Properties

Label 325.2.k.a.57.1
Level $325$
Weight $2$
Character 325.57
Analytic conductor $2.595$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,2,Mod(57,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.57"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 57.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 325.57
Dual form 325.2.k.a.268.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +(-1.00000 + 1.00000i) q^{3} -1.00000 q^{4} +(1.00000 - 1.00000i) q^{6} +2.00000i q^{7} +3.00000 q^{8} +1.00000i q^{9} +(-1.00000 - 1.00000i) q^{11} +(1.00000 - 1.00000i) q^{12} +(-3.00000 - 2.00000i) q^{13} -2.00000i q^{14} -1.00000 q^{16} +(-1.00000 + 1.00000i) q^{17} -1.00000i q^{18} +(-5.00000 - 5.00000i) q^{19} +(-2.00000 - 2.00000i) q^{21} +(1.00000 + 1.00000i) q^{22} +(-3.00000 - 3.00000i) q^{23} +(-3.00000 + 3.00000i) q^{24} +(3.00000 + 2.00000i) q^{26} +(-4.00000 - 4.00000i) q^{27} -2.00000i q^{28} +(5.00000 - 5.00000i) q^{31} -5.00000 q^{32} +2.00000 q^{33} +(1.00000 - 1.00000i) q^{34} -1.00000i q^{36} +(5.00000 + 5.00000i) q^{38} +(5.00000 - 1.00000i) q^{39} +(-7.00000 + 7.00000i) q^{41} +(2.00000 + 2.00000i) q^{42} +(1.00000 + 1.00000i) q^{43} +(1.00000 + 1.00000i) q^{44} +(3.00000 + 3.00000i) q^{46} -6.00000i q^{47} +(1.00000 - 1.00000i) q^{48} +3.00000 q^{49} -2.00000i q^{51} +(3.00000 + 2.00000i) q^{52} +(-5.00000 + 5.00000i) q^{53} +(4.00000 + 4.00000i) q^{54} +6.00000i q^{56} +10.0000 q^{57} +(-7.00000 + 7.00000i) q^{59} -14.0000 q^{61} +(-5.00000 + 5.00000i) q^{62} -2.00000 q^{63} +7.00000 q^{64} -2.00000 q^{66} +4.00000 q^{67} +(1.00000 - 1.00000i) q^{68} +6.00000 q^{69} +(1.00000 - 1.00000i) q^{71} +3.00000i q^{72} +10.0000 q^{73} +(5.00000 + 5.00000i) q^{76} +(2.00000 - 2.00000i) q^{77} +(-5.00000 + 1.00000i) q^{78} -2.00000i q^{79} +5.00000 q^{81} +(7.00000 - 7.00000i) q^{82} +6.00000i q^{83} +(2.00000 + 2.00000i) q^{84} +(-1.00000 - 1.00000i) q^{86} +(-3.00000 - 3.00000i) q^{88} +(5.00000 - 5.00000i) q^{89} +(4.00000 - 6.00000i) q^{91} +(3.00000 + 3.00000i) q^{92} +10.0000i q^{93} +6.00000i q^{94} +(5.00000 - 5.00000i) q^{96} -2.00000 q^{97} -3.00000 q^{98} +(1.00000 - 1.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{3} - 2 q^{4} + 2 q^{6} + 6 q^{8} - 2 q^{11} + 2 q^{12} - 6 q^{13} - 2 q^{16} - 2 q^{17} - 10 q^{19} - 4 q^{21} + 2 q^{22} - 6 q^{23} - 6 q^{24} + 6 q^{26} - 8 q^{27} + 10 q^{31} - 10 q^{32}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107 −0.353553 0.935414i \(-0.615027\pi\)
−0.353553 + 0.935414i \(0.615027\pi\)
\(3\) −1.00000 + 1.00000i −0.577350 + 0.577350i −0.934172 0.356822i \(-0.883860\pi\)
0.356822 + 0.934172i \(0.383860\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 1.00000 1.00000i 0.408248 0.408248i
\(7\) 2.00000i 0.755929i 0.925820 + 0.377964i \(0.123376\pi\)
−0.925820 + 0.377964i \(0.876624\pi\)
\(8\) 3.00000 1.06066
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −1.00000 1.00000i −0.301511 0.301511i 0.540094 0.841605i \(-0.318389\pi\)
−0.841605 + 0.540094i \(0.818389\pi\)
\(12\) 1.00000 1.00000i 0.288675 0.288675i
\(13\) −3.00000 2.00000i −0.832050 0.554700i
\(14\) 2.00000i 0.534522i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −1.00000 + 1.00000i −0.242536 + 0.242536i −0.817898 0.575363i \(-0.804861\pi\)
0.575363 + 0.817898i \(0.304861\pi\)
\(18\) 1.00000i 0.235702i
\(19\) −5.00000 5.00000i −1.14708 1.14708i −0.987124 0.159954i \(-0.948865\pi\)
−0.159954 0.987124i \(-0.551135\pi\)
\(20\) 0 0
\(21\) −2.00000 2.00000i −0.436436 0.436436i
\(22\) 1.00000 + 1.00000i 0.213201 + 0.213201i
\(23\) −3.00000 3.00000i −0.625543 0.625543i 0.321400 0.946943i \(-0.395847\pi\)
−0.946943 + 0.321400i \(0.895847\pi\)
\(24\) −3.00000 + 3.00000i −0.612372 + 0.612372i
\(25\) 0 0
\(26\) 3.00000 + 2.00000i 0.588348 + 0.392232i
\(27\) −4.00000 4.00000i −0.769800 0.769800i
\(28\) 2.00000i 0.377964i
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 5.00000 5.00000i 0.898027 0.898027i −0.0972349 0.995261i \(-0.531000\pi\)
0.995261 + 0.0972349i \(0.0309998\pi\)
\(32\) −5.00000 −0.883883
\(33\) 2.00000 0.348155
\(34\) 1.00000 1.00000i 0.171499 0.171499i
\(35\) 0 0
\(36\) 1.00000i 0.166667i
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 5.00000 + 5.00000i 0.811107 + 0.811107i
\(39\) 5.00000 1.00000i 0.800641 0.160128i
\(40\) 0 0
\(41\) −7.00000 + 7.00000i −1.09322 + 1.09322i −0.0980332 + 0.995183i \(0.531255\pi\)
−0.995183 + 0.0980332i \(0.968745\pi\)
\(42\) 2.00000 + 2.00000i 0.308607 + 0.308607i
\(43\) 1.00000 + 1.00000i 0.152499 + 0.152499i 0.779233 0.626734i \(-0.215609\pi\)
−0.626734 + 0.779233i \(0.715609\pi\)
\(44\) 1.00000 + 1.00000i 0.150756 + 0.150756i
\(45\) 0 0
\(46\) 3.00000 + 3.00000i 0.442326 + 0.442326i
\(47\) 6.00000i 0.875190i −0.899172 0.437595i \(-0.855830\pi\)
0.899172 0.437595i \(-0.144170\pi\)
\(48\) 1.00000 1.00000i 0.144338 0.144338i
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) 2.00000i 0.280056i
\(52\) 3.00000 + 2.00000i 0.416025 + 0.277350i
\(53\) −5.00000 + 5.00000i −0.686803 + 0.686803i −0.961524 0.274721i \(-0.911414\pi\)
0.274721 + 0.961524i \(0.411414\pi\)
\(54\) 4.00000 + 4.00000i 0.544331 + 0.544331i
\(55\) 0 0
\(56\) 6.00000i 0.801784i
\(57\) 10.0000 1.32453
\(58\) 0 0
\(59\) −7.00000 + 7.00000i −0.911322 + 0.911322i −0.996376 0.0850540i \(-0.972894\pi\)
0.0850540 + 0.996376i \(0.472894\pi\)
\(60\) 0 0
\(61\) −14.0000 −1.79252 −0.896258 0.443533i \(-0.853725\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) −5.00000 + 5.00000i −0.635001 + 0.635001i
\(63\) −2.00000 −0.251976
\(64\) 7.00000 0.875000
\(65\) 0 0
\(66\) −2.00000 −0.246183
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 1.00000 1.00000i 0.121268 0.121268i
\(69\) 6.00000 0.722315
\(70\) 0 0
\(71\) 1.00000 1.00000i 0.118678 0.118678i −0.645273 0.763952i \(-0.723257\pi\)
0.763952 + 0.645273i \(0.223257\pi\)
\(72\) 3.00000i 0.353553i
\(73\) 10.0000 1.17041 0.585206 0.810885i \(-0.301014\pi\)
0.585206 + 0.810885i \(0.301014\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 5.00000 + 5.00000i 0.573539 + 0.573539i
\(77\) 2.00000 2.00000i 0.227921 0.227921i
\(78\) −5.00000 + 1.00000i −0.566139 + 0.113228i
\(79\) 2.00000i 0.225018i −0.993651 0.112509i \(-0.964111\pi\)
0.993651 0.112509i \(-0.0358886\pi\)
\(80\) 0 0
\(81\) 5.00000 0.555556
\(82\) 7.00000 7.00000i 0.773021 0.773021i
\(83\) 6.00000i 0.658586i 0.944228 + 0.329293i \(0.106810\pi\)
−0.944228 + 0.329293i \(0.893190\pi\)
\(84\) 2.00000 + 2.00000i 0.218218 + 0.218218i
\(85\) 0 0
\(86\) −1.00000 1.00000i −0.107833 0.107833i
\(87\) 0 0
\(88\) −3.00000 3.00000i −0.319801 0.319801i
\(89\) 5.00000 5.00000i 0.529999 0.529999i −0.390573 0.920572i \(-0.627723\pi\)
0.920572 + 0.390573i \(0.127723\pi\)
\(90\) 0 0
\(91\) 4.00000 6.00000i 0.419314 0.628971i
\(92\) 3.00000 + 3.00000i 0.312772 + 0.312772i
\(93\) 10.0000i 1.03695i
\(94\) 6.00000i 0.618853i
\(95\) 0 0
\(96\) 5.00000 5.00000i 0.510310 0.510310i
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) −3.00000 −0.303046
\(99\) 1.00000 1.00000i 0.100504 0.100504i
\(100\) 0 0
\(101\) 12.0000i 1.19404i 0.802225 + 0.597022i \(0.203650\pi\)
−0.802225 + 0.597022i \(0.796350\pi\)
\(102\) 2.00000i 0.198030i
\(103\) −7.00000 7.00000i −0.689730 0.689730i 0.272442 0.962172i \(-0.412169\pi\)
−0.962172 + 0.272442i \(0.912169\pi\)
\(104\) −9.00000 6.00000i −0.882523 0.588348i
\(105\) 0 0
\(106\) 5.00000 5.00000i 0.485643 0.485643i
\(107\) −7.00000 7.00000i −0.676716 0.676716i 0.282540 0.959256i \(-0.408823\pi\)
−0.959256 + 0.282540i \(0.908823\pi\)
\(108\) 4.00000 + 4.00000i 0.384900 + 0.384900i
\(109\) 9.00000 + 9.00000i 0.862044 + 0.862044i 0.991575 0.129532i \(-0.0413474\pi\)
−0.129532 + 0.991575i \(0.541347\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.00000i 0.188982i
\(113\) −5.00000 + 5.00000i −0.470360 + 0.470360i −0.902031 0.431671i \(-0.857924\pi\)
0.431671 + 0.902031i \(0.357924\pi\)
\(114\) −10.0000 −0.936586
\(115\) 0 0
\(116\) 0 0
\(117\) 2.00000 3.00000i 0.184900 0.277350i
\(118\) 7.00000 7.00000i 0.644402 0.644402i
\(119\) −2.00000 2.00000i −0.183340 0.183340i
\(120\) 0 0
\(121\) 9.00000i 0.818182i
\(122\) 14.0000 1.26750
\(123\) 14.0000i 1.26234i
\(124\) −5.00000 + 5.00000i −0.449013 + 0.449013i
\(125\) 0 0
\(126\) 2.00000 0.178174
\(127\) −9.00000 + 9.00000i −0.798621 + 0.798621i −0.982878 0.184257i \(-0.941012\pi\)
0.184257 + 0.982878i \(0.441012\pi\)
\(128\) 3.00000 0.265165
\(129\) −2.00000 −0.176090
\(130\) 0 0
\(131\) −20.0000 −1.74741 −0.873704 0.486458i \(-0.838289\pi\)
−0.873704 + 0.486458i \(0.838289\pi\)
\(132\) −2.00000 −0.174078
\(133\) 10.0000 10.0000i 0.867110 0.867110i
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) −3.00000 + 3.00000i −0.257248 + 0.257248i
\(137\) 16.0000i 1.36697i 0.729964 + 0.683486i \(0.239537\pi\)
−0.729964 + 0.683486i \(0.760463\pi\)
\(138\) −6.00000 −0.510754
\(139\) 14.0000i 1.18746i −0.804663 0.593732i \(-0.797654\pi\)
0.804663 0.593732i \(-0.202346\pi\)
\(140\) 0 0
\(141\) 6.00000 + 6.00000i 0.505291 + 0.505291i
\(142\) −1.00000 + 1.00000i −0.0839181 + 0.0839181i
\(143\) 1.00000 + 5.00000i 0.0836242 + 0.418121i
\(144\) 1.00000i 0.0833333i
\(145\) 0 0
\(146\) −10.0000 −0.827606
\(147\) −3.00000 + 3.00000i −0.247436 + 0.247436i
\(148\) 0 0
\(149\) −3.00000 3.00000i −0.245770 0.245770i 0.573462 0.819232i \(-0.305600\pi\)
−0.819232 + 0.573462i \(0.805600\pi\)
\(150\) 0 0
\(151\) 7.00000 + 7.00000i 0.569652 + 0.569652i 0.932031 0.362379i \(-0.118035\pi\)
−0.362379 + 0.932031i \(0.618035\pi\)
\(152\) −15.0000 15.0000i −1.21666 1.21666i
\(153\) −1.00000 1.00000i −0.0808452 0.0808452i
\(154\) −2.00000 + 2.00000i −0.161165 + 0.161165i
\(155\) 0 0
\(156\) −5.00000 + 1.00000i −0.400320 + 0.0800641i
\(157\) −13.0000 13.0000i −1.03751 1.03751i −0.999268 0.0382445i \(-0.987823\pi\)
−0.0382445 0.999268i \(-0.512177\pi\)
\(158\) 2.00000i 0.159111i
\(159\) 10.0000i 0.793052i
\(160\) 0 0
\(161\) 6.00000 6.00000i 0.472866 0.472866i
\(162\) −5.00000 −0.392837
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 7.00000 7.00000i 0.546608 0.546608i
\(165\) 0 0
\(166\) 6.00000i 0.465690i
\(167\) 18.0000i 1.39288i 0.717614 + 0.696441i \(0.245234\pi\)
−0.717614 + 0.696441i \(0.754766\pi\)
\(168\) −6.00000 6.00000i −0.462910 0.462910i
\(169\) 5.00000 + 12.0000i 0.384615 + 0.923077i
\(170\) 0 0
\(171\) 5.00000 5.00000i 0.382360 0.382360i
\(172\) −1.00000 1.00000i −0.0762493 0.0762493i
\(173\) 11.0000 + 11.0000i 0.836315 + 0.836315i 0.988372 0.152057i \(-0.0485898\pi\)
−0.152057 + 0.988372i \(0.548590\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.00000 + 1.00000i 0.0753778 + 0.0753778i
\(177\) 14.0000i 1.05230i
\(178\) −5.00000 + 5.00000i −0.374766 + 0.374766i
\(179\) −20.0000 −1.49487 −0.747435 0.664335i \(-0.768715\pi\)
−0.747435 + 0.664335i \(0.768715\pi\)
\(180\) 0 0
\(181\) 8.00000i 0.594635i −0.954779 0.297318i \(-0.903908\pi\)
0.954779 0.297318i \(-0.0960920\pi\)
\(182\) −4.00000 + 6.00000i −0.296500 + 0.444750i
\(183\) 14.0000 14.0000i 1.03491 1.03491i
\(184\) −9.00000 9.00000i −0.663489 0.663489i
\(185\) 0 0
\(186\) 10.0000i 0.733236i
\(187\) 2.00000 0.146254
\(188\) 6.00000i 0.437595i
\(189\) 8.00000 8.00000i 0.581914 0.581914i
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) −7.00000 + 7.00000i −0.505181 + 0.505181i
\(193\) −18.0000 −1.29567 −0.647834 0.761781i \(-0.724325\pi\)
−0.647834 + 0.761781i \(0.724325\pi\)
\(194\) 2.00000 0.143592
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) −1.00000 + 1.00000i −0.0710669 + 0.0710669i
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) −4.00000 + 4.00000i −0.282138 + 0.282138i
\(202\) 12.0000i 0.844317i
\(203\) 0 0
\(204\) 2.00000i 0.140028i
\(205\) 0 0
\(206\) 7.00000 + 7.00000i 0.487713 + 0.487713i
\(207\) 3.00000 3.00000i 0.208514 0.208514i
\(208\) 3.00000 + 2.00000i 0.208013 + 0.138675i
\(209\) 10.0000i 0.691714i
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 5.00000 5.00000i 0.343401 0.343401i
\(213\) 2.00000i 0.137038i
\(214\) 7.00000 + 7.00000i 0.478510 + 0.478510i
\(215\) 0 0
\(216\) −12.0000 12.0000i −0.816497 0.816497i
\(217\) 10.0000 + 10.0000i 0.678844 + 0.678844i
\(218\) −9.00000 9.00000i −0.609557 0.609557i
\(219\) −10.0000 + 10.0000i −0.675737 + 0.675737i
\(220\) 0 0
\(221\) 5.00000 1.00000i 0.336336 0.0672673i
\(222\) 0 0
\(223\) 2.00000i 0.133930i 0.997755 + 0.0669650i \(0.0213316\pi\)
−0.997755 + 0.0669650i \(0.978668\pi\)
\(224\) 10.0000i 0.668153i
\(225\) 0 0
\(226\) 5.00000 5.00000i 0.332595 0.332595i
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) −10.0000 −0.662266
\(229\) −3.00000 + 3.00000i −0.198246 + 0.198246i −0.799248 0.601002i \(-0.794768\pi\)
0.601002 + 0.799248i \(0.294768\pi\)
\(230\) 0 0
\(231\) 4.00000i 0.263181i
\(232\) 0 0
\(233\) −1.00000 1.00000i −0.0655122 0.0655122i 0.673592 0.739104i \(-0.264751\pi\)
−0.739104 + 0.673592i \(0.764751\pi\)
\(234\) −2.00000 + 3.00000i −0.130744 + 0.196116i
\(235\) 0 0
\(236\) 7.00000 7.00000i 0.455661 0.455661i
\(237\) 2.00000 + 2.00000i 0.129914 + 0.129914i
\(238\) 2.00000 + 2.00000i 0.129641 + 0.129641i
\(239\) 3.00000 + 3.00000i 0.194054 + 0.194054i 0.797445 0.603391i \(-0.206184\pi\)
−0.603391 + 0.797445i \(0.706184\pi\)
\(240\) 0 0
\(241\) 17.0000 + 17.0000i 1.09507 + 1.09507i 0.994979 + 0.100088i \(0.0319123\pi\)
0.100088 + 0.994979i \(0.468088\pi\)
\(242\) 9.00000i 0.578542i
\(243\) 7.00000 7.00000i 0.449050 0.449050i
\(244\) 14.0000 0.896258
\(245\) 0 0
\(246\) 14.0000i 0.892607i
\(247\) 5.00000 + 25.0000i 0.318142 + 1.59071i
\(248\) 15.0000 15.0000i 0.952501 0.952501i
\(249\) −6.00000 6.00000i −0.380235 0.380235i
\(250\) 0 0
\(251\) 2.00000i 0.126239i 0.998006 + 0.0631194i \(0.0201049\pi\)
−0.998006 + 0.0631194i \(0.979895\pi\)
\(252\) 2.00000 0.125988
\(253\) 6.00000i 0.377217i
\(254\) 9.00000 9.00000i 0.564710 0.564710i
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) 11.0000 11.0000i 0.686161 0.686161i −0.275220 0.961381i \(-0.588751\pi\)
0.961381 + 0.275220i \(0.0887507\pi\)
\(258\) 2.00000 0.124515
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 20.0000 1.23560
\(263\) −1.00000 + 1.00000i −0.0616626 + 0.0616626i −0.737266 0.675603i \(-0.763883\pi\)
0.675603 + 0.737266i \(0.263883\pi\)
\(264\) 6.00000 0.369274
\(265\) 0 0
\(266\) −10.0000 + 10.0000i −0.613139 + 0.613139i
\(267\) 10.0000i 0.611990i
\(268\) −4.00000 −0.244339
\(269\) 12.0000i 0.731653i 0.930683 + 0.365826i \(0.119214\pi\)
−0.930683 + 0.365826i \(0.880786\pi\)
\(270\) 0 0
\(271\) −9.00000 9.00000i −0.546711 0.546711i 0.378777 0.925488i \(-0.376345\pi\)
−0.925488 + 0.378777i \(0.876345\pi\)
\(272\) 1.00000 1.00000i 0.0606339 0.0606339i
\(273\) 2.00000 + 10.0000i 0.121046 + 0.605228i
\(274\) 16.0000i 0.966595i
\(275\) 0 0
\(276\) −6.00000 −0.361158
\(277\) 15.0000 15.0000i 0.901263 0.901263i −0.0942828 0.995545i \(-0.530056\pi\)
0.995545 + 0.0942828i \(0.0300558\pi\)
\(278\) 14.0000i 0.839664i
\(279\) 5.00000 + 5.00000i 0.299342 + 0.299342i
\(280\) 0 0
\(281\) 1.00000 + 1.00000i 0.0596550 + 0.0596550i 0.736305 0.676650i \(-0.236569\pi\)
−0.676650 + 0.736305i \(0.736569\pi\)
\(282\) −6.00000 6.00000i −0.357295 0.357295i
\(283\) 9.00000 + 9.00000i 0.534994 + 0.534994i 0.922055 0.387060i \(-0.126509\pi\)
−0.387060 + 0.922055i \(0.626509\pi\)
\(284\) −1.00000 + 1.00000i −0.0593391 + 0.0593391i
\(285\) 0 0
\(286\) −1.00000 5.00000i −0.0591312 0.295656i
\(287\) −14.0000 14.0000i −0.826394 0.826394i
\(288\) 5.00000i 0.294628i
\(289\) 15.0000i 0.882353i
\(290\) 0 0
\(291\) 2.00000 2.00000i 0.117242 0.117242i
\(292\) −10.0000 −0.585206
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) 3.00000 3.00000i 0.174964 0.174964i
\(295\) 0 0
\(296\) 0 0
\(297\) 8.00000i 0.464207i
\(298\) 3.00000 + 3.00000i 0.173785 + 0.173785i
\(299\) 3.00000 + 15.0000i 0.173494 + 0.867472i
\(300\) 0 0
\(301\) −2.00000 + 2.00000i −0.115278 + 0.115278i
\(302\) −7.00000 7.00000i −0.402805 0.402805i
\(303\) −12.0000 12.0000i −0.689382 0.689382i
\(304\) 5.00000 + 5.00000i 0.286770 + 0.286770i
\(305\) 0 0
\(306\) 1.00000 + 1.00000i 0.0571662 + 0.0571662i
\(307\) 18.0000i 1.02731i −0.857996 0.513657i \(-0.828290\pi\)
0.857996 0.513657i \(-0.171710\pi\)
\(308\) −2.00000 + 2.00000i −0.113961 + 0.113961i
\(309\) 14.0000 0.796432
\(310\) 0 0
\(311\) 6.00000i 0.340229i 0.985424 + 0.170114i \(0.0544137\pi\)
−0.985424 + 0.170114i \(0.945586\pi\)
\(312\) 15.0000 3.00000i 0.849208 0.169842i
\(313\) −9.00000 + 9.00000i −0.508710 + 0.508710i −0.914130 0.405420i \(-0.867125\pi\)
0.405420 + 0.914130i \(0.367125\pi\)
\(314\) 13.0000 + 13.0000i 0.733632 + 0.733632i
\(315\) 0 0
\(316\) 2.00000i 0.112509i
\(317\) 14.0000 0.786318 0.393159 0.919470i \(-0.371382\pi\)
0.393159 + 0.919470i \(0.371382\pi\)
\(318\) 10.0000i 0.560772i
\(319\) 0 0
\(320\) 0 0
\(321\) 14.0000 0.781404
\(322\) −6.00000 + 6.00000i −0.334367 + 0.334367i
\(323\) 10.0000 0.556415
\(324\) −5.00000 −0.277778
\(325\) 0 0
\(326\) 4.00000 0.221540
\(327\) −18.0000 −0.995402
\(328\) −21.0000 + 21.0000i −1.15953 + 1.15953i
\(329\) 12.0000 0.661581
\(330\) 0 0
\(331\) −3.00000 + 3.00000i −0.164895 + 0.164895i −0.784731 0.619836i \(-0.787199\pi\)
0.619836 + 0.784731i \(0.287199\pi\)
\(332\) 6.00000i 0.329293i
\(333\) 0 0
\(334\) 18.0000i 0.984916i
\(335\) 0 0
\(336\) 2.00000 + 2.00000i 0.109109 + 0.109109i
\(337\) −13.0000 + 13.0000i −0.708155 + 0.708155i −0.966147 0.257992i \(-0.916939\pi\)
0.257992 + 0.966147i \(0.416939\pi\)
\(338\) −5.00000 12.0000i −0.271964 0.652714i
\(339\) 10.0000i 0.543125i
\(340\) 0 0
\(341\) −10.0000 −0.541530
\(342\) −5.00000 + 5.00000i −0.270369 + 0.270369i
\(343\) 20.0000i 1.07990i
\(344\) 3.00000 + 3.00000i 0.161749 + 0.161749i
\(345\) 0 0
\(346\) −11.0000 11.0000i −0.591364 0.591364i
\(347\) −3.00000 3.00000i −0.161048 0.161048i 0.621983 0.783031i \(-0.286327\pi\)
−0.783031 + 0.621983i \(0.786327\pi\)
\(348\) 0 0
\(349\) 9.00000 9.00000i 0.481759 0.481759i −0.423934 0.905693i \(-0.639351\pi\)
0.905693 + 0.423934i \(0.139351\pi\)
\(350\) 0 0
\(351\) 4.00000 + 20.0000i 0.213504 + 1.06752i
\(352\) 5.00000 + 5.00000i 0.266501 + 0.266501i
\(353\) 12.0000i 0.638696i −0.947638 0.319348i \(-0.896536\pi\)
0.947638 0.319348i \(-0.103464\pi\)
\(354\) 14.0000i 0.744092i
\(355\) 0 0
\(356\) −5.00000 + 5.00000i −0.264999 + 0.264999i
\(357\) 4.00000 0.211702
\(358\) 20.0000 1.05703
\(359\) 1.00000 1.00000i 0.0527780 0.0527780i −0.680225 0.733003i \(-0.738118\pi\)
0.733003 + 0.680225i \(0.238118\pi\)
\(360\) 0 0
\(361\) 31.0000i 1.63158i
\(362\) 8.00000i 0.420471i
\(363\) 9.00000 + 9.00000i 0.472377 + 0.472377i
\(364\) −4.00000 + 6.00000i −0.209657 + 0.314485i
\(365\) 0 0
\(366\) −14.0000 + 14.0000i −0.731792 + 0.731792i
\(367\) 1.00000 + 1.00000i 0.0521996 + 0.0521996i 0.732725 0.680525i \(-0.238248\pi\)
−0.680525 + 0.732725i \(0.738248\pi\)
\(368\) 3.00000 + 3.00000i 0.156386 + 0.156386i
\(369\) −7.00000 7.00000i −0.364405 0.364405i
\(370\) 0 0
\(371\) −10.0000 10.0000i −0.519174 0.519174i
\(372\) 10.0000i 0.518476i
\(373\) 15.0000 15.0000i 0.776671 0.776671i −0.202593 0.979263i \(-0.564937\pi\)
0.979263 + 0.202593i \(0.0649367\pi\)
\(374\) −2.00000 −0.103418
\(375\) 0 0
\(376\) 18.0000i 0.928279i
\(377\) 0 0
\(378\) −8.00000 + 8.00000i −0.411476 + 0.411476i
\(379\) −1.00000 1.00000i −0.0513665 0.0513665i 0.680957 0.732323i \(-0.261564\pi\)
−0.732323 + 0.680957i \(0.761564\pi\)
\(380\) 0 0
\(381\) 18.0000i 0.922168i
\(382\) −8.00000 −0.409316
\(383\) 30.0000i 1.53293i −0.642287 0.766464i \(-0.722014\pi\)
0.642287 0.766464i \(-0.277986\pi\)
\(384\) −3.00000 + 3.00000i −0.153093 + 0.153093i
\(385\) 0 0
\(386\) 18.0000 0.916176
\(387\) −1.00000 + 1.00000i −0.0508329 + 0.0508329i
\(388\) 2.00000 0.101535
\(389\) −18.0000 −0.912636 −0.456318 0.889817i \(-0.650832\pi\)
−0.456318 + 0.889817i \(0.650832\pi\)
\(390\) 0 0
\(391\) 6.00000 0.303433
\(392\) 9.00000 0.454569
\(393\) 20.0000 20.0000i 1.00887 1.00887i
\(394\) 6.00000 0.302276
\(395\) 0 0
\(396\) −1.00000 + 1.00000i −0.0502519 + 0.0502519i
\(397\) 16.0000i 0.803017i −0.915855 0.401508i \(-0.868486\pi\)
0.915855 0.401508i \(-0.131514\pi\)
\(398\) 8.00000 0.401004
\(399\) 20.0000i 1.00125i
\(400\) 0 0
\(401\) −11.0000 11.0000i −0.549314 0.549314i 0.376929 0.926242i \(-0.376980\pi\)
−0.926242 + 0.376929i \(0.876980\pi\)
\(402\) 4.00000 4.00000i 0.199502 0.199502i
\(403\) −25.0000 + 5.00000i −1.24534 + 0.249068i
\(404\) 12.0000i 0.597022i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 6.00000i 0.297044i
\(409\) −7.00000 7.00000i −0.346128 0.346128i 0.512537 0.858665i \(-0.328706\pi\)
−0.858665 + 0.512537i \(0.828706\pi\)
\(410\) 0 0
\(411\) −16.0000 16.0000i −0.789222 0.789222i
\(412\) 7.00000 + 7.00000i 0.344865 + 0.344865i
\(413\) −14.0000 14.0000i −0.688895 0.688895i
\(414\) −3.00000 + 3.00000i −0.147442 + 0.147442i
\(415\) 0 0
\(416\) 15.0000 + 10.0000i 0.735436 + 0.490290i
\(417\) 14.0000 + 14.0000i 0.685583 + 0.685583i
\(418\) 10.0000i 0.489116i
\(419\) 38.0000i 1.85642i −0.372055 0.928211i \(-0.621347\pi\)
0.372055 0.928211i \(-0.378653\pi\)
\(420\) 0 0
\(421\) −11.0000 + 11.0000i −0.536107 + 0.536107i −0.922383 0.386276i \(-0.873761\pi\)
0.386276 + 0.922383i \(0.373761\pi\)
\(422\) −4.00000 −0.194717
\(423\) 6.00000 0.291730
\(424\) −15.0000 + 15.0000i −0.728464 + 0.728464i
\(425\) 0 0
\(426\) 2.00000i 0.0969003i
\(427\) 28.0000i 1.35501i
\(428\) 7.00000 + 7.00000i 0.338358 + 0.338358i
\(429\) −6.00000 4.00000i −0.289683 0.193122i
\(430\) 0 0
\(431\) 13.0000 13.0000i 0.626188 0.626188i −0.320919 0.947107i \(-0.603992\pi\)
0.947107 + 0.320919i \(0.103992\pi\)
\(432\) 4.00000 + 4.00000i 0.192450 + 0.192450i
\(433\) −17.0000 17.0000i −0.816968 0.816968i 0.168700 0.985668i \(-0.446043\pi\)
−0.985668 + 0.168700i \(0.946043\pi\)
\(434\) −10.0000 10.0000i −0.480015 0.480015i
\(435\) 0 0
\(436\) −9.00000 9.00000i −0.431022 0.431022i
\(437\) 30.0000i 1.43509i
\(438\) 10.0000 10.0000i 0.477818 0.477818i
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 3.00000i 0.142857i
\(442\) −5.00000 + 1.00000i −0.237826 + 0.0475651i
\(443\) −25.0000 + 25.0000i −1.18779 + 1.18779i −0.210108 + 0.977678i \(0.567381\pi\)
−0.977678 + 0.210108i \(0.932619\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 2.00000i 0.0947027i
\(447\) 6.00000 0.283790
\(448\) 14.0000i 0.661438i
\(449\) −3.00000 + 3.00000i −0.141579 + 0.141579i −0.774344 0.632765i \(-0.781920\pi\)
0.632765 + 0.774344i \(0.281920\pi\)
\(450\) 0 0
\(451\) 14.0000 0.659234
\(452\) 5.00000 5.00000i 0.235180 0.235180i
\(453\) −14.0000 −0.657777
\(454\) −12.0000 −0.563188
\(455\) 0 0
\(456\) 30.0000 1.40488
\(457\) −2.00000 −0.0935561 −0.0467780 0.998905i \(-0.514895\pi\)
−0.0467780 + 0.998905i \(0.514895\pi\)
\(458\) 3.00000 3.00000i 0.140181 0.140181i
\(459\) 8.00000 0.373408
\(460\) 0 0
\(461\) 17.0000 17.0000i 0.791769 0.791769i −0.190013 0.981782i \(-0.560853\pi\)
0.981782 + 0.190013i \(0.0608529\pi\)
\(462\) 4.00000i 0.186097i
\(463\) 24.0000 1.11537 0.557687 0.830051i \(-0.311689\pi\)
0.557687 + 0.830051i \(0.311689\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 1.00000 + 1.00000i 0.0463241 + 0.0463241i
\(467\) −9.00000 + 9.00000i −0.416470 + 0.416470i −0.883985 0.467515i \(-0.845149\pi\)
0.467515 + 0.883985i \(0.345149\pi\)
\(468\) −2.00000 + 3.00000i −0.0924500 + 0.138675i
\(469\) 8.00000i 0.369406i
\(470\) 0 0
\(471\) 26.0000 1.19802
\(472\) −21.0000 + 21.0000i −0.966603 + 0.966603i
\(473\) 2.00000i 0.0919601i
\(474\) −2.00000 2.00000i −0.0918630 0.0918630i
\(475\) 0 0
\(476\) 2.00000 + 2.00000i 0.0916698 + 0.0916698i
\(477\) −5.00000 5.00000i −0.228934 0.228934i
\(478\) −3.00000 3.00000i −0.137217 0.137217i
\(479\) −7.00000 + 7.00000i −0.319838 + 0.319838i −0.848705 0.528867i \(-0.822617\pi\)
0.528867 + 0.848705i \(0.322617\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −17.0000 17.0000i −0.774329 0.774329i
\(483\) 12.0000i 0.546019i
\(484\) 9.00000i 0.409091i
\(485\) 0 0
\(486\) −7.00000 + 7.00000i −0.317526 + 0.317526i
\(487\) −16.0000 −0.725029 −0.362515 0.931978i \(-0.618082\pi\)
−0.362515 + 0.931978i \(0.618082\pi\)
\(488\) −42.0000 −1.90125
\(489\) 4.00000 4.00000i 0.180886 0.180886i
\(490\) 0 0
\(491\) 22.0000i 0.992846i −0.868081 0.496423i \(-0.834646\pi\)
0.868081 0.496423i \(-0.165354\pi\)
\(492\) 14.0000i 0.631169i
\(493\) 0 0
\(494\) −5.00000 25.0000i −0.224961 1.12480i
\(495\) 0 0
\(496\) −5.00000 + 5.00000i −0.224507 + 0.224507i
\(497\) 2.00000 + 2.00000i 0.0897123 + 0.0897123i
\(498\) 6.00000 + 6.00000i 0.268866 + 0.268866i
\(499\) 3.00000 + 3.00000i 0.134298 + 0.134298i 0.771060 0.636762i \(-0.219727\pi\)
−0.636762 + 0.771060i \(0.719727\pi\)
\(500\) 0 0
\(501\) −18.0000 18.0000i −0.804181 0.804181i
\(502\) 2.00000i 0.0892644i
\(503\) 3.00000 3.00000i 0.133763 0.133763i −0.637055 0.770818i \(-0.719848\pi\)
0.770818 + 0.637055i \(0.219848\pi\)
\(504\) −6.00000 −0.267261
\(505\) 0 0
\(506\) 6.00000i 0.266733i
\(507\) −17.0000 7.00000i −0.754997 0.310881i
\(508\) 9.00000 9.00000i 0.399310 0.399310i
\(509\) 13.0000 + 13.0000i 0.576215 + 0.576215i 0.933858 0.357643i \(-0.116420\pi\)
−0.357643 + 0.933858i \(0.616420\pi\)
\(510\) 0 0
\(511\) 20.0000i 0.884748i
\(512\) 11.0000 0.486136
\(513\) 40.0000i 1.76604i
\(514\) −11.0000 + 11.0000i −0.485189 + 0.485189i
\(515\) 0 0
\(516\) 2.00000 0.0880451
\(517\) −6.00000 + 6.00000i −0.263880 + 0.263880i
\(518\) 0 0
\(519\) −22.0000 −0.965693
\(520\) 0 0
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 0 0
\(523\) −9.00000 + 9.00000i −0.393543 + 0.393543i −0.875948 0.482405i \(-0.839763\pi\)
0.482405 + 0.875948i \(0.339763\pi\)
\(524\) 20.0000 0.873704
\(525\) 0 0
\(526\) 1.00000 1.00000i 0.0436021 0.0436021i
\(527\) 10.0000i 0.435607i
\(528\) −2.00000 −0.0870388
\(529\) 5.00000i 0.217391i
\(530\) 0 0
\(531\) −7.00000 7.00000i −0.303774 0.303774i
\(532\) −10.0000 + 10.0000i −0.433555 + 0.433555i
\(533\) 35.0000 7.00000i 1.51602 0.303204i
\(534\) 10.0000i 0.432742i
\(535\) 0 0
\(536\) 12.0000 0.518321
\(537\) 20.0000 20.0000i 0.863064 0.863064i
\(538\) 12.0000i 0.517357i
\(539\) −3.00000 3.00000i −0.129219 0.129219i
\(540\) 0 0
\(541\) 9.00000 + 9.00000i 0.386940 + 0.386940i 0.873595 0.486654i \(-0.161783\pi\)
−0.486654 + 0.873595i \(0.661783\pi\)
\(542\) 9.00000 + 9.00000i 0.386583 + 0.386583i
\(543\) 8.00000 + 8.00000i 0.343313 + 0.343313i
\(544\) 5.00000 5.00000i 0.214373 0.214373i
\(545\) 0 0
\(546\) −2.00000 10.0000i −0.0855921 0.427960i
\(547\) 9.00000 + 9.00000i 0.384812 + 0.384812i 0.872832 0.488020i \(-0.162281\pi\)
−0.488020 + 0.872832i \(0.662281\pi\)
\(548\) 16.0000i 0.683486i
\(549\) 14.0000i 0.597505i
\(550\) 0 0
\(551\) 0 0
\(552\) 18.0000 0.766131
\(553\) 4.00000 0.170097
\(554\) −15.0000 + 15.0000i −0.637289 + 0.637289i
\(555\) 0 0
\(556\) 14.0000i 0.593732i
\(557\) 24.0000i 1.01691i −0.861088 0.508456i \(-0.830216\pi\)
0.861088 0.508456i \(-0.169784\pi\)
\(558\) −5.00000 5.00000i −0.211667 0.211667i
\(559\) −1.00000 5.00000i −0.0422955 0.211477i
\(560\) 0 0
\(561\) −2.00000 + 2.00000i −0.0844401 + 0.0844401i
\(562\) −1.00000 1.00000i −0.0421825 0.0421825i
\(563\) −15.0000 15.0000i −0.632175 0.632175i 0.316438 0.948613i \(-0.397513\pi\)
−0.948613 + 0.316438i \(0.897513\pi\)
\(564\) −6.00000 6.00000i −0.252646 0.252646i
\(565\) 0 0
\(566\) −9.00000 9.00000i −0.378298 0.378298i
\(567\) 10.0000i 0.419961i
\(568\) 3.00000 3.00000i 0.125877 0.125877i
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) 6.00000i 0.251092i −0.992088 0.125546i \(-0.959932\pi\)
0.992088 0.125546i \(-0.0400683\pi\)
\(572\) −1.00000 5.00000i −0.0418121 0.209061i
\(573\) −8.00000 + 8.00000i −0.334205 + 0.334205i
\(574\) 14.0000 + 14.0000i 0.584349 + 0.584349i
\(575\) 0 0
\(576\) 7.00000i 0.291667i
\(577\) −46.0000 −1.91501 −0.957503 0.288425i \(-0.906868\pi\)
−0.957503 + 0.288425i \(0.906868\pi\)
\(578\) 15.0000i 0.623918i
\(579\) 18.0000 18.0000i 0.748054 0.748054i
\(580\) 0 0
\(581\) −12.0000 −0.497844
\(582\) −2.00000 + 2.00000i −0.0829027 + 0.0829027i
\(583\) 10.0000 0.414158
\(584\) 30.0000 1.24141
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) 4.00000 0.165098 0.0825488 0.996587i \(-0.473694\pi\)
0.0825488 + 0.996587i \(0.473694\pi\)
\(588\) 3.00000 3.00000i 0.123718 0.123718i
\(589\) −50.0000 −2.06021
\(590\) 0 0
\(591\) 6.00000 6.00000i 0.246807 0.246807i
\(592\) 0 0
\(593\) −10.0000 −0.410651 −0.205325 0.978694i \(-0.565825\pi\)
−0.205325 + 0.978694i \(0.565825\pi\)
\(594\) 8.00000i 0.328244i
\(595\) 0 0
\(596\) 3.00000 + 3.00000i 0.122885 + 0.122885i
\(597\) 8.00000 8.00000i 0.327418 0.327418i
\(598\) −3.00000 15.0000i −0.122679 0.613396i
\(599\) 30.0000i 1.22577i 0.790173 + 0.612883i \(0.209990\pi\)
−0.790173 + 0.612883i \(0.790010\pi\)
\(600\) 0 0
\(601\) −38.0000 −1.55005 −0.775026 0.631929i \(-0.782263\pi\)
−0.775026 + 0.631929i \(0.782263\pi\)
\(602\) 2.00000 2.00000i 0.0815139 0.0815139i
\(603\) 4.00000i 0.162893i
\(604\) −7.00000 7.00000i −0.284826 0.284826i
\(605\) 0 0
\(606\) 12.0000 + 12.0000i 0.487467 + 0.487467i
\(607\) 13.0000 + 13.0000i 0.527654 + 0.527654i 0.919872 0.392218i \(-0.128292\pi\)
−0.392218 + 0.919872i \(0.628292\pi\)
\(608\) 25.0000 + 25.0000i 1.01388 + 1.01388i
\(609\) 0 0
\(610\) 0 0
\(611\) −12.0000 + 18.0000i −0.485468 + 0.728202i
\(612\) 1.00000 + 1.00000i 0.0404226 + 0.0404226i
\(613\) 20.0000i 0.807792i −0.914805 0.403896i \(-0.867656\pi\)
0.914805 0.403896i \(-0.132344\pi\)
\(614\) 18.0000i 0.726421i
\(615\) 0 0
\(616\) 6.00000 6.00000i 0.241747 0.241747i
\(617\) 22.0000 0.885687 0.442843 0.896599i \(-0.353970\pi\)
0.442843 + 0.896599i \(0.353970\pi\)
\(618\) −14.0000 −0.563163
\(619\) 25.0000 25.0000i 1.00483 1.00483i 0.00484658 0.999988i \(-0.498457\pi\)
0.999988 0.00484658i \(-0.00154272\pi\)
\(620\) 0 0
\(621\) 24.0000i 0.963087i
\(622\) 6.00000i 0.240578i
\(623\) 10.0000 + 10.0000i 0.400642 + 0.400642i
\(624\) −5.00000 + 1.00000i −0.200160 + 0.0400320i
\(625\) 0 0
\(626\) 9.00000 9.00000i 0.359712 0.359712i
\(627\) −10.0000 10.0000i −0.399362 0.399362i
\(628\) 13.0000 + 13.0000i 0.518756 + 0.518756i
\(629\) 0 0
\(630\) 0 0
\(631\) 11.0000 + 11.0000i 0.437903 + 0.437903i 0.891306 0.453403i \(-0.149790\pi\)
−0.453403 + 0.891306i \(0.649790\pi\)
\(632\) 6.00000i 0.238667i
\(633\) −4.00000 + 4.00000i −0.158986 + 0.158986i
\(634\) −14.0000 −0.556011
\(635\) 0 0
\(636\) 10.0000i 0.396526i
\(637\) −9.00000 6.00000i −0.356593 0.237729i
\(638\) 0 0
\(639\) 1.00000 + 1.00000i 0.0395594 + 0.0395594i
\(640\) 0 0
\(641\) 24.0000i 0.947943i −0.880540 0.473972i \(-0.842820\pi\)
0.880540 0.473972i \(-0.157180\pi\)
\(642\) −14.0000 −0.552536
\(643\) 34.0000i 1.34083i −0.741987 0.670415i \(-0.766116\pi\)
0.741987 0.670415i \(-0.233884\pi\)
\(644\) −6.00000 + 6.00000i −0.236433 + 0.236433i
\(645\) 0 0
\(646\) −10.0000 −0.393445
\(647\) −1.00000 + 1.00000i −0.0393141 + 0.0393141i −0.726491 0.687176i \(-0.758850\pi\)
0.687176 + 0.726491i \(0.258850\pi\)
\(648\) 15.0000 0.589256
\(649\) 14.0000 0.549548
\(650\) 0 0
\(651\) −20.0000 −0.783862
\(652\) 4.00000 0.156652
\(653\) −13.0000 + 13.0000i −0.508729 + 0.508729i −0.914136 0.405407i \(-0.867130\pi\)
0.405407 + 0.914136i \(0.367130\pi\)
\(654\) 18.0000 0.703856
\(655\) 0 0
\(656\) 7.00000 7.00000i 0.273304 0.273304i
\(657\) 10.0000i 0.390137i
\(658\) −12.0000 −0.467809
\(659\) 26.0000i 1.01282i 0.862294 + 0.506408i \(0.169027\pi\)
−0.862294 + 0.506408i \(0.830973\pi\)
\(660\) 0 0
\(661\) 17.0000 + 17.0000i 0.661223 + 0.661223i 0.955668 0.294445i \(-0.0951348\pi\)
−0.294445 + 0.955668i \(0.595135\pi\)
\(662\) 3.00000 3.00000i 0.116598 0.116598i
\(663\) −4.00000 + 6.00000i −0.155347 + 0.233021i
\(664\) 18.0000i 0.698535i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 18.0000i 0.696441i
\(669\) −2.00000 2.00000i −0.0773245 0.0773245i
\(670\) 0 0
\(671\) 14.0000 + 14.0000i 0.540464 + 0.540464i
\(672\) 10.0000 + 10.0000i 0.385758 + 0.385758i
\(673\) 15.0000 + 15.0000i 0.578208 + 0.578208i 0.934409 0.356202i \(-0.115928\pi\)
−0.356202 + 0.934409i \(0.615928\pi\)
\(674\) 13.0000 13.0000i 0.500741 0.500741i
\(675\) 0 0
\(676\) −5.00000 12.0000i −0.192308 0.461538i
\(677\) 23.0000 + 23.0000i 0.883962 + 0.883962i 0.993935 0.109973i \(-0.0350764\pi\)
−0.109973 + 0.993935i \(0.535076\pi\)
\(678\) 10.0000i 0.384048i
\(679\) 4.00000i 0.153506i
\(680\) 0 0
\(681\) −12.0000 + 12.0000i −0.459841 + 0.459841i
\(682\) 10.0000 0.382920
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) −5.00000 + 5.00000i −0.191180 + 0.191180i
\(685\) 0 0
\(686\) 20.0000i 0.763604i
\(687\) 6.00000i 0.228914i
\(688\) −1.00000 1.00000i −0.0381246 0.0381246i
\(689\) 25.0000 5.00000i 0.952424 0.190485i
\(690\) 0 0
\(691\) −3.00000 + 3.00000i −0.114125 + 0.114125i −0.761863 0.647738i \(-0.775715\pi\)
0.647738 + 0.761863i \(0.275715\pi\)
\(692\) −11.0000 11.0000i −0.418157 0.418157i
\(693\) 2.00000 + 2.00000i 0.0759737 + 0.0759737i
\(694\) 3.00000 + 3.00000i 0.113878 + 0.113878i
\(695\) 0 0
\(696\) 0 0
\(697\) 14.0000i 0.530288i
\(698\) −9.00000 + 9.00000i −0.340655 + 0.340655i
\(699\) 2.00000 0.0756469
\(700\) 0 0
\(701\) 12.0000i 0.453234i 0.973984 + 0.226617i \(0.0727665\pi\)
−0.973984 + 0.226617i \(0.927233\pi\)
\(702\) −4.00000 20.0000i −0.150970 0.754851i
\(703\) 0 0
\(704\) −7.00000 7.00000i −0.263822 0.263822i
\(705\) 0 0
\(706\) 12.0000i 0.451626i
\(707\) −24.0000 −0.902613
\(708\) 14.0000i 0.526152i
\(709\) 29.0000 29.0000i 1.08912 1.08912i 0.0934984 0.995619i \(-0.470195\pi\)
0.995619 0.0934984i \(-0.0298050\pi\)
\(710\) 0 0
\(711\) 2.00000 0.0750059
\(712\) 15.0000 15.0000i 0.562149 0.562149i
\(713\) −30.0000 −1.12351
\(714\) −4.00000 −0.149696
\(715\) 0 0
\(716\) 20.0000 0.747435
\(717\) −6.00000 −0.224074
\(718\) −1.00000 + 1.00000i −0.0373197 + 0.0373197i
\(719\) −8.00000 −0.298350 −0.149175 0.988811i \(-0.547662\pi\)
−0.149175 + 0.988811i \(0.547662\pi\)
\(720\) 0 0
\(721\) 14.0000 14.0000i 0.521387 0.521387i
\(722\) 31.0000i 1.15370i
\(723\) −34.0000 −1.26447
\(724\) 8.00000i 0.297318i
\(725\) 0 0
\(726\) −9.00000 9.00000i −0.334021 0.334021i
\(727\) 35.0000 35.0000i 1.29808 1.29808i 0.368418 0.929660i \(-0.379900\pi\)
0.929660 0.368418i \(-0.120100\pi\)
\(728\) 12.0000 18.0000i 0.444750 0.667124i
\(729\) 29.0000i 1.07407i
\(730\) 0 0
\(731\) −2.00000 −0.0739727
\(732\) −14.0000 + 14.0000i −0.517455 + 0.517455i
\(733\) 4.00000i 0.147743i −0.997268 0.0738717i \(-0.976464\pi\)
0.997268 0.0738717i \(-0.0235355\pi\)
\(734\) −1.00000 1.00000i −0.0369107 0.0369107i
\(735\) 0 0
\(736\) 15.0000 + 15.0000i 0.552907 + 0.552907i
\(737\) −4.00000 4.00000i −0.147342 0.147342i
\(738\) 7.00000 + 7.00000i 0.257674 + 0.257674i
\(739\) −3.00000 + 3.00000i −0.110357 + 0.110357i −0.760129 0.649772i \(-0.774864\pi\)
0.649772 + 0.760129i \(0.274864\pi\)
\(740\) 0 0
\(741\) −30.0000 20.0000i −1.10208 0.734718i
\(742\) 10.0000 + 10.0000i 0.367112 + 0.367112i
\(743\) 34.0000i 1.24734i 0.781688 + 0.623670i \(0.214359\pi\)
−0.781688 + 0.623670i \(0.785641\pi\)
\(744\) 30.0000i 1.09985i
\(745\) 0 0
\(746\) −15.0000 + 15.0000i −0.549189 + 0.549189i
\(747\) −6.00000 −0.219529
\(748\) −2.00000 −0.0731272
\(749\) 14.0000 14.0000i 0.511549 0.511549i
\(750\) 0 0
\(751\) 50.0000i 1.82453i −0.409605 0.912263i \(-0.634333\pi\)
0.409605 0.912263i \(-0.365667\pi\)
\(752\) 6.00000i 0.218797i
\(753\) −2.00000 2.00000i −0.0728841 0.0728841i
\(754\) 0 0
\(755\) 0 0
\(756\) −8.00000 + 8.00000i −0.290957 + 0.290957i
\(757\) 35.0000 + 35.0000i 1.27210 + 1.27210i 0.944986 + 0.327111i \(0.106075\pi\)
0.327111 + 0.944986i \(0.393925\pi\)
\(758\) 1.00000 + 1.00000i 0.0363216 + 0.0363216i
\(759\) −6.00000 6.00000i −0.217786 0.217786i
\(760\) 0 0
\(761\) −7.00000 7.00000i −0.253750 0.253750i 0.568756 0.822506i \(-0.307425\pi\)
−0.822506 + 0.568756i \(0.807425\pi\)
\(762\) 18.0000i 0.652071i
\(763\) −18.0000 + 18.0000i −0.651644 + 0.651644i
\(764\) −8.00000 −0.289430
\(765\) 0 0
\(766\) 30.0000i 1.08394i
\(767\) 35.0000 7.00000i 1.26378 0.252755i
\(768\) 17.0000 17.0000i 0.613435 0.613435i
\(769\) −15.0000 15.0000i −0.540914 0.540914i 0.382883 0.923797i \(-0.374931\pi\)
−0.923797 + 0.382883i \(0.874931\pi\)
\(770\) 0 0
\(771\) 22.0000i 0.792311i
\(772\) 18.0000 0.647834
\(773\) 32.0000i 1.15096i −0.817816 0.575480i \(-0.804815\pi\)
0.817816 0.575480i \(-0.195185\pi\)
\(774\) 1.00000 1.00000i 0.0359443 0.0359443i
\(775\) 0 0
\(776\) −6.00000 −0.215387
\(777\) 0 0
\(778\) 18.0000 0.645331
\(779\) 70.0000 2.50801
\(780\) 0 0
\(781\) −2.00000 −0.0715656
\(782\) −6.00000 −0.214560
\(783\) 0 0
\(784\) −3.00000 −0.107143
\(785\) 0 0
\(786\) −20.0000 + 20.0000i −0.713376 + 0.713376i
\(787\) 22.0000i 0.784215i 0.919919 + 0.392108i \(0.128254\pi\)
−0.919919 + 0.392108i \(0.871746\pi\)
\(788\) 6.00000 0.213741
\(789\) 2.00000i 0.0712019i
\(790\) 0 0
\(791\) −10.0000 10.0000i −0.355559 0.355559i
\(792\) 3.00000 3.00000i 0.106600 0.106600i
\(793\) 42.0000 + 28.0000i 1.49146 + 0.994309i
\(794\) 16.0000i 0.567819i
\(795\) 0 0
\(796\) 8.00000 0.283552
\(797\) −17.0000 + 17.0000i −0.602171 + 0.602171i −0.940888 0.338717i \(-0.890007\pi\)
0.338717 + 0.940888i \(0.390007\pi\)
\(798\) 20.0000i 0.707992i
\(799\) 6.00000 + 6.00000i 0.212265 + 0.212265i
\(800\) 0 0
\(801\) 5.00000 + 5.00000i 0.176666 + 0.176666i
\(802\) 11.0000 + 11.0000i 0.388424 + 0.388424i
\(803\) −10.0000 10.0000i −0.352892 0.352892i
\(804\) 4.00000 4.00000i 0.141069 0.141069i
\(805\) 0 0
\(806\) 25.0000 5.00000i 0.880587 0.176117i
\(807\) −12.0000 12.0000i −0.422420 0.422420i
\(808\) 36.0000i 1.26648i
\(809\) 28.0000i 0.984428i 0.870474 + 0.492214i \(0.163812\pi\)
−0.870474 + 0.492214i \(0.836188\pi\)
\(810\) 0 0
\(811\) −27.0000 + 27.0000i −0.948098 + 0.948098i −0.998718 0.0506198i \(-0.983880\pi\)
0.0506198 + 0.998718i \(0.483880\pi\)
\(812\) 0 0
\(813\) 18.0000 0.631288
\(814\) 0 0
\(815\) 0 0
\(816\) 2.00000i 0.0700140i
\(817\) 10.0000i 0.349856i
\(818\) 7.00000 + 7.00000i 0.244749 + 0.244749i
\(819\) 6.00000 + 4.00000i 0.209657 + 0.139771i
\(820\) 0 0
\(821\) 9.00000 9.00000i 0.314102 0.314102i −0.532394 0.846496i \(-0.678708\pi\)
0.846496 + 0.532394i \(0.178708\pi\)
\(822\) 16.0000 + 16.0000i 0.558064 + 0.558064i
\(823\) 9.00000 + 9.00000i 0.313720 + 0.313720i 0.846349 0.532629i \(-0.178796\pi\)
−0.532629 + 0.846349i \(0.678796\pi\)
\(824\) −21.0000 21.0000i −0.731570 0.731570i
\(825\) 0 0
\(826\) 14.0000 + 14.0000i 0.487122 + 0.487122i
\(827\) 46.0000i 1.59958i 0.600282 + 0.799788i \(0.295055\pi\)
−0.600282 + 0.799788i \(0.704945\pi\)
\(828\) −3.00000 + 3.00000i −0.104257 + 0.104257i
\(829\) 34.0000 1.18087 0.590434 0.807086i \(-0.298956\pi\)
0.590434 + 0.807086i \(0.298956\pi\)
\(830\) 0 0
\(831\) 30.0000i 1.04069i
\(832\) −21.0000 14.0000i −0.728044 0.485363i
\(833\) −3.00000 + 3.00000i −0.103944 + 0.103944i
\(834\) −14.0000 14.0000i −0.484780 0.484780i
\(835\) 0 0
\(836\) 10.0000i 0.345857i
\(837\) −40.0000 −1.38260
\(838\) 38.0000i 1.31269i
\(839\) −35.0000 + 35.0000i −1.20833 + 1.20833i −0.236768 + 0.971566i \(0.576088\pi\)
−0.971566 + 0.236768i \(0.923912\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 11.0000 11.0000i 0.379085 0.379085i
\(843\) −2.00000 −0.0688837
\(844\) −4.00000 −0.137686
\(845\) 0 0
\(846\) −6.00000 −0.206284
\(847\) 18.0000 0.618487
\(848\) 5.00000 5.00000i 0.171701 0.171701i
\(849\) −18.0000 −0.617758
\(850\) 0 0
\(851\) 0 0
\(852\) 2.00000i 0.0685189i
\(853\) −26.0000 −0.890223 −0.445112 0.895475i \(-0.646836\pi\)
−0.445112 + 0.895475i \(0.646836\pi\)
\(854\) 28.0000i 0.958140i
\(855\) 0 0
\(856\) −21.0000 21.0000i −0.717765 0.717765i
\(857\) 3.00000 3.00000i 0.102478 0.102478i −0.654009 0.756487i \(-0.726914\pi\)
0.756487 + 0.654009i \(0.226914\pi\)
\(858\) 6.00000 + 4.00000i 0.204837 + 0.136558i
\(859\) 30.0000i 1.02359i −0.859109 0.511793i \(-0.828981\pi\)
0.859109 0.511793i \(-0.171019\pi\)
\(860\) 0 0
\(861\) 28.0000 0.954237
\(862\) −13.0000 + 13.0000i −0.442782 + 0.442782i
\(863\) 30.0000i 1.02121i −0.859815 0.510606i \(-0.829421\pi\)
0.859815 0.510606i \(-0.170579\pi\)
\(864\) 20.0000 + 20.0000i 0.680414 + 0.680414i
\(865\) 0 0
\(866\) 17.0000 + 17.0000i 0.577684 + 0.577684i
\(867\) −15.0000 15.0000i −0.509427 0.509427i
\(868\) −10.0000 10.0000i −0.339422 0.339422i
\(869\) −2.00000 + 2.00000i −0.0678454 + 0.0678454i
\(870\) 0 0
\(871\) −12.0000 8.00000i −0.406604 0.271070i
\(872\) 27.0000 + 27.0000i 0.914335 + 0.914335i
\(873\) 2.00000i 0.0676897i
\(874\) 30.0000i 1.01477i
\(875\) 0 0
\(876\) 10.0000 10.0000i 0.337869 0.337869i
\(877\) −38.0000 −1.28317 −0.641584 0.767052i \(-0.721723\pi\)
−0.641584 + 0.767052i \(0.721723\pi\)
\(878\) 0 0
\(879\) −6.00000 + 6.00000i −0.202375 + 0.202375i
\(880\) 0 0
\(881\) 52.0000i 1.75192i −0.482380 0.875962i \(-0.660227\pi\)
0.482380 0.875962i \(-0.339773\pi\)
\(882\) 3.00000i 0.101015i
\(883\) −39.0000 39.0000i −1.31245 1.31245i −0.919601 0.392853i \(-0.871488\pi\)
−0.392853 0.919601i \(-0.628512\pi\)
\(884\) −5.00000 + 1.00000i −0.168168 + 0.0336336i
\(885\) 0 0
\(886\) 25.0000 25.0000i 0.839891 0.839891i
\(887\) 1.00000 + 1.00000i 0.0335767 + 0.0335767i 0.723696 0.690119i \(-0.242442\pi\)
−0.690119 + 0.723696i \(0.742442\pi\)
\(888\) 0 0
\(889\) −18.0000 18.0000i −0.603701 0.603701i
\(890\) 0 0
\(891\) −5.00000 5.00000i −0.167506 0.167506i
\(892\) 2.00000i 0.0669650i
\(893\) −30.0000 + 30.0000i −1.00391 + 1.00391i
\(894\) −6.00000 −0.200670
\(895\) 0 0
\(896\) 6.00000i 0.200446i
\(897\) −18.0000 12.0000i −0.601003 0.400668i
\(898\) 3.00000 3.00000i 0.100111 0.100111i
\(899\) 0 0
\(900\) 0 0
\(901\) 10.0000i 0.333148i
\(902\) −14.0000 −0.466149
\(903\) 4.00000i 0.133112i
\(904\) −15.0000 + 15.0000i −0.498893 + 0.498893i
\(905\) 0 0
\(906\) 14.0000 0.465119
\(907\) 39.0000 39.0000i 1.29497 1.29497i 0.363303 0.931671i \(-0.381649\pi\)
0.931671 0.363303i \(-0.118351\pi\)
\(908\) −12.0000 −0.398234
\(909\) −12.0000 −0.398015
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) −10.0000 −0.331133
\(913\) 6.00000 6.00000i 0.198571 0.198571i
\(914\) 2.00000 0.0661541
\(915\) 0 0
\(916\) 3.00000 3.00000i 0.0991228 0.0991228i
\(917\) 40.0000i 1.32092i
\(918\) −8.00000 −0.264039
\(919\) 10.0000i 0.329870i −0.986304 0.164935i \(-0.947259\pi\)
0.986304 0.164935i \(-0.0527414\pi\)
\(920\) 0 0
\(921\) 18.0000 + 18.0000i 0.593120 + 0.593120i
\(922\) −17.0000 + 17.0000i −0.559865 + 0.559865i
\(923\) −5.00000 + 1.00000i −0.164577 + 0.0329154i
\(924\) 4.00000i 0.131590i
\(925\) 0 0
\(926\) −24.0000 −0.788689
\(927\) 7.00000 7.00000i 0.229910 0.229910i
\(928\) 0 0
\(929\) −19.0000 19.0000i −0.623370 0.623370i 0.323022 0.946392i \(-0.395301\pi\)
−0.946392 + 0.323022i \(0.895301\pi\)
\(930\) 0 0
\(931\) −15.0000 15.0000i −0.491605 0.491605i
\(932\) 1.00000 + 1.00000i 0.0327561 + 0.0327561i
\(933\) −6.00000 6.00000i −0.196431 0.196431i
\(934\) 9.00000 9.00000i 0.294489 0.294489i
\(935\) 0 0
\(936\) 6.00000 9.00000i 0.196116 0.294174i
\(937\) 7.00000 + 7.00000i 0.228680 + 0.228680i 0.812141 0.583461i \(-0.198302\pi\)
−0.583461 + 0.812141i \(0.698302\pi\)
\(938\) 8.00000i 0.261209i
\(939\) 18.0000i 0.587408i
\(940\) 0 0
\(941\) 21.0000 21.0000i 0.684580 0.684580i −0.276448 0.961029i \(-0.589157\pi\)
0.961029 + 0.276448i \(0.0891575\pi\)
\(942\) −26.0000 −0.847126
\(943\) 42.0000 1.36771
\(944\) 7.00000 7.00000i 0.227831 0.227831i
\(945\) 0 0
\(946\) 2.00000i 0.0650256i
\(947\) 18.0000i 0.584921i −0.956278 0.292461i \(-0.905526\pi\)
0.956278 0.292461i \(-0.0944741\pi\)
\(948\) −2.00000 2.00000i −0.0649570 0.0649570i
\(949\) −30.0000 20.0000i −0.973841 0.649227i
\(950\) 0 0
\(951\) −14.0000 + 14.0000i −0.453981 + 0.453981i
\(952\) −6.00000 6.00000i −0.194461 0.194461i
\(953\) −13.0000 13.0000i −0.421111 0.421111i 0.464475 0.885586i \(-0.346243\pi\)
−0.885586 + 0.464475i \(0.846243\pi\)
\(954\) 5.00000 + 5.00000i 0.161881 + 0.161881i
\(955\) 0 0
\(956\) −3.00000 3.00000i −0.0970269 0.0970269i
\(957\) 0 0
\(958\) 7.00000 7.00000i 0.226160 0.226160i
\(959\) −32.0000 −1.03333
\(960\) 0 0
\(961\) 19.0000i 0.612903i
\(962\) 0 0
\(963\) 7.00000 7.00000i 0.225572 0.225572i
\(964\) −17.0000 17.0000i −0.547533 0.547533i
\(965\) 0 0
\(966\) 12.0000i 0.386094i
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 27.0000i 0.867813i
\(969\) −10.0000 + 10.0000i −0.321246 + 0.321246i
\(970\) 0 0
\(971\) −60.0000 −1.92549 −0.962746 0.270408i \(-0.912841\pi\)
−0.962746 + 0.270408i \(0.912841\pi\)
\(972\) −7.00000 + 7.00000i −0.224525 + 0.224525i
\(973\) 28.0000 0.897639
\(974\) 16.0000 0.512673
\(975\) 0 0
\(976\) 14.0000 0.448129
\(977\) −62.0000 −1.98356 −0.991778 0.127971i \(-0.959153\pi\)
−0.991778 + 0.127971i \(0.959153\pi\)
\(978\) −4.00000 + 4.00000i −0.127906 + 0.127906i
\(979\) −10.0000 −0.319601
\(980\) 0 0
\(981\) −9.00000 + 9.00000i −0.287348 + 0.287348i
\(982\) 22.0000i 0.702048i
\(983\) 24.0000 0.765481 0.382741 0.923856i \(-0.374980\pi\)
0.382741 + 0.923856i \(0.374980\pi\)
\(984\) 42.0000i 1.33891i
\(985\) 0 0
\(986\) 0 0
\(987\) −12.0000 + 12.0000i −0.381964 + 0.381964i
\(988\) −5.00000 25.0000i −0.159071 0.795356i
\(989\) 6.00000i 0.190789i
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) −25.0000 + 25.0000i −0.793751 + 0.793751i
\(993\) 6.00000i 0.190404i
\(994\) −2.00000 2.00000i −0.0634361 0.0634361i
\(995\) 0 0
\(996\) 6.00000 + 6.00000i 0.190117 + 0.190117i
\(997\) −9.00000 9.00000i −0.285033 0.285033i 0.550079 0.835112i \(-0.314597\pi\)
−0.835112 + 0.550079i \(0.814597\pi\)
\(998\) −3.00000 3.00000i −0.0949633 0.0949633i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.2.k.a.57.1 2
5.2 odd 4 65.2.f.a.18.1 2
5.3 odd 4 325.2.f.a.18.1 2
5.4 even 2 65.2.k.a.57.1 yes 2
13.8 odd 4 325.2.f.a.307.1 2
15.2 even 4 585.2.n.c.343.1 2
15.14 odd 2 585.2.w.b.577.1 2
20.7 even 4 1040.2.cd.b.993.1 2
20.19 odd 2 1040.2.bg.a.577.1 2
65.2 even 12 845.2.o.b.488.1 4
65.4 even 6 845.2.o.b.587.1 4
65.7 even 12 845.2.o.a.258.1 4
65.8 even 4 inner 325.2.k.a.268.1 2
65.9 even 6 845.2.o.a.587.1 4
65.12 odd 4 845.2.f.a.408.1 2
65.17 odd 12 845.2.t.b.418.1 4
65.19 odd 12 845.2.t.b.427.1 4
65.22 odd 12 845.2.t.a.418.1 4
65.24 odd 12 845.2.t.a.657.1 4
65.29 even 6 845.2.o.a.357.1 4
65.32 even 12 845.2.o.b.258.1 4
65.34 odd 4 65.2.f.a.47.1 yes 2
65.37 even 12 845.2.o.a.488.1 4
65.42 odd 12 845.2.t.a.188.1 4
65.44 odd 4 845.2.f.a.437.1 2
65.47 even 4 65.2.k.a.8.1 yes 2
65.49 even 6 845.2.o.b.357.1 4
65.54 odd 12 845.2.t.b.657.1 4
65.57 even 4 845.2.k.a.268.1 2
65.59 odd 12 845.2.t.a.427.1 4
65.62 odd 12 845.2.t.b.188.1 4
65.64 even 2 845.2.k.a.577.1 2
195.47 odd 4 585.2.w.b.73.1 2
195.164 even 4 585.2.n.c.307.1 2
260.47 odd 4 1040.2.bg.a.593.1 2
260.99 even 4 1040.2.cd.b.177.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.f.a.18.1 2 5.2 odd 4
65.2.f.a.47.1 yes 2 65.34 odd 4
65.2.k.a.8.1 yes 2 65.47 even 4
65.2.k.a.57.1 yes 2 5.4 even 2
325.2.f.a.18.1 2 5.3 odd 4
325.2.f.a.307.1 2 13.8 odd 4
325.2.k.a.57.1 2 1.1 even 1 trivial
325.2.k.a.268.1 2 65.8 even 4 inner
585.2.n.c.307.1 2 195.164 even 4
585.2.n.c.343.1 2 15.2 even 4
585.2.w.b.73.1 2 195.47 odd 4
585.2.w.b.577.1 2 15.14 odd 2
845.2.f.a.408.1 2 65.12 odd 4
845.2.f.a.437.1 2 65.44 odd 4
845.2.k.a.268.1 2 65.57 even 4
845.2.k.a.577.1 2 65.64 even 2
845.2.o.a.258.1 4 65.7 even 12
845.2.o.a.357.1 4 65.29 even 6
845.2.o.a.488.1 4 65.37 even 12
845.2.o.a.587.1 4 65.9 even 6
845.2.o.b.258.1 4 65.32 even 12
845.2.o.b.357.1 4 65.49 even 6
845.2.o.b.488.1 4 65.2 even 12
845.2.o.b.587.1 4 65.4 even 6
845.2.t.a.188.1 4 65.42 odd 12
845.2.t.a.418.1 4 65.22 odd 12
845.2.t.a.427.1 4 65.59 odd 12
845.2.t.a.657.1 4 65.24 odd 12
845.2.t.b.188.1 4 65.62 odd 12
845.2.t.b.418.1 4 65.17 odd 12
845.2.t.b.427.1 4 65.19 odd 12
845.2.t.b.657.1 4 65.54 odd 12
1040.2.bg.a.577.1 2 20.19 odd 2
1040.2.bg.a.593.1 2 260.47 odd 4
1040.2.cd.b.177.1 2 260.99 even 4
1040.2.cd.b.993.1 2 20.7 even 4