Properties

Label 845.2.t.a.418.1
Level $845$
Weight $2$
Character 845.418
Analytic conductor $6.747$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(188,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.188"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2,-2,-8,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 418.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 845.418
Dual form 845.2.t.a.657.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.366025 - 1.36603i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-2.00000 + 1.00000i) q^{5} +(0.366025 + 1.36603i) q^{6} +(1.00000 - 1.73205i) q^{7} -3.00000i q^{8} +(0.866025 + 0.500000i) q^{9} +(1.23205 - 1.86603i) q^{10} +(-0.366025 + 1.36603i) q^{11} +(1.00000 + 1.00000i) q^{12} +2.00000i q^{14} +(0.633975 + 3.09808i) q^{15} +(0.500000 + 0.866025i) q^{16} +(1.36603 - 0.366025i) q^{17} -1.00000 q^{18} +(-6.83013 + 1.83013i) q^{19} +(0.133975 - 2.23205i) q^{20} +(-2.00000 - 2.00000i) q^{21} +(-0.366025 - 1.36603i) q^{22} +(4.09808 + 1.09808i) q^{23} +(-4.09808 - 1.09808i) q^{24} +(3.00000 - 4.00000i) q^{25} +(4.00000 - 4.00000i) q^{27} +(1.00000 + 1.73205i) q^{28} +(-2.09808 - 2.36603i) q^{30} +(5.00000 - 5.00000i) q^{31} +(4.33013 + 2.50000i) q^{32} +(1.73205 + 1.00000i) q^{33} +(-1.00000 + 1.00000i) q^{34} +(-0.267949 + 4.46410i) q^{35} +(-0.866025 + 0.500000i) q^{36} +(5.00000 - 5.00000i) q^{38} +(3.00000 + 6.00000i) q^{40} +(9.56218 + 2.56218i) q^{41} +(2.73205 + 0.732051i) q^{42} +(0.366025 + 1.36603i) q^{43} +(-1.00000 - 1.00000i) q^{44} +(-2.23205 - 0.133975i) q^{45} +(-4.09808 + 1.09808i) q^{46} +6.00000 q^{47} +(1.36603 - 0.366025i) q^{48} +(1.50000 + 2.59808i) q^{49} +(-0.598076 + 4.96410i) q^{50} -2.00000i q^{51} +(5.00000 + 5.00000i) q^{53} +(-1.46410 + 5.46410i) q^{54} +(-0.633975 - 3.09808i) q^{55} +(-5.19615 - 3.00000i) q^{56} +10.0000i q^{57} +(2.56218 + 9.56218i) q^{59} +(-3.00000 - 1.00000i) q^{60} +(7.00000 - 12.1244i) q^{61} +(-1.83013 + 6.83013i) q^{62} +(1.73205 - 1.00000i) q^{63} -7.00000 q^{64} -2.00000 q^{66} +(3.46410 - 2.00000i) q^{67} +(-0.366025 + 1.36603i) q^{68} +(3.00000 - 5.19615i) q^{69} +(-2.00000 - 4.00000i) q^{70} +(0.366025 + 1.36603i) q^{71} +(1.50000 - 2.59808i) q^{72} -10.0000i q^{73} +(-4.36603 - 5.56218i) q^{75} +(1.83013 - 6.83013i) q^{76} +(2.00000 + 2.00000i) q^{77} +2.00000i q^{79} +(-1.86603 - 1.23205i) q^{80} +(-2.50000 - 4.33013i) q^{81} +(-9.56218 + 2.56218i) q^{82} +6.00000 q^{83} +(2.73205 - 0.732051i) q^{84} +(-2.36603 + 2.09808i) q^{85} +(-1.00000 - 1.00000i) q^{86} +(4.09808 + 1.09808i) q^{88} +(6.83013 + 1.83013i) q^{89} +(2.00000 - 1.00000i) q^{90} +(-3.00000 + 3.00000i) q^{92} +(-5.00000 - 8.66025i) q^{93} +(-5.19615 + 3.00000i) q^{94} +(11.8301 - 10.4904i) q^{95} +(5.00000 - 5.00000i) q^{96} +(1.73205 + 1.00000i) q^{97} +(-2.59808 - 1.50000i) q^{98} +(-1.00000 + 1.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 2 q^{4} - 8 q^{5} - 2 q^{6} + 4 q^{7} - 2 q^{10} + 2 q^{11} + 4 q^{12} + 6 q^{15} + 2 q^{16} + 2 q^{17} - 4 q^{18} - 10 q^{19} + 4 q^{20} - 8 q^{21} + 2 q^{22} + 6 q^{23} - 6 q^{24} + 12 q^{25}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i −0.773893 0.633316i \(-0.781693\pi\)
0.161521 + 0.986869i \(0.448360\pi\)
\(3\) 0.366025 1.36603i 0.211325 0.788675i −0.776103 0.630606i \(-0.782806\pi\)
0.987428 0.158069i \(-0.0505269\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −2.00000 + 1.00000i −0.894427 + 0.447214i
\(6\) 0.366025 + 1.36603i 0.149429 + 0.557678i
\(7\) 1.00000 1.73205i 0.377964 0.654654i −0.612801 0.790237i \(-0.709957\pi\)
0.990766 + 0.135583i \(0.0432908\pi\)
\(8\) 3.00000i 1.06066i
\(9\) 0.866025 + 0.500000i 0.288675 + 0.166667i
\(10\) 1.23205 1.86603i 0.389609 0.590089i
\(11\) −0.366025 + 1.36603i −0.110361 + 0.411872i −0.998898 0.0469323i \(-0.985055\pi\)
0.888537 + 0.458804i \(0.151722\pi\)
\(12\) 1.00000 + 1.00000i 0.288675 + 0.288675i
\(13\) 0 0
\(14\) 2.00000i 0.534522i
\(15\) 0.633975 + 3.09808i 0.163692 + 0.799920i
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) 1.36603 0.366025i 0.331310 0.0887742i −0.0893296 0.996002i \(-0.528472\pi\)
0.420639 + 0.907228i \(0.361806\pi\)
\(18\) −1.00000 −0.235702
\(19\) −6.83013 + 1.83013i −1.56694 + 0.419860i −0.934852 0.355038i \(-0.884468\pi\)
−0.632087 + 0.774898i \(0.717801\pi\)
\(20\) 0.133975 2.23205i 0.0299576 0.499102i
\(21\) −2.00000 2.00000i −0.436436 0.436436i
\(22\) −0.366025 1.36603i −0.0780369 0.291238i
\(23\) 4.09808 + 1.09808i 0.854508 + 0.228965i 0.659377 0.751812i \(-0.270820\pi\)
0.195131 + 0.980777i \(0.437487\pi\)
\(24\) −4.09808 1.09808i −0.836516 0.224144i
\(25\) 3.00000 4.00000i 0.600000 0.800000i
\(26\) 0 0
\(27\) 4.00000 4.00000i 0.769800 0.769800i
\(28\) 1.00000 + 1.73205i 0.188982 + 0.327327i
\(29\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(30\) −2.09808 2.36603i −0.383055 0.431975i
\(31\) 5.00000 5.00000i 0.898027 0.898027i −0.0972349 0.995261i \(-0.531000\pi\)
0.995261 + 0.0972349i \(0.0309998\pi\)
\(32\) 4.33013 + 2.50000i 0.765466 + 0.441942i
\(33\) 1.73205 + 1.00000i 0.301511 + 0.174078i
\(34\) −1.00000 + 1.00000i −0.171499 + 0.171499i
\(35\) −0.267949 + 4.46410i −0.0452917 + 0.754571i
\(36\) −0.866025 + 0.500000i −0.144338 + 0.0833333i
\(37\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(38\) 5.00000 5.00000i 0.811107 0.811107i
\(39\) 0 0
\(40\) 3.00000 + 6.00000i 0.474342 + 0.948683i
\(41\) 9.56218 + 2.56218i 1.49336 + 0.400145i 0.910870 0.412692i \(-0.135412\pi\)
0.582491 + 0.812837i \(0.302078\pi\)
\(42\) 2.73205 + 0.732051i 0.421565 + 0.112958i
\(43\) 0.366025 + 1.36603i 0.0558184 + 0.208317i 0.988203 0.153151i \(-0.0489422\pi\)
−0.932384 + 0.361468i \(0.882276\pi\)
\(44\) −1.00000 1.00000i −0.150756 0.150756i
\(45\) −2.23205 0.133975i −0.332734 0.0199718i
\(46\) −4.09808 + 1.09808i −0.604228 + 0.161903i
\(47\) 6.00000 0.875190 0.437595 0.899172i \(-0.355830\pi\)
0.437595 + 0.899172i \(0.355830\pi\)
\(48\) 1.36603 0.366025i 0.197169 0.0528312i
\(49\) 1.50000 + 2.59808i 0.214286 + 0.371154i
\(50\) −0.598076 + 4.96410i −0.0845807 + 0.702030i
\(51\) 2.00000i 0.280056i
\(52\) 0 0
\(53\) 5.00000 + 5.00000i 0.686803 + 0.686803i 0.961524 0.274721i \(-0.0885855\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) −1.46410 + 5.46410i −0.199239 + 0.743570i
\(55\) −0.633975 3.09808i −0.0854851 0.417745i
\(56\) −5.19615 3.00000i −0.694365 0.400892i
\(57\) 10.0000i 1.32453i
\(58\) 0 0
\(59\) 2.56218 + 9.56218i 0.333567 + 1.24489i 0.905414 + 0.424529i \(0.139560\pi\)
−0.571847 + 0.820360i \(0.693773\pi\)
\(60\) −3.00000 1.00000i −0.387298 0.129099i
\(61\) 7.00000 12.1244i 0.896258 1.55236i 0.0640184 0.997949i \(-0.479608\pi\)
0.832240 0.554416i \(-0.187058\pi\)
\(62\) −1.83013 + 6.83013i −0.232426 + 0.867427i
\(63\) 1.73205 1.00000i 0.218218 0.125988i
\(64\) −7.00000 −0.875000
\(65\) 0 0
\(66\) −2.00000 −0.246183
\(67\) 3.46410 2.00000i 0.423207 0.244339i −0.273241 0.961946i \(-0.588096\pi\)
0.696449 + 0.717607i \(0.254762\pi\)
\(68\) −0.366025 + 1.36603i −0.0443871 + 0.165655i
\(69\) 3.00000 5.19615i 0.361158 0.625543i
\(70\) −2.00000 4.00000i −0.239046 0.478091i
\(71\) 0.366025 + 1.36603i 0.0434392 + 0.162117i 0.984238 0.176847i \(-0.0565899\pi\)
−0.940799 + 0.338965i \(0.889923\pi\)
\(72\) 1.50000 2.59808i 0.176777 0.306186i
\(73\) 10.0000i 1.17041i −0.810885 0.585206i \(-0.801014\pi\)
0.810885 0.585206i \(-0.198986\pi\)
\(74\) 0 0
\(75\) −4.36603 5.56218i −0.504145 0.642265i
\(76\) 1.83013 6.83013i 0.209930 0.783469i
\(77\) 2.00000 + 2.00000i 0.227921 + 0.227921i
\(78\) 0 0
\(79\) 2.00000i 0.225018i 0.993651 + 0.112509i \(0.0358886\pi\)
−0.993651 + 0.112509i \(0.964111\pi\)
\(80\) −1.86603 1.23205i −0.208628 0.137747i
\(81\) −2.50000 4.33013i −0.277778 0.481125i
\(82\) −9.56218 + 2.56218i −1.05597 + 0.282945i
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 2.73205 0.732051i 0.298091 0.0798733i
\(85\) −2.36603 + 2.09808i −0.256631 + 0.227568i
\(86\) −1.00000 1.00000i −0.107833 0.107833i
\(87\) 0 0
\(88\) 4.09808 + 1.09808i 0.436856 + 0.117055i
\(89\) 6.83013 + 1.83013i 0.723992 + 0.193993i 0.601952 0.798532i \(-0.294390\pi\)
0.122040 + 0.992525i \(0.461056\pi\)
\(90\) 2.00000 1.00000i 0.210819 0.105409i
\(91\) 0 0
\(92\) −3.00000 + 3.00000i −0.312772 + 0.312772i
\(93\) −5.00000 8.66025i −0.518476 0.898027i
\(94\) −5.19615 + 3.00000i −0.535942 + 0.309426i
\(95\) 11.8301 10.4904i 1.21375 1.07629i
\(96\) 5.00000 5.00000i 0.510310 0.510310i
\(97\) 1.73205 + 1.00000i 0.175863 + 0.101535i 0.585348 0.810782i \(-0.300958\pi\)
−0.409484 + 0.912317i \(0.634291\pi\)
\(98\) −2.59808 1.50000i −0.262445 0.151523i
\(99\) −1.00000 + 1.00000i −0.100504 + 0.100504i
\(100\) 1.96410 + 4.59808i 0.196410 + 0.459808i
\(101\) 10.3923 6.00000i 1.03407 0.597022i 0.115924 0.993258i \(-0.463017\pi\)
0.918149 + 0.396236i \(0.129684\pi\)
\(102\) 1.00000 + 1.73205i 0.0990148 + 0.171499i
\(103\) −7.00000 + 7.00000i −0.689730 + 0.689730i −0.962172 0.272442i \(-0.912169\pi\)
0.272442 + 0.962172i \(0.412169\pi\)
\(104\) 0 0
\(105\) 6.00000 + 2.00000i 0.585540 + 0.195180i
\(106\) −6.83013 1.83013i −0.663401 0.177758i
\(107\) −9.56218 2.56218i −0.924411 0.247695i −0.234941 0.972010i \(-0.575490\pi\)
−0.689470 + 0.724315i \(0.742156\pi\)
\(108\) 1.46410 + 5.46410i 0.140883 + 0.525783i
\(109\) −9.00000 9.00000i −0.862044 0.862044i 0.129532 0.991575i \(-0.458653\pi\)
−0.991575 + 0.129532i \(0.958653\pi\)
\(110\) 2.09808 + 2.36603i 0.200044 + 0.225592i
\(111\) 0 0
\(112\) 2.00000 0.188982
\(113\) −6.83013 + 1.83013i −0.642524 + 0.172164i −0.565347 0.824853i \(-0.691258\pi\)
−0.0771777 + 0.997017i \(0.524591\pi\)
\(114\) −5.00000 8.66025i −0.468293 0.811107i
\(115\) −9.29423 + 1.90192i −0.866691 + 0.177355i
\(116\) 0 0
\(117\) 0 0
\(118\) −7.00000 7.00000i −0.644402 0.644402i
\(119\) 0.732051 2.73205i 0.0671070 0.250447i
\(120\) 9.29423 1.90192i 0.848443 0.173621i
\(121\) 7.79423 + 4.50000i 0.708566 + 0.409091i
\(122\) 14.0000i 1.26750i
\(123\) 7.00000 12.1244i 0.631169 1.09322i
\(124\) 1.83013 + 6.83013i 0.164350 + 0.613364i
\(125\) −2.00000 + 11.0000i −0.178885 + 0.983870i
\(126\) −1.00000 + 1.73205i −0.0890871 + 0.154303i
\(127\) −3.29423 + 12.2942i −0.292316 + 1.09094i 0.651010 + 0.759069i \(0.274345\pi\)
−0.943326 + 0.331868i \(0.892321\pi\)
\(128\) −2.59808 + 1.50000i −0.229640 + 0.132583i
\(129\) 2.00000 0.176090
\(130\) 0 0
\(131\) −20.0000 −1.74741 −0.873704 0.486458i \(-0.838289\pi\)
−0.873704 + 0.486458i \(0.838289\pi\)
\(132\) −1.73205 + 1.00000i −0.150756 + 0.0870388i
\(133\) −3.66025 + 13.6603i −0.317384 + 1.18449i
\(134\) −2.00000 + 3.46410i −0.172774 + 0.299253i
\(135\) −4.00000 + 12.0000i −0.344265 + 1.03280i
\(136\) −1.09808 4.09808i −0.0941593 0.351407i
\(137\) 8.00000 13.8564i 0.683486 1.18383i −0.290424 0.956898i \(-0.593796\pi\)
0.973910 0.226935i \(-0.0728704\pi\)
\(138\) 6.00000i 0.510754i
\(139\) −12.1244 7.00000i −1.02837 0.593732i −0.111856 0.993724i \(-0.535679\pi\)
−0.916519 + 0.399992i \(0.869013\pi\)
\(140\) −3.73205 2.46410i −0.315416 0.208255i
\(141\) 2.19615 8.19615i 0.184949 0.690241i
\(142\) −1.00000 1.00000i −0.0839181 0.0839181i
\(143\) 0 0
\(144\) 1.00000i 0.0833333i
\(145\) 0 0
\(146\) 5.00000 + 8.66025i 0.413803 + 0.716728i
\(147\) 4.09808 1.09808i 0.338004 0.0905678i
\(148\) 0 0
\(149\) −4.09808 + 1.09808i −0.335727 + 0.0899579i −0.422744 0.906249i \(-0.638933\pi\)
0.0870170 + 0.996207i \(0.472267\pi\)
\(150\) 6.56218 + 2.63397i 0.535800 + 0.215063i
\(151\) 7.00000 + 7.00000i 0.569652 + 0.569652i 0.932031 0.362379i \(-0.118035\pi\)
−0.362379 + 0.932031i \(0.618035\pi\)
\(152\) 5.49038 + 20.4904i 0.445329 + 1.66199i
\(153\) 1.36603 + 0.366025i 0.110437 + 0.0295914i
\(154\) −2.73205 0.732051i −0.220155 0.0589903i
\(155\) −5.00000 + 15.0000i −0.401610 + 1.20483i
\(156\) 0 0
\(157\) 13.0000 13.0000i 1.03751 1.03751i 0.0382445 0.999268i \(-0.487823\pi\)
0.999268 0.0382445i \(-0.0121766\pi\)
\(158\) −1.00000 1.73205i −0.0795557 0.137795i
\(159\) 8.66025 5.00000i 0.686803 0.396526i
\(160\) −11.1603 0.669873i −0.882296 0.0529581i
\(161\) 6.00000 6.00000i 0.472866 0.472866i
\(162\) 4.33013 + 2.50000i 0.340207 + 0.196419i
\(163\) −3.46410 2.00000i −0.271329 0.156652i 0.358162 0.933659i \(-0.383403\pi\)
−0.629492 + 0.777007i \(0.716737\pi\)
\(164\) −7.00000 + 7.00000i −0.546608 + 0.546608i
\(165\) −4.46410 0.267949i −0.347530 0.0208598i
\(166\) −5.19615 + 3.00000i −0.403300 + 0.232845i
\(167\) 9.00000 + 15.5885i 0.696441 + 1.20627i 0.969693 + 0.244328i \(0.0785675\pi\)
−0.273252 + 0.961943i \(0.588099\pi\)
\(168\) −6.00000 + 6.00000i −0.462910 + 0.462910i
\(169\) 0 0
\(170\) 1.00000 3.00000i 0.0766965 0.230089i
\(171\) −6.83013 1.83013i −0.522313 0.139953i
\(172\) −1.36603 0.366025i −0.104158 0.0279092i
\(173\) 4.02628 + 15.0263i 0.306112 + 1.14243i 0.931984 + 0.362500i \(0.118077\pi\)
−0.625871 + 0.779926i \(0.715256\pi\)
\(174\) 0 0
\(175\) −3.92820 9.19615i −0.296944 0.695164i
\(176\) −1.36603 + 0.366025i −0.102968 + 0.0275902i
\(177\) 14.0000 1.05230
\(178\) −6.83013 + 1.83013i −0.511940 + 0.137174i
\(179\) −10.0000 17.3205i −0.747435 1.29460i −0.949048 0.315130i \(-0.897952\pi\)
0.201613 0.979465i \(-0.435382\pi\)
\(180\) 1.23205 1.86603i 0.0918316 0.139085i
\(181\) 8.00000i 0.594635i −0.954779 0.297318i \(-0.903908\pi\)
0.954779 0.297318i \(-0.0960920\pi\)
\(182\) 0 0
\(183\) −14.0000 14.0000i −1.03491 1.03491i
\(184\) 3.29423 12.2942i 0.242854 0.906343i
\(185\) 0 0
\(186\) 8.66025 + 5.00000i 0.635001 + 0.366618i
\(187\) 2.00000i 0.146254i
\(188\) −3.00000 + 5.19615i −0.218797 + 0.378968i
\(189\) −2.92820 10.9282i −0.212995 0.794910i
\(190\) −5.00000 + 15.0000i −0.362738 + 1.08821i
\(191\) −4.00000 + 6.92820i −0.289430 + 0.501307i −0.973674 0.227946i \(-0.926799\pi\)
0.684244 + 0.729253i \(0.260132\pi\)
\(192\) −2.56218 + 9.56218i −0.184909 + 0.690091i
\(193\) 15.5885 9.00000i 1.12208 0.647834i 0.180150 0.983639i \(-0.442342\pi\)
0.941932 + 0.335805i \(0.109008\pi\)
\(194\) −2.00000 −0.143592
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) −5.19615 + 3.00000i −0.370211 + 0.213741i −0.673550 0.739141i \(-0.735232\pi\)
0.303340 + 0.952882i \(0.401898\pi\)
\(198\) 0.366025 1.36603i 0.0260123 0.0970792i
\(199\) −4.00000 + 6.92820i −0.283552 + 0.491127i −0.972257 0.233915i \(-0.924846\pi\)
0.688705 + 0.725042i \(0.258180\pi\)
\(200\) −12.0000 9.00000i −0.848528 0.636396i
\(201\) −1.46410 5.46410i −0.103270 0.385408i
\(202\) −6.00000 + 10.3923i −0.422159 + 0.731200i
\(203\) 0 0
\(204\) 1.73205 + 1.00000i 0.121268 + 0.0700140i
\(205\) −21.6865 + 4.43782i −1.51465 + 0.309951i
\(206\) 2.56218 9.56218i 0.178515 0.666228i
\(207\) 3.00000 + 3.00000i 0.208514 + 0.208514i
\(208\) 0 0
\(209\) 10.0000i 0.691714i
\(210\) −6.19615 + 1.26795i −0.427575 + 0.0874968i
\(211\) −2.00000 3.46410i −0.137686 0.238479i 0.788935 0.614477i \(-0.210633\pi\)
−0.926620 + 0.375999i \(0.877300\pi\)
\(212\) −6.83013 + 1.83013i −0.469095 + 0.125694i
\(213\) 2.00000 0.137038
\(214\) 9.56218 2.56218i 0.653657 0.175147i
\(215\) −2.09808 2.36603i −0.143088 0.161362i
\(216\) −12.0000 12.0000i −0.816497 0.816497i
\(217\) −3.66025 13.6603i −0.248474 0.927318i
\(218\) 12.2942 + 3.29423i 0.832670 + 0.223113i
\(219\) −13.6603 3.66025i −0.923074 0.247337i
\(220\) 3.00000 + 1.00000i 0.202260 + 0.0674200i
\(221\) 0 0
\(222\) 0 0
\(223\) −1.00000 1.73205i −0.0669650 0.115987i 0.830599 0.556871i \(-0.187998\pi\)
−0.897564 + 0.440884i \(0.854665\pi\)
\(224\) 8.66025 5.00000i 0.578638 0.334077i
\(225\) 4.59808 1.96410i 0.306538 0.130940i
\(226\) 5.00000 5.00000i 0.332595 0.332595i
\(227\) −10.3923 6.00000i −0.689761 0.398234i 0.113761 0.993508i \(-0.463710\pi\)
−0.803523 + 0.595274i \(0.797043\pi\)
\(228\) −8.66025 5.00000i −0.573539 0.331133i
\(229\) 3.00000 3.00000i 0.198246 0.198246i −0.601002 0.799248i \(-0.705232\pi\)
0.799248 + 0.601002i \(0.205232\pi\)
\(230\) 7.09808 6.29423i 0.468033 0.415029i
\(231\) 3.46410 2.00000i 0.227921 0.131590i
\(232\) 0 0
\(233\) −1.00000 + 1.00000i −0.0655122 + 0.0655122i −0.739104 0.673592i \(-0.764751\pi\)
0.673592 + 0.739104i \(0.264751\pi\)
\(234\) 0 0
\(235\) −12.0000 + 6.00000i −0.782794 + 0.391397i
\(236\) −9.56218 2.56218i −0.622445 0.166784i
\(237\) 2.73205 + 0.732051i 0.177466 + 0.0475518i
\(238\) 0.732051 + 2.73205i 0.0474518 + 0.177093i
\(239\) −3.00000 3.00000i −0.194054 0.194054i 0.603391 0.797445i \(-0.293816\pi\)
−0.797445 + 0.603391i \(0.793816\pi\)
\(240\) −2.36603 + 2.09808i −0.152726 + 0.135430i
\(241\) −23.2224 + 6.22243i −1.49589 + 0.400822i −0.911721 0.410811i \(-0.865246\pi\)
−0.584168 + 0.811633i \(0.698579\pi\)
\(242\) −9.00000 −0.578542
\(243\) 9.56218 2.56218i 0.613414 0.164364i
\(244\) 7.00000 + 12.1244i 0.448129 + 0.776182i
\(245\) −5.59808 3.69615i −0.357648 0.236139i
\(246\) 14.0000i 0.892607i
\(247\) 0 0
\(248\) −15.0000 15.0000i −0.952501 0.952501i
\(249\) 2.19615 8.19615i 0.139176 0.519410i
\(250\) −3.76795 10.5263i −0.238306 0.665740i
\(251\) −1.73205 1.00000i −0.109326 0.0631194i 0.444340 0.895858i \(-0.353438\pi\)
−0.553666 + 0.832739i \(0.686772\pi\)
\(252\) 2.00000i 0.125988i
\(253\) −3.00000 + 5.19615i −0.188608 + 0.326679i
\(254\) −3.29423 12.2942i −0.206698 0.771409i
\(255\) 2.00000 + 4.00000i 0.125245 + 0.250490i
\(256\) 8.50000 14.7224i 0.531250 0.920152i
\(257\) 4.02628 15.0263i 0.251152 0.937314i −0.719038 0.694971i \(-0.755417\pi\)
0.970191 0.242343i \(-0.0779159\pi\)
\(258\) −1.73205 + 1.00000i −0.107833 + 0.0622573i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 17.3205 10.0000i 1.07006 0.617802i
\(263\) 0.366025 1.36603i 0.0225701 0.0842327i −0.953722 0.300689i \(-0.902783\pi\)
0.976292 + 0.216457i \(0.0694500\pi\)
\(264\) 3.00000 5.19615i 0.184637 0.319801i
\(265\) −15.0000 5.00000i −0.921443 0.307148i
\(266\) −3.66025 13.6603i −0.224425 0.837564i
\(267\) 5.00000 8.66025i 0.305995 0.529999i
\(268\) 4.00000i 0.244339i
\(269\) 10.3923 + 6.00000i 0.633630 + 0.365826i 0.782157 0.623082i \(-0.214120\pi\)
−0.148527 + 0.988908i \(0.547453\pi\)
\(270\) −2.53590 12.3923i −0.154330 0.754172i
\(271\) −3.29423 + 12.2942i −0.200110 + 0.746821i 0.790774 + 0.612108i \(0.209678\pi\)
−0.990885 + 0.134714i \(0.956989\pi\)
\(272\) 1.00000 + 1.00000i 0.0606339 + 0.0606339i
\(273\) 0 0
\(274\) 16.0000i 0.966595i
\(275\) 4.36603 + 5.56218i 0.263281 + 0.335412i
\(276\) 3.00000 + 5.19615i 0.180579 + 0.312772i
\(277\) −20.4904 + 5.49038i −1.23115 + 0.329885i −0.815026 0.579424i \(-0.803278\pi\)
−0.416121 + 0.909309i \(0.636611\pi\)
\(278\) 14.0000 0.839664
\(279\) 6.83013 1.83013i 0.408909 0.109567i
\(280\) 13.3923 + 0.803848i 0.800343 + 0.0480391i
\(281\) 1.00000 + 1.00000i 0.0596550 + 0.0596550i 0.736305 0.676650i \(-0.236569\pi\)
−0.676650 + 0.736305i \(0.736569\pi\)
\(282\) 2.19615 + 8.19615i 0.130779 + 0.488074i
\(283\) −12.2942 3.29423i −0.730816 0.195822i −0.125823 0.992053i \(-0.540157\pi\)
−0.604993 + 0.796231i \(0.706824\pi\)
\(284\) −1.36603 0.366025i −0.0810587 0.0217196i
\(285\) −10.0000 20.0000i −0.592349 1.18470i
\(286\) 0 0
\(287\) 14.0000 14.0000i 0.826394 0.826394i
\(288\) 2.50000 + 4.33013i 0.147314 + 0.255155i
\(289\) −12.9904 + 7.50000i −0.764140 + 0.441176i
\(290\) 0 0
\(291\) 2.00000 2.00000i 0.117242 0.117242i
\(292\) 8.66025 + 5.00000i 0.506803 + 0.292603i
\(293\) 5.19615 + 3.00000i 0.303562 + 0.175262i 0.644042 0.764990i \(-0.277256\pi\)
−0.340480 + 0.940252i \(0.610589\pi\)
\(294\) −3.00000 + 3.00000i −0.174964 + 0.174964i
\(295\) −14.6865 16.5622i −0.855083 0.964287i
\(296\) 0 0
\(297\) 4.00000 + 6.92820i 0.232104 + 0.402015i
\(298\) 3.00000 3.00000i 0.173785 0.173785i
\(299\) 0 0
\(300\) 7.00000 1.00000i 0.404145 0.0577350i
\(301\) 2.73205 + 0.732051i 0.157473 + 0.0421947i
\(302\) −9.56218 2.56218i −0.550242 0.147437i
\(303\) −4.39230 16.3923i −0.252331 0.941713i
\(304\) −5.00000 5.00000i −0.286770 0.286770i
\(305\) −1.87564 + 31.2487i −0.107399 + 1.78930i
\(306\) −1.36603 + 0.366025i −0.0780905 + 0.0209243i
\(307\) 18.0000 1.02731 0.513657 0.857996i \(-0.328290\pi\)
0.513657 + 0.857996i \(0.328290\pi\)
\(308\) −2.73205 + 0.732051i −0.155673 + 0.0417125i
\(309\) 7.00000 + 12.1244i 0.398216 + 0.689730i
\(310\) −3.16987 15.4904i −0.180037 0.879795i
\(311\) 6.00000i 0.340229i 0.985424 + 0.170114i \(0.0544137\pi\)
−0.985424 + 0.170114i \(0.945586\pi\)
\(312\) 0 0
\(313\) 9.00000 + 9.00000i 0.508710 + 0.508710i 0.914130 0.405420i \(-0.132875\pi\)
−0.405420 + 0.914130i \(0.632875\pi\)
\(314\) −4.75833 + 17.7583i −0.268528 + 1.00216i
\(315\) −2.46410 + 3.73205i −0.138836 + 0.210277i
\(316\) −1.73205 1.00000i −0.0974355 0.0562544i
\(317\) 14.0000i 0.786318i 0.919470 + 0.393159i \(0.128618\pi\)
−0.919470 + 0.393159i \(0.871382\pi\)
\(318\) −5.00000 + 8.66025i −0.280386 + 0.485643i
\(319\) 0 0
\(320\) 14.0000 7.00000i 0.782624 0.391312i
\(321\) −7.00000 + 12.1244i −0.390702 + 0.676716i
\(322\) −2.19615 + 8.19615i −0.122387 + 0.456754i
\(323\) −8.66025 + 5.00000i −0.481869 + 0.278207i
\(324\) 5.00000 0.277778
\(325\) 0 0
\(326\) 4.00000 0.221540
\(327\) −15.5885 + 9.00000i −0.862044 + 0.497701i
\(328\) 7.68653 28.6865i 0.424418 1.58395i
\(329\) 6.00000 10.3923i 0.330791 0.572946i
\(330\) 4.00000 2.00000i 0.220193 0.110096i
\(331\) −1.09808 4.09808i −0.0603557 0.225251i 0.929160 0.369679i \(-0.120532\pi\)
−0.989515 + 0.144428i \(0.953866\pi\)
\(332\) −3.00000 + 5.19615i −0.164646 + 0.285176i
\(333\) 0 0
\(334\) −15.5885 9.00000i −0.852962 0.492458i
\(335\) −4.92820 + 7.46410i −0.269257 + 0.407807i
\(336\) 0.732051 2.73205i 0.0399366 0.149046i
\(337\) −13.0000 13.0000i −0.708155 0.708155i 0.257992 0.966147i \(-0.416939\pi\)
−0.966147 + 0.257992i \(0.916939\pi\)
\(338\) 0 0
\(339\) 10.0000i 0.543125i
\(340\) −0.633975 3.09808i −0.0343821 0.168017i
\(341\) 5.00000 + 8.66025i 0.270765 + 0.468979i
\(342\) 6.83013 1.83013i 0.369331 0.0989619i
\(343\) 20.0000 1.07990
\(344\) 4.09808 1.09808i 0.220953 0.0592043i
\(345\) −0.803848 + 13.3923i −0.0432777 + 0.721017i
\(346\) −11.0000 11.0000i −0.591364 0.591364i
\(347\) 1.09808 + 4.09808i 0.0589478 + 0.219996i 0.989116 0.147137i \(-0.0470059\pi\)
−0.930168 + 0.367133i \(0.880339\pi\)
\(348\) 0 0
\(349\) 12.2942 + 3.29423i 0.658095 + 0.176336i 0.572386 0.819984i \(-0.306018\pi\)
0.0857088 + 0.996320i \(0.472685\pi\)
\(350\) 8.00000 + 6.00000i 0.427618 + 0.320713i
\(351\) 0 0
\(352\) −5.00000 + 5.00000i −0.266501 + 0.266501i
\(353\) 6.00000 + 10.3923i 0.319348 + 0.553127i 0.980352 0.197256i \(-0.0632029\pi\)
−0.661004 + 0.750382i \(0.729870\pi\)
\(354\) −12.1244 + 7.00000i −0.644402 + 0.372046i
\(355\) −2.09808 2.36603i −0.111354 0.125576i
\(356\) −5.00000 + 5.00000i −0.264999 + 0.264999i
\(357\) −3.46410 2.00000i −0.183340 0.105851i
\(358\) 17.3205 + 10.0000i 0.915417 + 0.528516i
\(359\) −1.00000 + 1.00000i −0.0527780 + 0.0527780i −0.733003 0.680225i \(-0.761882\pi\)
0.680225 + 0.733003i \(0.261882\pi\)
\(360\) −0.401924 + 6.69615i −0.0211832 + 0.352918i
\(361\) 26.8468 15.5000i 1.41299 0.815789i
\(362\) 4.00000 + 6.92820i 0.210235 + 0.364138i
\(363\) 9.00000 9.00000i 0.472377 0.472377i
\(364\) 0 0
\(365\) 10.0000 + 20.0000i 0.523424 + 1.04685i
\(366\) 19.1244 + 5.12436i 0.999646 + 0.267854i
\(367\) 1.36603 + 0.366025i 0.0713059 + 0.0191064i 0.294296 0.955714i \(-0.404915\pi\)
−0.222990 + 0.974821i \(0.571582\pi\)
\(368\) 1.09808 + 4.09808i 0.0572412 + 0.213627i
\(369\) 7.00000 + 7.00000i 0.364405 + 0.364405i
\(370\) 0 0
\(371\) 13.6603 3.66025i 0.709205 0.190031i
\(372\) 10.0000 0.518476
\(373\) 20.4904 5.49038i 1.06095 0.284281i 0.314181 0.949363i \(-0.398270\pi\)
0.746770 + 0.665082i \(0.231603\pi\)
\(374\) −1.00000 1.73205i −0.0517088 0.0895622i
\(375\) 14.2942 + 6.75833i 0.738151 + 0.348999i
\(376\) 18.0000i 0.928279i
\(377\) 0 0
\(378\) 8.00000 + 8.00000i 0.411476 + 0.411476i
\(379\) 0.366025 1.36603i 0.0188015 0.0701680i −0.955888 0.293732i \(-0.905103\pi\)
0.974689 + 0.223564i \(0.0717693\pi\)
\(380\) 3.16987 + 15.4904i 0.162611 + 0.794640i
\(381\) 15.5885 + 9.00000i 0.798621 + 0.461084i
\(382\) 8.00000i 0.409316i
\(383\) 15.0000 25.9808i 0.766464 1.32755i −0.173005 0.984921i \(-0.555348\pi\)
0.939469 0.342634i \(-0.111319\pi\)
\(384\) 1.09808 + 4.09808i 0.0560360 + 0.209129i
\(385\) −6.00000 2.00000i −0.305788 0.101929i
\(386\) −9.00000 + 15.5885i −0.458088 + 0.793432i
\(387\) −0.366025 + 1.36603i −0.0186061 + 0.0694390i
\(388\) −1.73205 + 1.00000i −0.0879316 + 0.0507673i
\(389\) 18.0000 0.912636 0.456318 0.889817i \(-0.349168\pi\)
0.456318 + 0.889817i \(0.349168\pi\)
\(390\) 0 0
\(391\) 6.00000 0.303433
\(392\) 7.79423 4.50000i 0.393668 0.227284i
\(393\) −7.32051 + 27.3205i −0.369271 + 1.37814i
\(394\) 3.00000 5.19615i 0.151138 0.261778i
\(395\) −2.00000 4.00000i −0.100631 0.201262i
\(396\) −0.366025 1.36603i −0.0183935 0.0686454i
\(397\) −8.00000 + 13.8564i −0.401508 + 0.695433i −0.993908 0.110211i \(-0.964847\pi\)
0.592400 + 0.805644i \(0.298181\pi\)
\(398\) 8.00000i 0.401004i
\(399\) 17.3205 + 10.0000i 0.867110 + 0.500626i
\(400\) 4.96410 + 0.598076i 0.248205 + 0.0299038i
\(401\) −4.02628 + 15.0263i −0.201063 + 0.750377i 0.789551 + 0.613685i \(0.210314\pi\)
−0.990614 + 0.136691i \(0.956353\pi\)
\(402\) 4.00000 + 4.00000i 0.199502 + 0.199502i
\(403\) 0 0
\(404\) 12.0000i 0.597022i
\(405\) 9.33013 + 6.16025i 0.463618 + 0.306105i
\(406\) 0 0
\(407\) 0 0
\(408\) −6.00000 −0.297044
\(409\) −9.56218 + 2.56218i −0.472819 + 0.126692i −0.487357 0.873203i \(-0.662039\pi\)
0.0145378 + 0.999894i \(0.495372\pi\)
\(410\) 16.5622 14.6865i 0.817948 0.725316i
\(411\) −16.0000 16.0000i −0.789222 0.789222i
\(412\) −2.56218 9.56218i −0.126229 0.471095i
\(413\) 19.1244 + 5.12436i 0.941048 + 0.252153i
\(414\) −4.09808 1.09808i −0.201409 0.0539675i
\(415\) −12.0000 + 6.00000i −0.589057 + 0.294528i
\(416\) 0 0
\(417\) −14.0000 + 14.0000i −0.685583 + 0.685583i
\(418\) 5.00000 + 8.66025i 0.244558 + 0.423587i
\(419\) 32.9090 19.0000i 1.60771 0.928211i 0.617827 0.786314i \(-0.288013\pi\)
0.989882 0.141896i \(-0.0453200\pi\)
\(420\) −4.73205 + 4.19615i −0.230900 + 0.204751i
\(421\) −11.0000 + 11.0000i −0.536107 + 0.536107i −0.922383 0.386276i \(-0.873761\pi\)
0.386276 + 0.922383i \(0.373761\pi\)
\(422\) 3.46410 + 2.00000i 0.168630 + 0.0973585i
\(423\) 5.19615 + 3.00000i 0.252646 + 0.145865i
\(424\) 15.0000 15.0000i 0.728464 0.728464i
\(425\) 2.63397 6.56218i 0.127767 0.318312i
\(426\) −1.73205 + 1.00000i −0.0839181 + 0.0484502i
\(427\) −14.0000 24.2487i −0.677507 1.17348i
\(428\) 7.00000 7.00000i 0.338358 0.338358i
\(429\) 0 0
\(430\) 3.00000 + 1.00000i 0.144673 + 0.0482243i
\(431\) −17.7583 4.75833i −0.855389 0.229201i −0.195630 0.980678i \(-0.562675\pi\)
−0.659759 + 0.751477i \(0.729342\pi\)
\(432\) 5.46410 + 1.46410i 0.262892 + 0.0704416i
\(433\) −6.22243 23.2224i −0.299031 1.11600i −0.937963 0.346736i \(-0.887290\pi\)
0.638932 0.769263i \(-0.279377\pi\)
\(434\) 10.0000 + 10.0000i 0.480015 + 0.480015i
\(435\) 0 0
\(436\) 12.2942 3.29423i 0.588787 0.157765i
\(437\) −30.0000 −1.43509
\(438\) 13.6603 3.66025i 0.652712 0.174894i
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) −9.29423 + 1.90192i −0.443085 + 0.0906707i
\(441\) 3.00000i 0.142857i
\(442\) 0 0
\(443\) 25.0000 + 25.0000i 1.18779 + 1.18779i 0.977678 + 0.210108i \(0.0673814\pi\)
0.210108 + 0.977678i \(0.432619\pi\)
\(444\) 0 0
\(445\) −15.4904 + 3.16987i −0.734314 + 0.150266i
\(446\) 1.73205 + 1.00000i 0.0820150 + 0.0473514i
\(447\) 6.00000i 0.283790i
\(448\) −7.00000 + 12.1244i −0.330719 + 0.572822i
\(449\) 1.09808 + 4.09808i 0.0518214 + 0.193400i 0.986984 0.160819i \(-0.0514134\pi\)
−0.935163 + 0.354219i \(0.884747\pi\)
\(450\) −3.00000 + 4.00000i −0.141421 + 0.188562i
\(451\) −7.00000 + 12.1244i −0.329617 + 0.570914i
\(452\) 1.83013 6.83013i 0.0860819 0.321262i
\(453\) 12.1244 7.00000i 0.569652 0.328889i
\(454\) 12.0000 0.563188
\(455\) 0 0
\(456\) 30.0000 1.40488
\(457\) −1.73205 + 1.00000i −0.0810219 + 0.0467780i −0.539964 0.841688i \(-0.681562\pi\)
0.458942 + 0.888466i \(0.348229\pi\)
\(458\) −1.09808 + 4.09808i −0.0513097 + 0.191491i
\(459\) 4.00000 6.92820i 0.186704 0.323381i
\(460\) 3.00000 9.00000i 0.139876 0.419627i
\(461\) 6.22243 + 23.2224i 0.289808 + 1.08158i 0.945254 + 0.326335i \(0.105814\pi\)
−0.655447 + 0.755241i \(0.727520\pi\)
\(462\) −2.00000 + 3.46410i −0.0930484 + 0.161165i
\(463\) 24.0000i 1.11537i −0.830051 0.557687i \(-0.811689\pi\)
0.830051 0.557687i \(-0.188311\pi\)
\(464\) 0 0
\(465\) 18.6603 + 12.3205i 0.865349 + 0.571350i
\(466\) 0.366025 1.36603i 0.0169558 0.0632799i
\(467\) −9.00000 9.00000i −0.416470 0.416470i 0.467515 0.883985i \(-0.345149\pi\)
−0.883985 + 0.467515i \(0.845149\pi\)
\(468\) 0 0
\(469\) 8.00000i 0.369406i
\(470\) 7.39230 11.1962i 0.340982 0.516440i
\(471\) −13.0000 22.5167i −0.599008 1.03751i
\(472\) 28.6865 7.68653i 1.32040 0.353801i
\(473\) −2.00000 −0.0919601
\(474\) −2.73205 + 0.732051i −0.125487 + 0.0336242i
\(475\) −13.1699 + 32.8109i −0.604275 + 1.50547i
\(476\) 2.00000 + 2.00000i 0.0916698 + 0.0916698i
\(477\) 1.83013 + 6.83013i 0.0837958 + 0.312730i
\(478\) 4.09808 + 1.09808i 0.187442 + 0.0502248i
\(479\) −9.56218 2.56218i −0.436907 0.117069i 0.0336596 0.999433i \(-0.489284\pi\)
−0.470567 + 0.882364i \(0.655950\pi\)
\(480\) −5.00000 + 15.0000i −0.228218 + 0.684653i
\(481\) 0 0
\(482\) 17.0000 17.0000i 0.774329 0.774329i
\(483\) −6.00000 10.3923i −0.273009 0.472866i
\(484\) −7.79423 + 4.50000i −0.354283 + 0.204545i
\(485\) −4.46410 0.267949i −0.202704 0.0121669i
\(486\) −7.00000 + 7.00000i −0.317526 + 0.317526i
\(487\) 13.8564 + 8.00000i 0.627894 + 0.362515i 0.779936 0.625859i \(-0.215252\pi\)
−0.152042 + 0.988374i \(0.548585\pi\)
\(488\) −36.3731 21.0000i −1.64653 0.950625i
\(489\) −4.00000 + 4.00000i −0.180886 + 0.180886i
\(490\) 6.69615 + 0.401924i 0.302501 + 0.0181571i
\(491\) −19.0526 + 11.0000i −0.859830 + 0.496423i −0.863955 0.503568i \(-0.832020\pi\)
0.00412539 + 0.999991i \(0.498687\pi\)
\(492\) 7.00000 + 12.1244i 0.315584 + 0.546608i
\(493\) 0 0
\(494\) 0 0
\(495\) 1.00000 3.00000i 0.0449467 0.134840i
\(496\) 6.83013 + 1.83013i 0.306682 + 0.0821751i
\(497\) 2.73205 + 0.732051i 0.122549 + 0.0328370i
\(498\) 2.19615 + 8.19615i 0.0984119 + 0.367278i
\(499\) −3.00000 3.00000i −0.134298 0.134298i 0.636762 0.771060i \(-0.280273\pi\)
−0.771060 + 0.636762i \(0.780273\pi\)
\(500\) −8.52628 7.23205i −0.381307 0.323427i
\(501\) 24.5885 6.58846i 1.09853 0.294351i
\(502\) 2.00000 0.0892644
\(503\) 4.09808 1.09808i 0.182724 0.0489608i −0.166297 0.986076i \(-0.553181\pi\)
0.349021 + 0.937115i \(0.386514\pi\)
\(504\) −3.00000 5.19615i −0.133631 0.231455i
\(505\) −14.7846 + 22.3923i −0.657906 + 0.996444i
\(506\) 6.00000i 0.266733i
\(507\) 0 0
\(508\) −9.00000 9.00000i −0.399310 0.399310i
\(509\) −4.75833 + 17.7583i −0.210909 + 0.787124i 0.776657 + 0.629923i \(0.216914\pi\)
−0.987567 + 0.157201i \(0.949753\pi\)
\(510\) −3.73205 2.46410i −0.165258 0.109112i
\(511\) −17.3205 10.0000i −0.766214 0.442374i
\(512\) 11.0000i 0.486136i
\(513\) −20.0000 + 34.6410i −0.883022 + 1.52944i
\(514\) 4.02628 + 15.0263i 0.177592 + 0.662781i
\(515\) 7.00000 21.0000i 0.308457 0.925371i
\(516\) −1.00000 + 1.73205i −0.0440225 + 0.0762493i
\(517\) −2.19615 + 8.19615i −0.0965867 + 0.360466i
\(518\) 0 0
\(519\) 22.0000 0.965693
\(520\) 0 0
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 0 0
\(523\) 3.29423 12.2942i 0.144047 0.537589i −0.855749 0.517390i \(-0.826903\pi\)
0.999796 0.0201986i \(-0.00642985\pi\)
\(524\) 10.0000 17.3205i 0.436852 0.756650i
\(525\) −14.0000 + 2.00000i −0.611010 + 0.0872872i
\(526\) 0.366025 + 1.36603i 0.0159595 + 0.0595615i
\(527\) 5.00000 8.66025i 0.217803 0.377247i
\(528\) 2.00000i 0.0870388i
\(529\) −4.33013 2.50000i −0.188266 0.108696i
\(530\) 15.4904 3.16987i 0.672859 0.137690i
\(531\) −2.56218 + 9.56218i −0.111189 + 0.414963i
\(532\) −10.0000 10.0000i −0.433555 0.433555i
\(533\) 0 0
\(534\) 10.0000i 0.432742i
\(535\) 21.6865 4.43782i 0.937591 0.191864i
\(536\) −6.00000 10.3923i −0.259161 0.448879i
\(537\) −27.3205 + 7.32051i −1.17897 + 0.315903i
\(538\) −12.0000 −0.517357
\(539\) −4.09808 + 1.09808i −0.176517 + 0.0472975i
\(540\) −8.39230 9.46410i −0.361147 0.407270i
\(541\) 9.00000 + 9.00000i 0.386940 + 0.386940i 0.873595 0.486654i \(-0.161783\pi\)
−0.486654 + 0.873595i \(0.661783\pi\)
\(542\) −3.29423 12.2942i −0.141499 0.528082i
\(543\) −10.9282 2.92820i −0.468974 0.125661i
\(544\) 6.83013 + 1.83013i 0.292839 + 0.0784660i
\(545\) 27.0000 + 9.00000i 1.15655 + 0.385518i
\(546\) 0 0
\(547\) −9.00000 + 9.00000i −0.384812 + 0.384812i −0.872832 0.488020i \(-0.837719\pi\)
0.488020 + 0.872832i \(0.337719\pi\)
\(548\) 8.00000 + 13.8564i 0.341743 + 0.591916i
\(549\) 12.1244 7.00000i 0.517455 0.298753i
\(550\) −6.56218 2.63397i −0.279812 0.112313i
\(551\) 0 0
\(552\) −15.5885 9.00000i −0.663489 0.383065i
\(553\) 3.46410 + 2.00000i 0.147309 + 0.0850487i
\(554\) 15.0000 15.0000i 0.637289 0.637289i
\(555\) 0 0
\(556\) 12.1244 7.00000i 0.514187 0.296866i
\(557\) −12.0000 20.7846i −0.508456 0.880672i −0.999952 0.00979220i \(-0.996883\pi\)
0.491496 0.870880i \(-0.336450\pi\)
\(558\) −5.00000 + 5.00000i −0.211667 + 0.211667i
\(559\) 0 0
\(560\) −4.00000 + 2.00000i −0.169031 + 0.0845154i
\(561\) 2.73205 + 0.732051i 0.115347 + 0.0309072i
\(562\) −1.36603 0.366025i −0.0576223 0.0154398i
\(563\) −5.49038 20.4904i −0.231392 0.863567i −0.979742 0.200263i \(-0.935820\pi\)
0.748350 0.663304i \(-0.230846\pi\)
\(564\) 6.00000 + 6.00000i 0.252646 + 0.252646i
\(565\) 11.8301 10.4904i 0.497697 0.441334i
\(566\) 12.2942 3.29423i 0.516765 0.138467i
\(567\) −10.0000 −0.419961
\(568\) 4.09808 1.09808i 0.171951 0.0460743i
\(569\) 3.00000 + 5.19615i 0.125767 + 0.217834i 0.922032 0.387113i \(-0.126528\pi\)
−0.796266 + 0.604947i \(0.793194\pi\)
\(570\) 18.6603 + 12.3205i 0.781592 + 0.516049i
\(571\) 6.00000i 0.251092i −0.992088 0.125546i \(-0.959932\pi\)
0.992088 0.125546i \(-0.0400683\pi\)
\(572\) 0 0
\(573\) 8.00000 + 8.00000i 0.334205 + 0.334205i
\(574\) −5.12436 + 19.1244i −0.213886 + 0.798235i
\(575\) 16.6865 13.0981i 0.695877 0.546228i
\(576\) −6.06218 3.50000i −0.252591 0.145833i
\(577\) 46.0000i 1.91501i −0.288425 0.957503i \(-0.593132\pi\)
0.288425 0.957503i \(-0.406868\pi\)
\(578\) 7.50000 12.9904i 0.311959 0.540329i
\(579\) −6.58846 24.5885i −0.273807 1.02186i
\(580\) 0 0
\(581\) 6.00000 10.3923i 0.248922 0.431145i
\(582\) −0.732051 + 2.73205i −0.0303445 + 0.113247i
\(583\) −8.66025 + 5.00000i −0.358671 + 0.207079i
\(584\) −30.0000 −1.24141
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) 3.46410 2.00000i 0.142979 0.0825488i −0.426804 0.904344i \(-0.640361\pi\)
0.569783 + 0.821795i \(0.307027\pi\)
\(588\) −1.09808 + 4.09808i −0.0452839 + 0.169002i
\(589\) −25.0000 + 43.3013i −1.03011 + 1.78420i
\(590\) 21.0000 + 7.00000i 0.864556 + 0.288185i
\(591\) 2.19615 + 8.19615i 0.0903376 + 0.337145i
\(592\) 0 0
\(593\) 10.0000i 0.410651i 0.978694 + 0.205325i \(0.0658253\pi\)
−0.978694 + 0.205325i \(0.934175\pi\)
\(594\) −6.92820 4.00000i −0.284268 0.164122i
\(595\) 1.26795 + 6.19615i 0.0519808 + 0.254017i
\(596\) 1.09808 4.09808i 0.0449790 0.167864i
\(597\) 8.00000 + 8.00000i 0.327418 + 0.327418i
\(598\) 0 0
\(599\) 30.0000i 1.22577i −0.790173 0.612883i \(-0.790010\pi\)
0.790173 0.612883i \(-0.209990\pi\)
\(600\) −16.6865 + 13.0981i −0.681225 + 0.534727i
\(601\) 19.0000 + 32.9090i 0.775026 + 1.34238i 0.934780 + 0.355228i \(0.115597\pi\)
−0.159754 + 0.987157i \(0.551070\pi\)
\(602\) −2.73205 + 0.732051i −0.111350 + 0.0298362i
\(603\) 4.00000 0.162893
\(604\) −9.56218 + 2.56218i −0.389079 + 0.104254i
\(605\) −20.0885 1.20577i −0.816712 0.0490216i
\(606\) 12.0000 + 12.0000i 0.487467 + 0.487467i
\(607\) −4.75833 17.7583i −0.193135 0.720788i −0.992742 0.120265i \(-0.961626\pi\)
0.799607 0.600523i \(-0.205041\pi\)
\(608\) −34.1506 9.15064i −1.38499 0.371107i
\(609\) 0 0
\(610\) −14.0000 28.0000i −0.566843 1.13369i
\(611\) 0 0
\(612\) −1.00000 + 1.00000i −0.0404226 + 0.0404226i
\(613\) 10.0000 + 17.3205i 0.403896 + 0.699569i 0.994192 0.107618i \(-0.0343224\pi\)
−0.590296 + 0.807187i \(0.700989\pi\)
\(614\) −15.5885 + 9.00000i −0.629099 + 0.363210i
\(615\) −1.87564 + 31.2487i −0.0756333 + 1.26007i
\(616\) 6.00000 6.00000i 0.241747 0.241747i
\(617\) −19.0526 11.0000i −0.767027 0.442843i 0.0647859 0.997899i \(-0.479364\pi\)
−0.831813 + 0.555056i \(0.812697\pi\)
\(618\) −12.1244 7.00000i −0.487713 0.281581i
\(619\) −25.0000 + 25.0000i −1.00483 + 1.00483i −0.00484658 + 0.999988i \(0.501543\pi\)
−0.999988 + 0.00484658i \(0.998457\pi\)
\(620\) −10.4904 11.8301i −0.421304 0.475109i
\(621\) 20.7846 12.0000i 0.834058 0.481543i
\(622\) −3.00000 5.19615i −0.120289 0.208347i
\(623\) 10.0000 10.0000i 0.400642 0.400642i
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) −12.2942 3.29423i −0.491376 0.131664i
\(627\) −13.6603 3.66025i −0.545538 0.146176i
\(628\) 4.75833 + 17.7583i 0.189878 + 0.708635i
\(629\) 0 0
\(630\) 0.267949 4.46410i 0.0106754 0.177854i
\(631\) −15.0263 + 4.02628i −0.598187 + 0.160284i −0.545192 0.838311i \(-0.683543\pi\)
−0.0529946 + 0.998595i \(0.516877\pi\)
\(632\) 6.00000 0.238667
\(633\) −5.46410 + 1.46410i −0.217179 + 0.0581928i
\(634\) −7.00000 12.1244i −0.278006 0.481520i
\(635\) −5.70577 27.8827i −0.226427 1.10649i
\(636\) 10.0000i 0.396526i
\(637\) 0 0
\(638\) 0 0
\(639\) −0.366025 + 1.36603i −0.0144797 + 0.0540391i
\(640\) 3.69615 5.59808i 0.146103 0.221283i
\(641\) 20.7846 + 12.0000i 0.820943 + 0.473972i 0.850741 0.525584i \(-0.176153\pi\)
−0.0297987 + 0.999556i \(0.509487\pi\)
\(642\) 14.0000i 0.552536i
\(643\) 17.0000 29.4449i 0.670415 1.16119i −0.307372 0.951589i \(-0.599450\pi\)
0.977787 0.209603i \(-0.0672170\pi\)
\(644\) 2.19615 + 8.19615i 0.0865405 + 0.322974i
\(645\) −4.00000 + 2.00000i −0.157500 + 0.0787499i
\(646\) 5.00000 8.66025i 0.196722 0.340733i
\(647\) −0.366025 + 1.36603i −0.0143899 + 0.0537040i −0.972747 0.231867i \(-0.925517\pi\)
0.958358 + 0.285571i \(0.0921832\pi\)
\(648\) −12.9904 + 7.50000i −0.510310 + 0.294628i
\(649\) −14.0000 −0.549548
\(650\) 0 0
\(651\) −20.0000 −0.783862
\(652\) 3.46410 2.00000i 0.135665 0.0783260i
\(653\) 4.75833 17.7583i 0.186208 0.694937i −0.808161 0.588962i \(-0.799537\pi\)
0.994369 0.105975i \(-0.0337965\pi\)
\(654\) 9.00000 15.5885i 0.351928 0.609557i
\(655\) 40.0000 20.0000i 1.56293 0.781465i
\(656\) 2.56218 + 9.56218i 0.100036 + 0.373340i
\(657\) 5.00000 8.66025i 0.195069 0.337869i
\(658\) 12.0000i 0.467809i
\(659\) 22.5167 + 13.0000i 0.877125 + 0.506408i 0.869709 0.493564i \(-0.164306\pi\)
0.00741531 + 0.999973i \(0.497640\pi\)
\(660\) 2.46410 3.73205i 0.0959150 0.145270i
\(661\) 6.22243 23.2224i 0.242025 0.903248i −0.732831 0.680411i \(-0.761801\pi\)
0.974856 0.222837i \(-0.0715319\pi\)
\(662\) 3.00000 + 3.00000i 0.116598 + 0.116598i
\(663\) 0 0
\(664\) 18.0000i 0.698535i
\(665\) −6.33975 30.9808i −0.245845 1.20138i
\(666\) 0 0
\(667\) 0 0
\(668\) −18.0000 −0.696441
\(669\) −2.73205 + 0.732051i −0.105627 + 0.0283027i
\(670\) 0.535898 8.92820i 0.0207036 0.344927i
\(671\) 14.0000 + 14.0000i 0.540464 + 0.540464i
\(672\) −3.66025 13.6603i −0.141197 0.526956i
\(673\) −20.4904 5.49038i −0.789846 0.211639i −0.158725 0.987323i \(-0.550738\pi\)
−0.631121 + 0.775684i \(0.717405\pi\)
\(674\) 17.7583 + 4.75833i 0.684025 + 0.183284i
\(675\) −4.00000 28.0000i −0.153960 1.07772i
\(676\) 0 0
\(677\) −23.0000 + 23.0000i −0.883962 + 0.883962i −0.993935 0.109973i \(-0.964924\pi\)
0.109973 + 0.993935i \(0.464924\pi\)
\(678\) −5.00000 8.66025i −0.192024 0.332595i
\(679\) 3.46410 2.00000i 0.132940 0.0767530i
\(680\) 6.29423 + 7.09808i 0.241373 + 0.272199i
\(681\) −12.0000 + 12.0000i −0.459841 + 0.459841i
\(682\) −8.66025 5.00000i −0.331618 0.191460i
\(683\) 10.3923 + 6.00000i 0.397650 + 0.229584i 0.685470 0.728101i \(-0.259597\pi\)
−0.287819 + 0.957685i \(0.592930\pi\)
\(684\) 5.00000 5.00000i 0.191180 0.191180i
\(685\) −2.14359 + 35.7128i −0.0819025 + 1.36452i
\(686\) −17.3205 + 10.0000i −0.661300 + 0.381802i
\(687\) −3.00000 5.19615i −0.114457 0.198246i
\(688\) −1.00000 + 1.00000i −0.0381246 + 0.0381246i
\(689\) 0 0
\(690\) −6.00000 12.0000i −0.228416 0.456832i
\(691\) 4.09808 + 1.09808i 0.155898 + 0.0417728i 0.335924 0.941889i \(-0.390951\pi\)
−0.180026 + 0.983662i \(0.557618\pi\)
\(692\) −15.0263 4.02628i −0.571213 0.153056i
\(693\) 0.732051 + 2.73205i 0.0278083 + 0.103782i
\(694\) −3.00000 3.00000i −0.113878 0.113878i
\(695\) 31.2487 + 1.87564i 1.18533 + 0.0711472i
\(696\) 0 0
\(697\) 14.0000 0.530288
\(698\) −12.2942 + 3.29423i −0.465343 + 0.124688i
\(699\) 1.00000 + 1.73205i 0.0378235 + 0.0655122i
\(700\) 9.92820 + 1.19615i 0.375251 + 0.0452103i
\(701\) 12.0000i 0.453234i 0.973984 + 0.226617i \(0.0727665\pi\)
−0.973984 + 0.226617i \(0.927233\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 2.56218 9.56218i 0.0965657 0.360388i
\(705\) 3.80385 + 18.5885i 0.143261 + 0.700082i
\(706\) −10.3923 6.00000i −0.391120 0.225813i
\(707\) 24.0000i 0.902613i
\(708\) −7.00000 + 12.1244i −0.263076 + 0.455661i
\(709\) −10.6147 39.6147i −0.398645 1.48776i −0.815482 0.578782i \(-0.803528\pi\)
0.416838 0.908981i \(-0.363138\pi\)
\(710\) 3.00000 + 1.00000i 0.112588 + 0.0375293i
\(711\) −1.00000 + 1.73205i −0.0375029 + 0.0649570i
\(712\) 5.49038 20.4904i 0.205761 0.767909i
\(713\) 25.9808 15.0000i 0.972987 0.561754i
\(714\) 4.00000 0.149696
\(715\) 0 0
\(716\) 20.0000 0.747435
\(717\) −5.19615 + 3.00000i −0.194054 + 0.112037i
\(718\) 0.366025 1.36603i 0.0136599 0.0509796i
\(719\) −4.00000 + 6.92820i −0.149175 + 0.258378i −0.930923 0.365216i \(-0.880995\pi\)
0.781748 + 0.623595i \(0.214328\pi\)
\(720\) −1.00000 2.00000i −0.0372678 0.0745356i
\(721\) 5.12436 + 19.1244i 0.190841 + 0.712228i
\(722\) −15.5000 + 26.8468i −0.576850 + 0.999134i
\(723\) 34.0000i 1.26447i
\(724\) 6.92820 + 4.00000i 0.257485 + 0.148659i
\(725\) 0 0
\(726\) −3.29423 + 12.2942i −0.122260 + 0.456282i
\(727\) 35.0000 + 35.0000i 1.29808 + 1.29808i 0.929660 + 0.368418i \(0.120100\pi\)
0.368418 + 0.929660i \(0.379900\pi\)
\(728\) 0 0
\(729\) 29.0000i 1.07407i
\(730\) −18.6603 12.3205i −0.690647 0.456002i
\(731\) 1.00000 + 1.73205i 0.0369863 + 0.0640622i
\(732\) 19.1244 5.12436i 0.706857 0.189402i
\(733\) −4.00000 −0.147743 −0.0738717 0.997268i \(-0.523536\pi\)
−0.0738717 + 0.997268i \(0.523536\pi\)
\(734\) −1.36603 + 0.366025i −0.0504209 + 0.0135102i
\(735\) −7.09808 + 6.29423i −0.261816 + 0.232166i
\(736\) 15.0000 + 15.0000i 0.552907 + 0.552907i
\(737\) 1.46410 + 5.46410i 0.0539309 + 0.201273i
\(738\) −9.56218 2.56218i −0.351989 0.0943151i
\(739\) −4.09808 1.09808i −0.150750 0.0403934i 0.182655 0.983177i \(-0.441531\pi\)
−0.333405 + 0.942784i \(0.608198\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −10.0000 + 10.0000i −0.367112 + 0.367112i
\(743\) −17.0000 29.4449i −0.623670 1.08023i −0.988797 0.149270i \(-0.952308\pi\)
0.365127 0.930958i \(-0.381026\pi\)
\(744\) −25.9808 + 15.0000i −0.952501 + 0.549927i
\(745\) 7.09808 6.29423i 0.260053 0.230603i
\(746\) −15.0000 + 15.0000i −0.549189 + 0.549189i
\(747\) 5.19615 + 3.00000i 0.190117 + 0.109764i
\(748\) −1.73205 1.00000i −0.0633300 0.0365636i
\(749\) −14.0000 + 14.0000i −0.511549 + 0.511549i
\(750\) −15.7583 + 1.29423i −0.575413 + 0.0472585i
\(751\) −43.3013 + 25.0000i −1.58009 + 0.912263i −0.585240 + 0.810860i \(0.699000\pi\)
−0.994845 + 0.101403i \(0.967667\pi\)
\(752\) 3.00000 + 5.19615i 0.109399 + 0.189484i
\(753\) −2.00000 + 2.00000i −0.0728841 + 0.0728841i
\(754\) 0 0
\(755\) −21.0000 7.00000i −0.764268 0.254756i
\(756\) 10.9282 + 2.92820i 0.397455 + 0.106498i
\(757\) 47.8109 + 12.8109i 1.73772 + 0.465620i 0.981937 0.189207i \(-0.0605917\pi\)
0.755779 + 0.654827i \(0.227258\pi\)
\(758\) 0.366025 + 1.36603i 0.0132946 + 0.0496163i
\(759\) 6.00000 + 6.00000i 0.217786 + 0.217786i
\(760\) −31.4711 35.4904i −1.14158 1.28737i
\(761\) 9.56218 2.56218i 0.346629 0.0928789i −0.0813044 0.996689i \(-0.525909\pi\)
0.427933 + 0.903810i \(0.359242\pi\)
\(762\) −18.0000 −0.652071
\(763\) −24.5885 + 6.58846i −0.890162 + 0.238518i
\(764\) −4.00000 6.92820i −0.144715 0.250654i
\(765\) −3.09808 + 0.633975i −0.112011 + 0.0229214i
\(766\) 30.0000i 1.08394i
\(767\) 0 0
\(768\) −17.0000 17.0000i −0.613435 0.613435i
\(769\) 5.49038 20.4904i 0.197988 0.738902i −0.793485 0.608590i \(-0.791735\pi\)
0.991473 0.130312i \(-0.0415979\pi\)
\(770\) 6.19615 1.26795i 0.223294 0.0456937i
\(771\) −19.0526 11.0000i −0.686161 0.396155i
\(772\) 18.0000i 0.647834i
\(773\) 16.0000 27.7128i 0.575480 0.996761i −0.420509 0.907288i \(-0.638149\pi\)
0.995989 0.0894724i \(-0.0285181\pi\)
\(774\) −0.366025 1.36603i −0.0131565 0.0491008i
\(775\) −5.00000 35.0000i −0.179605 1.25724i
\(776\) 3.00000 5.19615i 0.107694 0.186531i
\(777\) 0 0
\(778\) −15.5885 + 9.00000i −0.558873 + 0.322666i
\(779\) −70.0000 −2.50801
\(780\) 0 0
\(781\) −2.00000 −0.0715656
\(782\) −5.19615 + 3.00000i −0.185814 + 0.107280i
\(783\) 0 0
\(784\) −1.50000 + 2.59808i −0.0535714 + 0.0927884i
\(785\) −13.0000 + 39.0000i −0.463990 + 1.39197i
\(786\) −7.32051 27.3205i −0.261114 0.974490i
\(787\) 11.0000 19.0526i 0.392108 0.679150i −0.600620 0.799535i \(-0.705079\pi\)
0.992727 + 0.120384i \(0.0384127\pi\)
\(788\) 6.00000i 0.213741i
\(789\) −1.73205 1.00000i −0.0616626 0.0356009i
\(790\) 3.73205 + 2.46410i 0.132780 + 0.0876688i
\(791\) −3.66025 + 13.6603i −0.130144 + 0.485703i
\(792\) 3.00000 + 3.00000i 0.106600 + 0.106600i
\(793\) 0 0
\(794\) 16.0000i 0.567819i
\(795\) −12.3205 + 18.6603i −0.436963 + 0.661811i
\(796\) −4.00000 6.92820i −0.141776 0.245564i
\(797\) 23.2224 6.22243i 0.822581 0.220410i 0.177106 0.984192i \(-0.443326\pi\)
0.645474 + 0.763782i \(0.276660\pi\)
\(798\) −20.0000 −0.707992
\(799\) 8.19615 2.19615i 0.289959 0.0776943i
\(800\) 22.9904 9.82051i 0.812833 0.347207i
\(801\) 5.00000 + 5.00000i 0.176666 + 0.176666i
\(802\) −4.02628 15.0263i −0.142173 0.530596i
\(803\) 13.6603 + 3.66025i 0.482060 + 0.129168i
\(804\) 5.46410 + 1.46410i 0.192704 + 0.0516349i
\(805\) −6.00000 + 18.0000i −0.211472 + 0.634417i
\(806\) 0 0
\(807\) 12.0000 12.0000i 0.422420 0.422420i
\(808\) −18.0000 31.1769i −0.633238 1.09680i
\(809\) −24.2487 + 14.0000i −0.852539 + 0.492214i −0.861507 0.507746i \(-0.830479\pi\)
0.00896753 + 0.999960i \(0.497146\pi\)
\(810\) −11.1603 0.669873i −0.392131 0.0235369i
\(811\) −27.0000 + 27.0000i −0.948098 + 0.948098i −0.998718 0.0506198i \(-0.983880\pi\)
0.0506198 + 0.998718i \(0.483880\pi\)
\(812\) 0 0
\(813\) 15.5885 + 9.00000i 0.546711 + 0.315644i
\(814\) 0 0
\(815\) 8.92820 + 0.535898i 0.312741 + 0.0187717i
\(816\) 1.73205 1.00000i 0.0606339 0.0350070i
\(817\) −5.00000 8.66025i −0.174928 0.302984i
\(818\) 7.00000 7.00000i 0.244749 0.244749i
\(819\) 0 0
\(820\) 7.00000 21.0000i 0.244451 0.733352i
\(821\) −12.2942 3.29423i −0.429072 0.114969i 0.0378188 0.999285i \(-0.487959\pi\)
−0.466890 + 0.884315i \(0.654626\pi\)
\(822\) 21.8564 + 5.85641i 0.762330 + 0.204266i
\(823\) 3.29423 + 12.2942i 0.114830 + 0.428550i 0.999274 0.0380955i \(-0.0121291\pi\)
−0.884445 + 0.466645i \(0.845462\pi\)
\(824\) 21.0000 + 21.0000i 0.731570 + 0.731570i
\(825\) 9.19615 3.92820i 0.320169 0.136762i
\(826\) −19.1244 + 5.12436i −0.665421 + 0.178299i
\(827\) −46.0000 −1.59958 −0.799788 0.600282i \(-0.795055\pi\)
−0.799788 + 0.600282i \(0.795055\pi\)
\(828\) −4.09808 + 1.09808i −0.142418 + 0.0381608i
\(829\) 17.0000 + 29.4449i 0.590434 + 1.02266i 0.994174 + 0.107788i \(0.0343769\pi\)
−0.403739 + 0.914874i \(0.632290\pi\)
\(830\) 7.39230 11.1962i 0.256591 0.388624i
\(831\) 30.0000i 1.04069i
\(832\) 0 0
\(833\) 3.00000 + 3.00000i 0.103944 + 0.103944i
\(834\) 5.12436 19.1244i 0.177442 0.662222i
\(835\) −33.5885 22.1769i −1.16238 0.767464i
\(836\) 8.66025 + 5.00000i 0.299521 + 0.172929i
\(837\) 40.0000i 1.38260i
\(838\) −19.0000 + 32.9090i −0.656344 + 1.13682i
\(839\) 12.8109 + 47.8109i 0.442281 + 1.65062i 0.723017 + 0.690830i \(0.242755\pi\)
−0.280736 + 0.959785i \(0.590579\pi\)
\(840\) 6.00000 18.0000i 0.207020 0.621059i
\(841\) −14.5000 + 25.1147i −0.500000 + 0.866025i
\(842\) 4.02628 15.0263i 0.138755 0.517840i
\(843\) 1.73205 1.00000i 0.0596550 0.0344418i
\(844\) 4.00000 0.137686
\(845\) 0 0
\(846\) −6.00000 −0.206284
\(847\) 15.5885 9.00000i 0.535626 0.309244i
\(848\) −1.83013 + 6.83013i −0.0628468 + 0.234548i
\(849\) −9.00000 + 15.5885i −0.308879 + 0.534994i
\(850\) 1.00000 + 7.00000i 0.0342997 + 0.240098i
\(851\) 0 0
\(852\) −1.00000 + 1.73205i −0.0342594 + 0.0593391i
\(853\) 26.0000i 0.890223i 0.895475 + 0.445112i \(0.146836\pi\)
−0.895475 + 0.445112i \(0.853164\pi\)
\(854\) 24.2487 + 14.0000i 0.829774 + 0.479070i
\(855\) 15.4904 3.16987i 0.529760 0.108407i
\(856\) −7.68653 + 28.6865i −0.262720 + 0.980486i
\(857\) 3.00000 + 3.00000i 0.102478 + 0.102478i 0.756487 0.654009i \(-0.226914\pi\)
−0.654009 + 0.756487i \(0.726914\pi\)
\(858\) 0 0
\(859\) 30.0000i 1.02359i 0.859109 + 0.511793i \(0.171019\pi\)
−0.859109 + 0.511793i \(0.828981\pi\)
\(860\) 3.09808 0.633975i 0.105644 0.0216184i
\(861\) −14.0000 24.2487i −0.477119 0.826394i
\(862\) 17.7583 4.75833i 0.604851 0.162069i
\(863\) −30.0000 −1.02121 −0.510606 0.859815i \(-0.670579\pi\)
−0.510606 + 0.859815i \(0.670579\pi\)
\(864\) 27.3205 7.32051i 0.929463 0.249049i
\(865\) −23.0788 26.0263i −0.784704 0.884920i
\(866\) 17.0000 + 17.0000i 0.577684 + 0.577684i
\(867\) 5.49038 + 20.4904i 0.186463 + 0.695890i
\(868\) 13.6603 + 3.66025i 0.463659 + 0.124237i
\(869\) −2.73205 0.732051i −0.0926785 0.0248331i
\(870\) 0 0
\(871\) 0 0
\(872\) −27.0000 + 27.0000i −0.914335 + 0.914335i
\(873\) 1.00000 + 1.73205i 0.0338449 + 0.0586210i
\(874\) 25.9808 15.0000i 0.878812 0.507383i
\(875\) 17.0526 + 14.4641i 0.576482 + 0.488976i
\(876\) 10.0000 10.0000i 0.337869 0.337869i
\(877\) 32.9090 + 19.0000i 1.11126 + 0.641584i 0.939155 0.343495i \(-0.111611\pi\)
0.172102 + 0.985079i \(0.444944\pi\)
\(878\) 0 0
\(879\) 6.00000 6.00000i 0.202375 0.202375i
\(880\) 2.36603 2.09808i 0.0797587 0.0707261i
\(881\) −45.0333 + 26.0000i −1.51721 + 0.875962i −0.517416 + 0.855734i \(0.673106\pi\)
−0.999795 + 0.0202281i \(0.993561\pi\)
\(882\) −1.50000 2.59808i −0.0505076 0.0874818i
\(883\) −39.0000 + 39.0000i −1.31245 + 1.31245i −0.392853 + 0.919601i \(0.628512\pi\)
−0.919601 + 0.392853i \(0.871488\pi\)
\(884\) 0 0
\(885\) −28.0000 + 14.0000i −0.941210 + 0.470605i
\(886\) −34.1506 9.15064i −1.14731 0.307422i
\(887\) 1.36603 + 0.366025i 0.0458666 + 0.0122899i 0.281679 0.959509i \(-0.409109\pi\)
−0.235813 + 0.971799i \(0.575775\pi\)
\(888\) 0 0
\(889\) 18.0000 + 18.0000i 0.603701 + 0.603701i
\(890\) 11.8301 10.4904i 0.396547 0.351638i
\(891\) 6.83013 1.83013i 0.228818 0.0613116i
\(892\) 2.00000 0.0669650
\(893\) −40.9808 + 10.9808i −1.37137 + 0.367457i
\(894\) −3.00000 5.19615i −0.100335 0.173785i
\(895\) 37.3205 + 24.6410i 1.24749 + 0.823658i
\(896\) 6.00000i 0.200446i
\(897\) 0 0
\(898\) −3.00000 3.00000i −0.100111 0.100111i
\(899\) 0 0
\(900\) −0.598076 + 4.96410i −0.0199359 + 0.165470i
\(901\) 8.66025 + 5.00000i 0.288515 + 0.166574i
\(902\) 14.0000i 0.466149i
\(903\) 2.00000 3.46410i 0.0665558 0.115278i
\(904\) 5.49038 + 20.4904i 0.182607 + 0.681500i
\(905\) 8.00000 + 16.0000i 0.265929 + 0.531858i
\(906\) −7.00000 + 12.1244i −0.232559 + 0.402805i
\(907\) 14.2750 53.2750i 0.473993 1.76897i −0.151206 0.988502i \(-0.548316\pi\)
0.625200 0.780465i \(-0.285018\pi\)
\(908\) 10.3923 6.00000i 0.344881 0.199117i
\(909\) 12.0000 0.398015
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) −8.66025 + 5.00000i −0.286770 + 0.165567i
\(913\) −2.19615 + 8.19615i −0.0726820 + 0.271253i
\(914\) 1.00000 1.73205i 0.0330771 0.0572911i
\(915\) 42.0000 + 14.0000i 1.38848 + 0.462826i
\(916\) 1.09808 + 4.09808i 0.0362815 + 0.135404i
\(917\) −20.0000 + 34.6410i −0.660458 + 1.14395i
\(918\) 8.00000i 0.264039i
\(919\) −8.66025 5.00000i −0.285675 0.164935i 0.350315 0.936632i \(-0.386075\pi\)
−0.635990 + 0.771697i \(0.719408\pi\)
\(920\) 5.70577 + 27.8827i 0.188114 + 0.919265i
\(921\) 6.58846 24.5885i 0.217097 0.810217i
\(922\) −17.0000 17.0000i −0.559865 0.559865i
\(923\) 0 0
\(924\) 4.00000i 0.131590i
\(925\) 0 0
\(926\) 12.0000 + 20.7846i 0.394344 + 0.683025i
\(927\) −9.56218 + 2.56218i −0.314063 + 0.0841530i
\(928\) 0 0
\(929\) −25.9545 + 6.95448i −0.851539 + 0.228169i −0.658088 0.752941i \(-0.728635\pi\)
−0.193451 + 0.981110i \(0.561968\pi\)
\(930\) −22.3205 1.33975i −0.731918 0.0439320i
\(931\) −15.0000 15.0000i −0.491605 0.491605i
\(932\) −0.366025 1.36603i −0.0119896 0.0447456i
\(933\) 8.19615 + 2.19615i 0.268330 + 0.0718988i
\(934\) 12.2942 + 3.29423i 0.402279 + 0.107790i
\(935\) −2.00000 4.00000i −0.0654070 0.130814i
\(936\) 0 0
\(937\) −7.00000 + 7.00000i −0.228680 + 0.228680i −0.812141 0.583461i \(-0.801698\pi\)
0.583461 + 0.812141i \(0.301698\pi\)
\(938\) 4.00000 + 6.92820i 0.130605 + 0.226214i
\(939\) 15.5885 9.00000i 0.508710 0.293704i
\(940\) 0.803848 13.3923i 0.0262186 0.436809i
\(941\) 21.0000 21.0000i 0.684580 0.684580i −0.276448 0.961029i \(-0.589157\pi\)
0.961029 + 0.276448i \(0.0891575\pi\)
\(942\) 22.5167 + 13.0000i 0.733632 + 0.423563i
\(943\) 36.3731 + 21.0000i 1.18447 + 0.683854i
\(944\) −7.00000 + 7.00000i −0.227831 + 0.227831i
\(945\) 16.7846 + 18.9282i 0.546003 + 0.615734i
\(946\) 1.73205 1.00000i 0.0563138 0.0325128i
\(947\) −9.00000 15.5885i −0.292461 0.506557i 0.681930 0.731417i \(-0.261141\pi\)
−0.974391 + 0.224860i \(0.927807\pi\)
\(948\) −2.00000 + 2.00000i −0.0649570 + 0.0649570i
\(949\) 0 0
\(950\) −5.00000 35.0000i −0.162221 1.13555i
\(951\) 19.1244 + 5.12436i 0.620150 + 0.166169i
\(952\) −8.19615 2.19615i −0.265639 0.0711777i
\(953\) −4.75833 17.7583i −0.154137 0.575249i −0.999178 0.0405460i \(-0.987090\pi\)
0.845040 0.534703i \(-0.179576\pi\)
\(954\) −5.00000 5.00000i −0.161881 0.161881i
\(955\) 1.07180 17.8564i 0.0346825 0.577820i
\(956\) 4.09808 1.09808i 0.132541 0.0355143i
\(957\) 0 0
\(958\) 9.56218 2.56218i 0.308940 0.0827802i
\(959\) −16.0000 27.7128i −0.516667 0.894893i
\(960\) −4.43782 21.6865i −0.143230 0.699930i
\(961\) 19.0000i 0.612903i
\(962\) 0 0
\(963\) −7.00000 7.00000i −0.225572 0.225572i
\(964\) 6.22243 23.2224i 0.200411 0.747944i
\(965\) −22.1769 + 33.5885i −0.713900 + 1.08125i
\(966\) 10.3923 + 6.00000i 0.334367 + 0.193047i
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 13.5000 23.3827i 0.433906 0.751548i
\(969\) 3.66025 + 13.6603i 0.117584 + 0.438831i
\(970\) 4.00000 2.00000i 0.128432 0.0642161i
\(971\) 30.0000 51.9615i 0.962746 1.66752i 0.247193 0.968966i \(-0.420492\pi\)
0.715553 0.698558i \(-0.246175\pi\)
\(972\) −2.56218 + 9.56218i −0.0821819 + 0.306707i
\(973\) −24.2487 + 14.0000i −0.777378 + 0.448819i
\(974\) −16.0000 −0.512673
\(975\) 0 0
\(976\) 14.0000 0.448129
\(977\) −53.6936 + 31.0000i −1.71781 + 0.991778i −0.794919 + 0.606715i \(0.792487\pi\)
−0.922890 + 0.385063i \(0.874180\pi\)
\(978\) 1.46410 5.46410i 0.0468168 0.174723i
\(979\) −5.00000 + 8.66025i −0.159801 + 0.276783i
\(980\) 6.00000 3.00000i 0.191663 0.0958315i
\(981\) −3.29423 12.2942i −0.105177 0.392525i
\(982\) 11.0000 19.0526i 0.351024 0.607992i
\(983\) 24.0000i 0.765481i −0.923856 0.382741i \(-0.874980\pi\)
0.923856 0.382741i \(-0.125020\pi\)
\(984\) −36.3731 21.0000i −1.15953 0.669456i
\(985\) 7.39230 11.1962i 0.235538 0.356739i
\(986\) 0 0
\(987\) −12.0000 12.0000i −0.381964 0.381964i
\(988\) 0 0
\(989\) 6.00000i 0.190789i
\(990\) 0.633975 + 3.09808i 0.0201490 + 0.0984633i
\(991\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(992\) 34.1506 9.15064i 1.08428 0.290533i
\(993\) −6.00000 −0.190404
\(994\) −2.73205 + 0.732051i −0.0866554 + 0.0232192i
\(995\) 1.07180 17.8564i 0.0339782 0.566086i
\(996\) 6.00000 + 6.00000i 0.190117 + 0.190117i
\(997\) 3.29423 + 12.2942i 0.104329 + 0.389362i 0.998268 0.0588266i \(-0.0187359\pi\)
−0.893939 + 0.448189i \(0.852069\pi\)
\(998\) 4.09808 + 1.09808i 0.129722 + 0.0347590i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.t.a.418.1 4
5.2 odd 4 845.2.o.a.587.1 4
13.2 odd 12 845.2.k.a.268.1 2
13.3 even 3 65.2.f.a.18.1 2
13.4 even 6 845.2.t.b.188.1 4
13.5 odd 4 845.2.o.b.258.1 4
13.6 odd 12 845.2.o.b.488.1 4
13.7 odd 12 845.2.o.a.488.1 4
13.8 odd 4 845.2.o.a.258.1 4
13.9 even 3 inner 845.2.t.a.188.1 4
13.10 even 6 845.2.f.a.408.1 2
13.11 odd 12 65.2.k.a.8.1 yes 2
13.12 even 2 845.2.t.b.418.1 4
39.11 even 12 585.2.w.b.73.1 2
39.29 odd 6 585.2.n.c.343.1 2
52.3 odd 6 1040.2.cd.b.993.1 2
52.11 even 12 1040.2.bg.a.593.1 2
65.2 even 12 845.2.f.a.437.1 2
65.3 odd 12 325.2.k.a.57.1 2
65.7 even 12 inner 845.2.t.a.657.1 4
65.12 odd 4 845.2.o.b.587.1 4
65.17 odd 12 845.2.o.b.357.1 4
65.22 odd 12 845.2.o.a.357.1 4
65.24 odd 12 325.2.k.a.268.1 2
65.29 even 6 325.2.f.a.18.1 2
65.32 even 12 845.2.t.b.657.1 4
65.37 even 12 65.2.f.a.47.1 yes 2
65.42 odd 12 65.2.k.a.57.1 yes 2
65.47 even 4 inner 845.2.t.a.427.1 4
65.57 even 4 845.2.t.b.427.1 4
65.62 odd 12 845.2.k.a.577.1 2
65.63 even 12 325.2.f.a.307.1 2
195.107 even 12 585.2.w.b.577.1 2
195.167 odd 12 585.2.n.c.307.1 2
260.107 even 12 1040.2.bg.a.577.1 2
260.167 odd 12 1040.2.cd.b.177.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.f.a.18.1 2 13.3 even 3
65.2.f.a.47.1 yes 2 65.37 even 12
65.2.k.a.8.1 yes 2 13.11 odd 12
65.2.k.a.57.1 yes 2 65.42 odd 12
325.2.f.a.18.1 2 65.29 even 6
325.2.f.a.307.1 2 65.63 even 12
325.2.k.a.57.1 2 65.3 odd 12
325.2.k.a.268.1 2 65.24 odd 12
585.2.n.c.307.1 2 195.167 odd 12
585.2.n.c.343.1 2 39.29 odd 6
585.2.w.b.73.1 2 39.11 even 12
585.2.w.b.577.1 2 195.107 even 12
845.2.f.a.408.1 2 13.10 even 6
845.2.f.a.437.1 2 65.2 even 12
845.2.k.a.268.1 2 13.2 odd 12
845.2.k.a.577.1 2 65.62 odd 12
845.2.o.a.258.1 4 13.8 odd 4
845.2.o.a.357.1 4 65.22 odd 12
845.2.o.a.488.1 4 13.7 odd 12
845.2.o.a.587.1 4 5.2 odd 4
845.2.o.b.258.1 4 13.5 odd 4
845.2.o.b.357.1 4 65.17 odd 12
845.2.o.b.488.1 4 13.6 odd 12
845.2.o.b.587.1 4 65.12 odd 4
845.2.t.a.188.1 4 13.9 even 3 inner
845.2.t.a.418.1 4 1.1 even 1 trivial
845.2.t.a.427.1 4 65.47 even 4 inner
845.2.t.a.657.1 4 65.7 even 12 inner
845.2.t.b.188.1 4 13.4 even 6
845.2.t.b.418.1 4 13.12 even 2
845.2.t.b.427.1 4 65.57 even 4
845.2.t.b.657.1 4 65.32 even 12
1040.2.bg.a.577.1 2 260.107 even 12
1040.2.bg.a.593.1 2 52.11 even 12
1040.2.cd.b.177.1 2 260.167 odd 12
1040.2.cd.b.993.1 2 52.3 odd 6