0.276448 + 0.961029i \(0.410843\pi\)
\(942\) 0 0
\(943\) −42.0000 −1.36771
\(944\) −7.00000 + 7.00000i −0.227831 + 0.227831i
\(945\) 0 0
\(946\) 2.00000i 0.0650256i
\(947\) 18.0000i 0.584921i −0.956278 0.292461i \(-0.905526\pi\)
0.956278 0.292461i \(-0.0944741\pi\)
\(948\) 0 0
\(949\) −30.0000 20.0000i −0.973841 0.649227i
\(950\) 5.00000 35.0000i 0.162221 1.13555i
\(951\) 0 0
\(952\) 6.00000 + 6.00000i 0.194461 + 0.194461i
\(953\) −13.0000 13.0000i −0.421111 0.421111i 0.464475 0.885586i \(-0.346243\pi\)
−0.885586 + 0.464475i \(0.846243\pi\)
\(954\) 0 0
\(955\) −8.00000 + 16.0000i −0.258874 + 0.517748i
\(956\) 3.00000 + 3.00000i 0.0970269 + 0.0970269i
\(957\) 0 0
\(958\) −7.00000 + 7.00000i −0.226160 + 0.226160i
\(959\) 32.0000 1.03333
\(960\) 0 0
\(961\) 19.0000i 0.612903i
\(962\) 0 0
\(963\) 0 0
\(964\) −17.0000 17.0000i −0.547533 0.547533i
\(965\) 18.0000 36.0000i 0.579441 1.15888i
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 27.0000i 0.867813i
\(969\) 0 0
\(970\) −2.00000 + 4.00000i −0.0642161 + 0.128432i
\(971\) 60.0000 1.92549 0.962746 0.270408i \(-0.0871586\pi\)
0.962746 + 0.270408i \(0.0871586\pi\)
\(972\) 0 0
\(973\) −28.0000 −0.897639
\(974\) −16.0000 −0.512673
\(975\) 0 0
\(976\) 14.0000 0.448129
\(977\) −62.0000 −1.98356 −0.991778 0.127971i \(-0.959153\pi\)
−0.991778 + 0.127971i \(0.959153\pi\)
\(978\) 0 0
\(979\) −10.0000 −0.319601
\(980\) −3.00000 + 6.00000i −0.0958315 + 0.191663i
\(981\) 0 0
\(982\) 22.0000i 0.702048i
\(983\) 24.0000 0.765481 0.382741 0.923856i \(-0.374980\pi\)
0.382741 + 0.923856i \(0.374980\pi\)
\(984\) 0 0
\(985\) −6.00000 + 12.0000i −0.191176 + 0.382352i
\(986\) 0 0
\(987\) 0 0
\(988\) 5.00000 + 25.0000i 0.159071 + 0.795356i
\(989\) 6.00000i 0.190789i
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) −25.0000 + 25.0000i −0.793751 + 0.793751i
\(993\) 0 0
\(994\) −2.00000 2.00000i −0.0634361 0.0634361i
\(995\) −8.00000 + 16.0000i −0.253617 + 0.507234i
\(996\) 0 0
\(997\) 9.00000 + 9.00000i 0.285033 + 0.285033i 0.835112 0.550079i \(-0.185403\pi\)
−0.550079 + 0.835112i \(0.685403\pi\)
\(998\) −3.00000 3.00000i −0.0949633 0.0949633i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 585.2.w.b.577.1 2
3.2 odd 2 65.2.k.a.57.1 yes 2
5.3 odd 4 585.2.n.c.343.1 2
12.11 even 2 1040.2.bg.a.577.1 2
13.8 odd 4 585.2.n.c.307.1 2
15.2 even 4 325.2.f.a.18.1 2
15.8 even 4 65.2.f.a.18.1 2
15.14 odd 2 325.2.k.a.57.1 2
39.2 even 12 845.2.t.b.657.1 4
39.5 even 4 845.2.f.a.437.1 2
39.8 even 4 65.2.f.a.47.1 yes 2
39.11 even 12 845.2.t.a.657.1 4
39.17 odd 6 845.2.o.b.587.1 4
39.20 even 12 845.2.t.a.427.1 4
39.23 odd 6 845.2.o.b.357.1 4
39.29 odd 6 845.2.o.a.357.1 4
39.32 even 12 845.2.t.b.427.1 4
39.35 odd 6 845.2.o.a.587.1 4
39.38 odd 2 845.2.k.a.577.1 2
60.23 odd 4 1040.2.cd.b.993.1 2
65.8 even 4 inner 585.2.w.b.73.1 2
156.47 odd 4 1040.2.cd.b.177.1 2
195.8 odd 4 65.2.k.a.8.1 yes 2
195.23 even 12 845.2.t.b.188.1 4
195.38 even 4 845.2.f.a.408.1 2
195.47 odd 4 325.2.k.a.268.1 2
195.68 even 12 845.2.t.a.188.1 4
195.83 odd 4 845.2.k.a.268.1 2
195.98 odd 12 845.2.o.a.258.1 4
195.113 even 12 845.2.t.a.418.1 4
195.128 odd 12 845.2.o.a.488.1 4
195.158 odd 12 845.2.o.b.488.1 4
195.164 even 4 325.2.f.a.307.1 2
195.173 even 12 845.2.t.b.418.1 4
195.188 odd 12 845.2.o.b.258.1 4
780.203 even 4 1040.2.bg.a.593.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.f.a.18.1 2 15.8 even 4
65.2.f.a.47.1 yes 2 39.8 even 4
65.2.k.a.8.1 yes 2 195.8 odd 4
65.2.k.a.57.1 yes 2 3.2 odd 2
325.2.f.a.18.1 2 15.2 even 4
325.2.f.a.307.1 2 195.164 even 4
325.2.k.a.57.1 2 15.14 odd 2
325.2.k.a.268.1 2 195.47 odd 4
585.2.n.c.307.1 2 13.8 odd 4
585.2.n.c.343.1 2 5.3 odd 4
585.2.w.b.73.1 2 65.8 even 4 inner
585.2.w.b.577.1 2 1.1 even 1 trivial
845.2.f.a.408.1 2 195.38 even 4
845.2.f.a.437.1 2 39.5 even 4
845.2.k.a.268.1 2 195.83 odd 4
845.2.k.a.577.1 2 39.38 odd 2
845.2.o.a.258.1 4 195.98 odd 12
845.2.o.a.357.1 4 39.29 odd 6
845.2.o.a.488.1 4 195.128 odd 12
845.2.o.a.587.1 4 39.35 odd 6
845.2.o.b.258.1 4 195.188 odd 12
845.2.o.b.357.1 4 39.23 odd 6
845.2.o.b.488.1 4 195.158 odd 12
845.2.o.b.587.1 4 39.17 odd 6
845.2.t.a.188.1 4 195.68 even 12
845.2.t.a.418.1 4 195.113 even 12
845.2.t.a.427.1 4 39.20 even 12
845.2.t.a.657.1 4 39.11 even 12
845.2.t.b.188.1 4 195.23 even 12
845.2.t.b.418.1 4 195.173 even 12
845.2.t.b.427.1 4 39.32 even 12
845.2.t.b.657.1 4 39.2 even 12
1040.2.bg.a.577.1 2 12.11 even 2
1040.2.bg.a.593.1 2 780.203 even 4
1040.2.cd.b.177.1 2 156.47 odd 4
1040.2.cd.b.993.1 2 60.23 odd 4