Properties

Label 845.2.o.a.258.1
Level $845$
Weight $2$
Character 845.258
Analytic conductor $6.747$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(258,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.258"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.o (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2,-2,2,-4,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 258.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 845.258
Dual form 845.2.o.a.357.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.366025 - 1.36603i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-1.00000 - 2.00000i) q^{5} +(-1.36603 + 0.366025i) q^{6} +(-1.73205 - 1.00000i) q^{7} -3.00000 q^{8} +(0.866025 + 0.500000i) q^{9} +(-1.23205 + 1.86603i) q^{10} +(1.36603 + 0.366025i) q^{11} +(-1.00000 - 1.00000i) q^{12} +2.00000i q^{14} +(-3.09808 + 0.633975i) q^{15} +(0.500000 + 0.866025i) q^{16} +(-1.36603 + 0.366025i) q^{17} -1.00000i q^{18} +(-1.83013 - 6.83013i) q^{19} +(-2.23205 - 0.133975i) q^{20} +(-2.00000 + 2.00000i) q^{21} +(-0.366025 - 1.36603i) q^{22} +(-4.09808 - 1.09808i) q^{23} +(-1.09808 + 4.09808i) q^{24} +(-3.00000 + 4.00000i) q^{25} +(4.00000 - 4.00000i) q^{27} +(-1.73205 + 1.00000i) q^{28} +(2.09808 + 2.36603i) q^{30} +(5.00000 + 5.00000i) q^{31} +(-2.50000 + 4.33013i) q^{32} +(1.00000 - 1.73205i) q^{33} +(1.00000 + 1.00000i) q^{34} +(-0.267949 + 4.46410i) q^{35} +(0.866025 - 0.500000i) q^{36} +(-5.00000 + 5.00000i) q^{38} +(3.00000 + 6.00000i) q^{40} +(-2.56218 + 9.56218i) q^{41} +(2.73205 + 0.732051i) q^{42} +(-0.366025 - 1.36603i) q^{43} +(1.00000 - 1.00000i) q^{44} +(0.133975 - 2.23205i) q^{45} +(1.09808 + 4.09808i) q^{46} -6.00000i q^{47} +(1.36603 - 0.366025i) q^{48} +(-1.50000 - 2.59808i) q^{49} +(4.96410 + 0.598076i) q^{50} +2.00000i q^{51} +(5.00000 + 5.00000i) q^{53} +(-5.46410 - 1.46410i) q^{54} +(-0.633975 - 3.09808i) q^{55} +(5.19615 + 3.00000i) q^{56} -10.0000 q^{57} +(9.56218 - 2.56218i) q^{59} +(-1.00000 + 3.00000i) q^{60} +(7.00000 - 12.1244i) q^{61} +(1.83013 - 6.83013i) q^{62} +(-1.00000 - 1.73205i) q^{63} +7.00000 q^{64} -2.00000 q^{66} +(2.00000 + 3.46410i) q^{67} +(-0.366025 + 1.36603i) q^{68} +(-3.00000 + 5.19615i) q^{69} +(4.00000 - 2.00000i) q^{70} +(-1.36603 + 0.366025i) q^{71} +(-2.59808 - 1.50000i) q^{72} -10.0000 q^{73} +(4.36603 + 5.56218i) q^{75} +(-6.83013 - 1.83013i) q^{76} +(-2.00000 - 2.00000i) q^{77} +2.00000i q^{79} +(1.23205 - 1.86603i) q^{80} +(-2.50000 - 4.33013i) q^{81} +(9.56218 - 2.56218i) q^{82} +6.00000i q^{83} +(0.732051 + 2.73205i) q^{84} +(2.09808 + 2.36603i) q^{85} +(-1.00000 + 1.00000i) q^{86} +(-4.09808 - 1.09808i) q^{88} +(1.83013 - 6.83013i) q^{89} +(-2.00000 + 1.00000i) q^{90} +(-3.00000 + 3.00000i) q^{92} +(8.66025 - 5.00000i) q^{93} +(-5.19615 + 3.00000i) q^{94} +(-11.8301 + 10.4904i) q^{95} +(5.00000 + 5.00000i) q^{96} +(-1.00000 + 1.73205i) q^{97} +(-1.50000 + 2.59808i) q^{98} +(1.00000 + 1.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{3} + 2 q^{4} - 4 q^{5} - 2 q^{6} - 12 q^{8} + 2 q^{10} + 2 q^{11} - 4 q^{12} - 2 q^{15} + 2 q^{16} - 2 q^{17} + 10 q^{19} - 2 q^{20} - 8 q^{21} + 2 q^{22} - 6 q^{23} + 6 q^{24} - 12 q^{25}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i 0.633316 0.773893i \(-0.281693\pi\)
−0.986869 + 0.161521i \(0.948360\pi\)
\(3\) 0.366025 1.36603i 0.211325 0.788675i −0.776103 0.630606i \(-0.782806\pi\)
0.987428 0.158069i \(-0.0505269\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −1.00000 2.00000i −0.447214 0.894427i
\(6\) −1.36603 + 0.366025i −0.557678 + 0.149429i
\(7\) −1.73205 1.00000i −0.654654 0.377964i 0.135583 0.990766i \(-0.456709\pi\)
−0.790237 + 0.612801i \(0.790043\pi\)
\(8\) −3.00000 −1.06066
\(9\) 0.866025 + 0.500000i 0.288675 + 0.166667i
\(10\) −1.23205 + 1.86603i −0.389609 + 0.590089i
\(11\) 1.36603 + 0.366025i 0.411872 + 0.110361i 0.458804 0.888537i \(-0.348278\pi\)
−0.0469323 + 0.998898i \(0.514945\pi\)
\(12\) −1.00000 1.00000i −0.288675 0.288675i
\(13\) 0 0
\(14\) 2.00000i 0.534522i
\(15\) −3.09808 + 0.633975i −0.799920 + 0.163692i
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) −1.36603 + 0.366025i −0.331310 + 0.0887742i −0.420639 0.907228i \(-0.638194\pi\)
0.0893296 + 0.996002i \(0.471528\pi\)
\(18\) 1.00000i 0.235702i
\(19\) −1.83013 6.83013i −0.419860 1.56694i −0.774898 0.632087i \(-0.782199\pi\)
0.355038 0.934852i \(-0.384468\pi\)
\(20\) −2.23205 0.133975i −0.499102 0.0299576i
\(21\) −2.00000 + 2.00000i −0.436436 + 0.436436i
\(22\) −0.366025 1.36603i −0.0780369 0.291238i
\(23\) −4.09808 1.09808i −0.854508 0.228965i −0.195131 0.980777i \(-0.562513\pi\)
−0.659377 + 0.751812i \(0.729180\pi\)
\(24\) −1.09808 + 4.09808i −0.224144 + 0.836516i
\(25\) −3.00000 + 4.00000i −0.600000 + 0.800000i
\(26\) 0 0
\(27\) 4.00000 4.00000i 0.769800 0.769800i
\(28\) −1.73205 + 1.00000i −0.327327 + 0.188982i
\(29\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(30\) 2.09808 + 2.36603i 0.383055 + 0.431975i
\(31\) 5.00000 + 5.00000i 0.898027 + 0.898027i 0.995261 0.0972349i \(-0.0309998\pi\)
−0.0972349 + 0.995261i \(0.531000\pi\)
\(32\) −2.50000 + 4.33013i −0.441942 + 0.765466i
\(33\) 1.00000 1.73205i 0.174078 0.301511i
\(34\) 1.00000 + 1.00000i 0.171499 + 0.171499i
\(35\) −0.267949 + 4.46410i −0.0452917 + 0.754571i
\(36\) 0.866025 0.500000i 0.144338 0.0833333i
\(37\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(38\) −5.00000 + 5.00000i −0.811107 + 0.811107i
\(39\) 0 0
\(40\) 3.00000 + 6.00000i 0.474342 + 0.948683i
\(41\) −2.56218 + 9.56218i −0.400145 + 1.49336i 0.412692 + 0.910870i \(0.364588\pi\)
−0.812837 + 0.582491i \(0.802078\pi\)
\(42\) 2.73205 + 0.732051i 0.421565 + 0.112958i
\(43\) −0.366025 1.36603i −0.0558184 0.208317i 0.932384 0.361468i \(-0.117724\pi\)
−0.988203 + 0.153151i \(0.951058\pi\)
\(44\) 1.00000 1.00000i 0.150756 0.150756i
\(45\) 0.133975 2.23205i 0.0199718 0.332734i
\(46\) 1.09808 + 4.09808i 0.161903 + 0.604228i
\(47\) 6.00000i 0.875190i −0.899172 0.437595i \(-0.855830\pi\)
0.899172 0.437595i \(-0.144170\pi\)
\(48\) 1.36603 0.366025i 0.197169 0.0528312i
\(49\) −1.50000 2.59808i −0.214286 0.371154i
\(50\) 4.96410 + 0.598076i 0.702030 + 0.0845807i
\(51\) 2.00000i 0.280056i
\(52\) 0 0
\(53\) 5.00000 + 5.00000i 0.686803 + 0.686803i 0.961524 0.274721i \(-0.0885855\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) −5.46410 1.46410i −0.743570 0.199239i
\(55\) −0.633975 3.09808i −0.0854851 0.417745i
\(56\) 5.19615 + 3.00000i 0.694365 + 0.400892i
\(57\) −10.0000 −1.32453
\(58\) 0 0
\(59\) 9.56218 2.56218i 1.24489 0.333567i 0.424529 0.905414i \(-0.360440\pi\)
0.820360 + 0.571847i \(0.193773\pi\)
\(60\) −1.00000 + 3.00000i −0.129099 + 0.387298i
\(61\) 7.00000 12.1244i 0.896258 1.55236i 0.0640184 0.997949i \(-0.479608\pi\)
0.832240 0.554416i \(-0.187058\pi\)
\(62\) 1.83013 6.83013i 0.232426 0.867427i
\(63\) −1.00000 1.73205i −0.125988 0.218218i
\(64\) 7.00000 0.875000
\(65\) 0 0
\(66\) −2.00000 −0.246183
\(67\) 2.00000 + 3.46410i 0.244339 + 0.423207i 0.961946 0.273241i \(-0.0880957\pi\)
−0.717607 + 0.696449i \(0.754762\pi\)
\(68\) −0.366025 + 1.36603i −0.0443871 + 0.165655i
\(69\) −3.00000 + 5.19615i −0.361158 + 0.625543i
\(70\) 4.00000 2.00000i 0.478091 0.239046i
\(71\) −1.36603 + 0.366025i −0.162117 + 0.0434392i −0.338965 0.940799i \(-0.610077\pi\)
0.176847 + 0.984238i \(0.443410\pi\)
\(72\) −2.59808 1.50000i −0.306186 0.176777i
\(73\) −10.0000 −1.17041 −0.585206 0.810885i \(-0.698986\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) 0 0
\(75\) 4.36603 + 5.56218i 0.504145 + 0.642265i
\(76\) −6.83013 1.83013i −0.783469 0.209930i
\(77\) −2.00000 2.00000i −0.227921 0.227921i
\(78\) 0 0
\(79\) 2.00000i 0.225018i 0.993651 + 0.112509i \(0.0358886\pi\)
−0.993651 + 0.112509i \(0.964111\pi\)
\(80\) 1.23205 1.86603i 0.137747 0.208628i
\(81\) −2.50000 4.33013i −0.277778 0.481125i
\(82\) 9.56218 2.56218i 1.05597 0.282945i
\(83\) 6.00000i 0.658586i 0.944228 + 0.329293i \(0.106810\pi\)
−0.944228 + 0.329293i \(0.893190\pi\)
\(84\) 0.732051 + 2.73205i 0.0798733 + 0.298091i
\(85\) 2.09808 + 2.36603i 0.227568 + 0.256631i
\(86\) −1.00000 + 1.00000i −0.107833 + 0.107833i
\(87\) 0 0
\(88\) −4.09808 1.09808i −0.436856 0.117055i
\(89\) 1.83013 6.83013i 0.193993 0.723992i −0.798532 0.601952i \(-0.794390\pi\)
0.992525 0.122040i \(-0.0389436\pi\)
\(90\) −2.00000 + 1.00000i −0.210819 + 0.105409i
\(91\) 0 0
\(92\) −3.00000 + 3.00000i −0.312772 + 0.312772i
\(93\) 8.66025 5.00000i 0.898027 0.518476i
\(94\) −5.19615 + 3.00000i −0.535942 + 0.309426i
\(95\) −11.8301 + 10.4904i −1.21375 + 1.07629i
\(96\) 5.00000 + 5.00000i 0.510310 + 0.510310i
\(97\) −1.00000 + 1.73205i −0.101535 + 0.175863i −0.912317 0.409484i \(-0.865709\pi\)
0.810782 + 0.585348i \(0.199042\pi\)
\(98\) −1.50000 + 2.59808i −0.151523 + 0.262445i
\(99\) 1.00000 + 1.00000i 0.100504 + 0.100504i
\(100\) 1.96410 + 4.59808i 0.196410 + 0.459808i
\(101\) −10.3923 + 6.00000i −1.03407 + 0.597022i −0.918149 0.396236i \(-0.870316\pi\)
−0.115924 + 0.993258i \(0.536983\pi\)
\(102\) 1.73205 1.00000i 0.171499 0.0990148i
\(103\) 7.00000 7.00000i 0.689730 0.689730i −0.272442 0.962172i \(-0.587831\pi\)
0.962172 + 0.272442i \(0.0878312\pi\)
\(104\) 0 0
\(105\) 6.00000 + 2.00000i 0.585540 + 0.195180i
\(106\) 1.83013 6.83013i 0.177758 0.663401i
\(107\) −9.56218 2.56218i −0.924411 0.247695i −0.234941 0.972010i \(-0.575490\pi\)
−0.689470 + 0.724315i \(0.742156\pi\)
\(108\) −1.46410 5.46410i −0.140883 0.525783i
\(109\) 9.00000 9.00000i 0.862044 0.862044i −0.129532 0.991575i \(-0.541347\pi\)
0.991575 + 0.129532i \(0.0413474\pi\)
\(110\) −2.36603 + 2.09808i −0.225592 + 0.200044i
\(111\) 0 0
\(112\) 2.00000i 0.188982i
\(113\) −6.83013 + 1.83013i −0.642524 + 0.172164i −0.565347 0.824853i \(-0.691258\pi\)
−0.0771777 + 0.997017i \(0.524591\pi\)
\(114\) 5.00000 + 8.66025i 0.468293 + 0.811107i
\(115\) 1.90192 + 9.29423i 0.177355 + 0.866691i
\(116\) 0 0
\(117\) 0 0
\(118\) −7.00000 7.00000i −0.644402 0.644402i
\(119\) 2.73205 + 0.732051i 0.250447 + 0.0671070i
\(120\) 9.29423 1.90192i 0.848443 0.173621i
\(121\) −7.79423 4.50000i −0.708566 0.409091i
\(122\) −14.0000 −1.26750
\(123\) 12.1244 + 7.00000i 1.09322 + 0.631169i
\(124\) 6.83013 1.83013i 0.613364 0.164350i
\(125\) 11.0000 + 2.00000i 0.983870 + 0.178885i
\(126\) −1.00000 + 1.73205i −0.0890871 + 0.154303i
\(127\) 3.29423 12.2942i 0.292316 1.09094i −0.651010 0.759069i \(-0.725655\pi\)
0.943326 0.331868i \(-0.107679\pi\)
\(128\) 1.50000 + 2.59808i 0.132583 + 0.229640i
\(129\) −2.00000 −0.176090
\(130\) 0 0
\(131\) −20.0000 −1.74741 −0.873704 0.486458i \(-0.838289\pi\)
−0.873704 + 0.486458i \(0.838289\pi\)
\(132\) −1.00000 1.73205i −0.0870388 0.150756i
\(133\) −3.66025 + 13.6603i −0.317384 + 1.18449i
\(134\) 2.00000 3.46410i 0.172774 0.299253i
\(135\) −12.0000 4.00000i −1.03280 0.344265i
\(136\) 4.09808 1.09808i 0.351407 0.0941593i
\(137\) −13.8564 8.00000i −1.18383 0.683486i −0.226935 0.973910i \(-0.572870\pi\)
−0.956898 + 0.290424i \(0.906204\pi\)
\(138\) 6.00000 0.510754
\(139\) −12.1244 7.00000i −1.02837 0.593732i −0.111856 0.993724i \(-0.535679\pi\)
−0.916519 + 0.399992i \(0.869013\pi\)
\(140\) 3.73205 + 2.46410i 0.315416 + 0.208255i
\(141\) −8.19615 2.19615i −0.690241 0.184949i
\(142\) 1.00000 + 1.00000i 0.0839181 + 0.0839181i
\(143\) 0 0
\(144\) 1.00000i 0.0833333i
\(145\) 0 0
\(146\) 5.00000 + 8.66025i 0.413803 + 0.716728i
\(147\) −4.09808 + 1.09808i −0.338004 + 0.0905678i
\(148\) 0 0
\(149\) −1.09808 4.09808i −0.0899579 0.335727i 0.906249 0.422744i \(-0.138933\pi\)
−0.996207 + 0.0870170i \(0.972267\pi\)
\(150\) 2.63397 6.56218i 0.215063 0.535800i
\(151\) 7.00000 7.00000i 0.569652 0.569652i −0.362379 0.932031i \(-0.618035\pi\)
0.932031 + 0.362379i \(0.118035\pi\)
\(152\) 5.49038 + 20.4904i 0.445329 + 1.66199i
\(153\) −1.36603 0.366025i −0.110437 0.0295914i
\(154\) −0.732051 + 2.73205i −0.0589903 + 0.220155i
\(155\) 5.00000 15.0000i 0.401610 1.20483i
\(156\) 0 0
\(157\) 13.0000 13.0000i 1.03751 1.03751i 0.0382445 0.999268i \(-0.487823\pi\)
0.999268 0.0382445i \(-0.0121766\pi\)
\(158\) 1.73205 1.00000i 0.137795 0.0795557i
\(159\) 8.66025 5.00000i 0.686803 0.396526i
\(160\) 11.1603 + 0.669873i 0.882296 + 0.0529581i
\(161\) 6.00000 + 6.00000i 0.472866 + 0.472866i
\(162\) −2.50000 + 4.33013i −0.196419 + 0.340207i
\(163\) −2.00000 + 3.46410i −0.156652 + 0.271329i −0.933659 0.358162i \(-0.883403\pi\)
0.777007 + 0.629492i \(0.216737\pi\)
\(164\) 7.00000 + 7.00000i 0.546608 + 0.546608i
\(165\) −4.46410 0.267949i −0.347530 0.0208598i
\(166\) 5.19615 3.00000i 0.403300 0.232845i
\(167\) 15.5885 9.00000i 1.20627 0.696441i 0.244328 0.969693i \(-0.421432\pi\)
0.961943 + 0.273252i \(0.0880992\pi\)
\(168\) 6.00000 6.00000i 0.462910 0.462910i
\(169\) 0 0
\(170\) 1.00000 3.00000i 0.0766965 0.230089i
\(171\) 1.83013 6.83013i 0.139953 0.522313i
\(172\) −1.36603 0.366025i −0.104158 0.0279092i
\(173\) −4.02628 15.0263i −0.306112 1.14243i −0.931984 0.362500i \(-0.881923\pi\)
0.625871 0.779926i \(-0.284744\pi\)
\(174\) 0 0
\(175\) 9.19615 3.92820i 0.695164 0.296944i
\(176\) 0.366025 + 1.36603i 0.0275902 + 0.102968i
\(177\) 14.0000i 1.05230i
\(178\) −6.83013 + 1.83013i −0.511940 + 0.137174i
\(179\) 10.0000 + 17.3205i 0.747435 + 1.29460i 0.949048 + 0.315130i \(0.102048\pi\)
−0.201613 + 0.979465i \(0.564618\pi\)
\(180\) −1.86603 1.23205i −0.139085 0.0918316i
\(181\) 8.00000i 0.594635i 0.954779 + 0.297318i \(0.0960920\pi\)
−0.954779 + 0.297318i \(0.903908\pi\)
\(182\) 0 0
\(183\) −14.0000 14.0000i −1.03491 1.03491i
\(184\) 12.2942 + 3.29423i 0.906343 + 0.242854i
\(185\) 0 0
\(186\) −8.66025 5.00000i −0.635001 0.366618i
\(187\) −2.00000 −0.146254
\(188\) −5.19615 3.00000i −0.378968 0.218797i
\(189\) −10.9282 + 2.92820i −0.794910 + 0.212995i
\(190\) 15.0000 + 5.00000i 1.08821 + 0.362738i
\(191\) −4.00000 + 6.92820i −0.289430 + 0.501307i −0.973674 0.227946i \(-0.926799\pi\)
0.684244 + 0.729253i \(0.260132\pi\)
\(192\) 2.56218 9.56218i 0.184909 0.690091i
\(193\) −9.00000 15.5885i −0.647834 1.12208i −0.983639 0.180150i \(-0.942342\pi\)
0.335805 0.941932i \(-0.390992\pi\)
\(194\) 2.00000 0.143592
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) −3.00000 5.19615i −0.213741 0.370211i 0.739141 0.673550i \(-0.235232\pi\)
−0.952882 + 0.303340i \(0.901898\pi\)
\(198\) 0.366025 1.36603i 0.0260123 0.0970792i
\(199\) 4.00000 6.92820i 0.283552 0.491127i −0.688705 0.725042i \(-0.741820\pi\)
0.972257 + 0.233915i \(0.0751537\pi\)
\(200\) 9.00000 12.0000i 0.636396 0.848528i
\(201\) 5.46410 1.46410i 0.385408 0.103270i
\(202\) 10.3923 + 6.00000i 0.731200 + 0.422159i
\(203\) 0 0
\(204\) 1.73205 + 1.00000i 0.121268 + 0.0700140i
\(205\) 21.6865 4.43782i 1.51465 0.309951i
\(206\) −9.56218 2.56218i −0.666228 0.178515i
\(207\) −3.00000 3.00000i −0.208514 0.208514i
\(208\) 0 0
\(209\) 10.0000i 0.691714i
\(210\) −1.26795 6.19615i −0.0874968 0.427575i
\(211\) −2.00000 3.46410i −0.137686 0.238479i 0.788935 0.614477i \(-0.210633\pi\)
−0.926620 + 0.375999i \(0.877300\pi\)
\(212\) 6.83013 1.83013i 0.469095 0.125694i
\(213\) 2.00000i 0.137038i
\(214\) 2.56218 + 9.56218i 0.175147 + 0.653657i
\(215\) −2.36603 + 2.09808i −0.161362 + 0.143088i
\(216\) −12.0000 + 12.0000i −0.816497 + 0.816497i
\(217\) −3.66025 13.6603i −0.248474 0.927318i
\(218\) −12.2942 3.29423i −0.832670 0.223113i
\(219\) −3.66025 + 13.6603i −0.247337 + 0.923074i
\(220\) −3.00000 1.00000i −0.202260 0.0674200i
\(221\) 0 0
\(222\) 0 0
\(223\) 1.73205 1.00000i 0.115987 0.0669650i −0.440884 0.897564i \(-0.645335\pi\)
0.556871 + 0.830599i \(0.312002\pi\)
\(224\) 8.66025 5.00000i 0.578638 0.334077i
\(225\) −4.59808 + 1.96410i −0.306538 + 0.130940i
\(226\) 5.00000 + 5.00000i 0.332595 + 0.332595i
\(227\) 6.00000 10.3923i 0.398234 0.689761i −0.595274 0.803523i \(-0.702957\pi\)
0.993508 + 0.113761i \(0.0362899\pi\)
\(228\) −5.00000 + 8.66025i −0.331133 + 0.573539i
\(229\) −3.00000 3.00000i −0.198246 0.198246i 0.601002 0.799248i \(-0.294768\pi\)
−0.799248 + 0.601002i \(0.794768\pi\)
\(230\) 7.09808 6.29423i 0.468033 0.415029i
\(231\) −3.46410 + 2.00000i −0.227921 + 0.131590i
\(232\) 0 0
\(233\) 1.00000 1.00000i 0.0655122 0.0655122i −0.673592 0.739104i \(-0.735249\pi\)
0.739104 + 0.673592i \(0.235249\pi\)
\(234\) 0 0
\(235\) −12.0000 + 6.00000i −0.782794 + 0.391397i
\(236\) 2.56218 9.56218i 0.166784 0.622445i
\(237\) 2.73205 + 0.732051i 0.177466 + 0.0475518i
\(238\) −0.732051 2.73205i −0.0474518 0.177093i
\(239\) 3.00000 3.00000i 0.194054 0.194054i −0.603391 0.797445i \(-0.706184\pi\)
0.797445 + 0.603391i \(0.206184\pi\)
\(240\) −2.09808 2.36603i −0.135430 0.152726i
\(241\) 6.22243 + 23.2224i 0.400822 + 1.49589i 0.811633 + 0.584168i \(0.198579\pi\)
−0.410811 + 0.911721i \(0.634754\pi\)
\(242\) 9.00000i 0.578542i
\(243\) 9.56218 2.56218i 0.613414 0.164364i
\(244\) −7.00000 12.1244i −0.448129 0.776182i
\(245\) −3.69615 + 5.59808i −0.236139 + 0.357648i
\(246\) 14.0000i 0.892607i
\(247\) 0 0
\(248\) −15.0000 15.0000i −0.952501 0.952501i
\(249\) 8.19615 + 2.19615i 0.519410 + 0.139176i
\(250\) −3.76795 10.5263i −0.238306 0.665740i
\(251\) 1.73205 + 1.00000i 0.109326 + 0.0631194i 0.553666 0.832739i \(-0.313228\pi\)
−0.444340 + 0.895858i \(0.646562\pi\)
\(252\) −2.00000 −0.125988
\(253\) −5.19615 3.00000i −0.326679 0.188608i
\(254\) −12.2942 + 3.29423i −0.771409 + 0.206698i
\(255\) 4.00000 2.00000i 0.250490 0.125245i
\(256\) 8.50000 14.7224i 0.531250 0.920152i
\(257\) −4.02628 + 15.0263i −0.251152 + 0.937314i 0.719038 + 0.694971i \(0.244583\pi\)
−0.970191 + 0.242343i \(0.922084\pi\)
\(258\) 1.00000 + 1.73205i 0.0622573 + 0.107833i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 10.0000 + 17.3205i 0.617802 + 1.07006i
\(263\) 0.366025 1.36603i 0.0225701 0.0842327i −0.953722 0.300689i \(-0.902783\pi\)
0.976292 + 0.216457i \(0.0694500\pi\)
\(264\) −3.00000 + 5.19615i −0.184637 + 0.319801i
\(265\) 5.00000 15.0000i 0.307148 0.921443i
\(266\) 13.6603 3.66025i 0.837564 0.224425i
\(267\) −8.66025 5.00000i −0.529999 0.305995i
\(268\) 4.00000 0.244339
\(269\) 10.3923 + 6.00000i 0.633630 + 0.365826i 0.782157 0.623082i \(-0.214120\pi\)
−0.148527 + 0.988908i \(0.547453\pi\)
\(270\) 2.53590 + 12.3923i 0.154330 + 0.754172i
\(271\) 12.2942 + 3.29423i 0.746821 + 0.200110i 0.612108 0.790774i \(-0.290322\pi\)
0.134714 + 0.990885i \(0.456989\pi\)
\(272\) −1.00000 1.00000i −0.0606339 0.0606339i
\(273\) 0 0
\(274\) 16.0000i 0.966595i
\(275\) −5.56218 + 4.36603i −0.335412 + 0.263281i
\(276\) 3.00000 + 5.19615i 0.180579 + 0.312772i
\(277\) 20.4904 5.49038i 1.23115 0.329885i 0.416121 0.909309i \(-0.363389\pi\)
0.815026 + 0.579424i \(0.196722\pi\)
\(278\) 14.0000i 0.839664i
\(279\) 1.83013 + 6.83013i 0.109567 + 0.408909i
\(280\) 0.803848 13.3923i 0.0480391 0.800343i
\(281\) 1.00000 1.00000i 0.0596550 0.0596550i −0.676650 0.736305i \(-0.736569\pi\)
0.736305 + 0.676650i \(0.236569\pi\)
\(282\) 2.19615 + 8.19615i 0.130779 + 0.488074i
\(283\) 12.2942 + 3.29423i 0.730816 + 0.195822i 0.604993 0.796231i \(-0.293176\pi\)
0.125823 + 0.992053i \(0.459843\pi\)
\(284\) −0.366025 + 1.36603i −0.0217196 + 0.0810587i
\(285\) 10.0000 + 20.0000i 0.592349 + 1.18470i
\(286\) 0 0
\(287\) 14.0000 14.0000i 0.826394 0.826394i
\(288\) −4.33013 + 2.50000i −0.255155 + 0.147314i
\(289\) −12.9904 + 7.50000i −0.764140 + 0.441176i
\(290\) 0 0
\(291\) 2.00000 + 2.00000i 0.117242 + 0.117242i
\(292\) −5.00000 + 8.66025i −0.292603 + 0.506803i
\(293\) 3.00000 5.19615i 0.175262 0.303562i −0.764990 0.644042i \(-0.777256\pi\)
0.940252 + 0.340480i \(0.110589\pi\)
\(294\) 3.00000 + 3.00000i 0.174964 + 0.174964i
\(295\) −14.6865 16.5622i −0.855083 0.964287i
\(296\) 0 0
\(297\) 6.92820 4.00000i 0.402015 0.232104i
\(298\) −3.00000 + 3.00000i −0.173785 + 0.173785i
\(299\) 0 0
\(300\) 7.00000 1.00000i 0.404145 0.0577350i
\(301\) −0.732051 + 2.73205i −0.0421947 + 0.157473i
\(302\) −9.56218 2.56218i −0.550242 0.147437i
\(303\) 4.39230 + 16.3923i 0.252331 + 0.941713i
\(304\) 5.00000 5.00000i 0.286770 0.286770i
\(305\) −31.2487 1.87564i −1.78930 0.107399i
\(306\) 0.366025 + 1.36603i 0.0209243 + 0.0780905i
\(307\) 18.0000i 1.02731i −0.857996 0.513657i \(-0.828290\pi\)
0.857996 0.513657i \(-0.171710\pi\)
\(308\) −2.73205 + 0.732051i −0.155673 + 0.0417125i
\(309\) −7.00000 12.1244i −0.398216 0.689730i
\(310\) −15.4904 + 3.16987i −0.879795 + 0.180037i
\(311\) 6.00000i 0.340229i −0.985424 0.170114i \(-0.945586\pi\)
0.985424 0.170114i \(-0.0544137\pi\)
\(312\) 0 0
\(313\) 9.00000 + 9.00000i 0.508710 + 0.508710i 0.914130 0.405420i \(-0.132875\pi\)
−0.405420 + 0.914130i \(0.632875\pi\)
\(314\) −17.7583 4.75833i −1.00216 0.268528i
\(315\) −2.46410 + 3.73205i −0.138836 + 0.210277i
\(316\) 1.73205 + 1.00000i 0.0974355 + 0.0562544i
\(317\) −14.0000 −0.786318 −0.393159 0.919470i \(-0.628618\pi\)
−0.393159 + 0.919470i \(0.628618\pi\)
\(318\) −8.66025 5.00000i −0.485643 0.280386i
\(319\) 0 0
\(320\) −7.00000 14.0000i −0.391312 0.782624i
\(321\) −7.00000 + 12.1244i −0.390702 + 0.676716i
\(322\) 2.19615 8.19615i 0.122387 0.456754i
\(323\) 5.00000 + 8.66025i 0.278207 + 0.481869i
\(324\) −5.00000 −0.277778
\(325\) 0 0
\(326\) 4.00000 0.221540
\(327\) −9.00000 15.5885i −0.497701 0.862044i
\(328\) 7.68653 28.6865i 0.424418 1.58395i
\(329\) −6.00000 + 10.3923i −0.330791 + 0.572946i
\(330\) 2.00000 + 4.00000i 0.110096 + 0.220193i
\(331\) 4.09808 1.09808i 0.225251 0.0603557i −0.144428 0.989515i \(-0.546134\pi\)
0.369679 + 0.929160i \(0.379468\pi\)
\(332\) 5.19615 + 3.00000i 0.285176 + 0.164646i
\(333\) 0 0
\(334\) −15.5885 9.00000i −0.852962 0.492458i
\(335\) 4.92820 7.46410i 0.269257 0.407807i
\(336\) −2.73205 0.732051i −0.149046 0.0399366i
\(337\) 13.0000 + 13.0000i 0.708155 + 0.708155i 0.966147 0.257992i \(-0.0830608\pi\)
−0.257992 + 0.966147i \(0.583061\pi\)
\(338\) 0 0
\(339\) 10.0000i 0.543125i
\(340\) 3.09808 0.633975i 0.168017 0.0343821i
\(341\) 5.00000 + 8.66025i 0.270765 + 0.468979i
\(342\) −6.83013 + 1.83013i −0.369331 + 0.0989619i
\(343\) 20.0000i 1.07990i
\(344\) 1.09808 + 4.09808i 0.0592043 + 0.220953i
\(345\) 13.3923 + 0.803848i 0.721017 + 0.0432777i
\(346\) −11.0000 + 11.0000i −0.591364 + 0.591364i
\(347\) 1.09808 + 4.09808i 0.0589478 + 0.219996i 0.989116 0.147137i \(-0.0470059\pi\)
−0.930168 + 0.367133i \(0.880339\pi\)
\(348\) 0 0
\(349\) 3.29423 12.2942i 0.176336 0.658095i −0.819984 0.572386i \(-0.806018\pi\)
0.996320 0.0857088i \(-0.0273155\pi\)
\(350\) −8.00000 6.00000i −0.427618 0.320713i
\(351\) 0 0
\(352\) −5.00000 + 5.00000i −0.266501 + 0.266501i
\(353\) −10.3923 + 6.00000i −0.553127 + 0.319348i −0.750382 0.661004i \(-0.770130\pi\)
0.197256 + 0.980352i \(0.436797\pi\)
\(354\) −12.1244 + 7.00000i −0.644402 + 0.372046i
\(355\) 2.09808 + 2.36603i 0.111354 + 0.125576i
\(356\) −5.00000 5.00000i −0.264999 0.264999i
\(357\) 2.00000 3.46410i 0.105851 0.183340i
\(358\) 10.0000 17.3205i 0.528516 0.915417i
\(359\) 1.00000 + 1.00000i 0.0527780 + 0.0527780i 0.733003 0.680225i \(-0.238118\pi\)
−0.680225 + 0.733003i \(0.738118\pi\)
\(360\) −0.401924 + 6.69615i −0.0211832 + 0.352918i
\(361\) −26.8468 + 15.5000i −1.41299 + 0.815789i
\(362\) 6.92820 4.00000i 0.364138 0.210235i
\(363\) −9.00000 + 9.00000i −0.472377 + 0.472377i
\(364\) 0 0
\(365\) 10.0000 + 20.0000i 0.523424 + 1.04685i
\(366\) −5.12436 + 19.1244i −0.267854 + 0.999646i
\(367\) 1.36603 + 0.366025i 0.0713059 + 0.0191064i 0.294296 0.955714i \(-0.404915\pi\)
−0.222990 + 0.974821i \(0.571582\pi\)
\(368\) −1.09808 4.09808i −0.0572412 0.213627i
\(369\) −7.00000 + 7.00000i −0.364405 + 0.364405i
\(370\) 0 0
\(371\) −3.66025 13.6603i −0.190031 0.709205i
\(372\) 10.0000i 0.518476i
\(373\) 20.4904 5.49038i 1.06095 0.284281i 0.314181 0.949363i \(-0.398270\pi\)
0.746770 + 0.665082i \(0.231603\pi\)
\(374\) 1.00000 + 1.73205i 0.0517088 + 0.0895622i
\(375\) 6.75833 14.2942i 0.348999 0.738151i
\(376\) 18.0000i 0.928279i
\(377\) 0 0
\(378\) 8.00000 + 8.00000i 0.411476 + 0.411476i
\(379\) 1.36603 + 0.366025i 0.0701680 + 0.0188015i 0.293732 0.955888i \(-0.405103\pi\)
−0.223564 + 0.974689i \(0.571769\pi\)
\(380\) 3.16987 + 15.4904i 0.162611 + 0.794640i
\(381\) −15.5885 9.00000i −0.798621 0.461084i
\(382\) 8.00000 0.409316
\(383\) 25.9808 + 15.0000i 1.32755 + 0.766464i 0.984921 0.173005i \(-0.0553476\pi\)
0.342634 + 0.939469i \(0.388681\pi\)
\(384\) 4.09808 1.09808i 0.209129 0.0560360i
\(385\) −2.00000 + 6.00000i −0.101929 + 0.305788i
\(386\) −9.00000 + 15.5885i −0.458088 + 0.793432i
\(387\) 0.366025 1.36603i 0.0186061 0.0694390i
\(388\) 1.00000 + 1.73205i 0.0507673 + 0.0879316i
\(389\) −18.0000 −0.912636 −0.456318 0.889817i \(-0.650832\pi\)
−0.456318 + 0.889817i \(0.650832\pi\)
\(390\) 0 0
\(391\) 6.00000 0.303433
\(392\) 4.50000 + 7.79423i 0.227284 + 0.393668i
\(393\) −7.32051 + 27.3205i −0.369271 + 1.37814i
\(394\) −3.00000 + 5.19615i −0.151138 + 0.261778i
\(395\) 4.00000 2.00000i 0.201262 0.100631i
\(396\) 1.36603 0.366025i 0.0686454 0.0183935i
\(397\) 13.8564 + 8.00000i 0.695433 + 0.401508i 0.805644 0.592400i \(-0.201819\pi\)
−0.110211 + 0.993908i \(0.535153\pi\)
\(398\) −8.00000 −0.401004
\(399\) 17.3205 + 10.0000i 0.867110 + 0.500626i
\(400\) −4.96410 0.598076i −0.248205 0.0299038i
\(401\) 15.0263 + 4.02628i 0.750377 + 0.201063i 0.613685 0.789551i \(-0.289686\pi\)
0.136691 + 0.990614i \(0.456353\pi\)
\(402\) −4.00000 4.00000i −0.199502 0.199502i
\(403\) 0 0
\(404\) 12.0000i 0.597022i
\(405\) −6.16025 + 9.33013i −0.306105 + 0.463618i
\(406\) 0 0
\(407\) 0 0
\(408\) 6.00000i 0.297044i
\(409\) −2.56218 9.56218i −0.126692 0.472819i 0.873203 0.487357i \(-0.162039\pi\)
−0.999894 + 0.0145378i \(0.995372\pi\)
\(410\) −14.6865 16.5622i −0.725316 0.817948i
\(411\) −16.0000 + 16.0000i −0.789222 + 0.789222i
\(412\) −2.56218 9.56218i −0.126229 0.471095i
\(413\) −19.1244 5.12436i −0.941048 0.252153i
\(414\) −1.09808 + 4.09808i −0.0539675 + 0.201409i
\(415\) 12.0000 6.00000i 0.589057 0.294528i
\(416\) 0 0
\(417\) −14.0000 + 14.0000i −0.685583 + 0.685583i
\(418\) −8.66025 + 5.00000i −0.423587 + 0.244558i
\(419\) 32.9090 19.0000i 1.60771 0.928211i 0.617827 0.786314i \(-0.288013\pi\)
0.989882 0.141896i \(-0.0453200\pi\)
\(420\) 4.73205 4.19615i 0.230900 0.204751i
\(421\) −11.0000 11.0000i −0.536107 0.536107i 0.386276 0.922383i \(-0.373761\pi\)
−0.922383 + 0.386276i \(0.873761\pi\)
\(422\) −2.00000 + 3.46410i −0.0973585 + 0.168630i
\(423\) 3.00000 5.19615i 0.145865 0.252646i
\(424\) −15.0000 15.0000i −0.728464 0.728464i
\(425\) 2.63397 6.56218i 0.127767 0.318312i
\(426\) 1.73205 1.00000i 0.0839181 0.0484502i
\(427\) −24.2487 + 14.0000i −1.17348 + 0.677507i
\(428\) −7.00000 + 7.00000i −0.338358 + 0.338358i
\(429\) 0 0
\(430\) 3.00000 + 1.00000i 0.144673 + 0.0482243i
\(431\) 4.75833 17.7583i 0.229201 0.855389i −0.751477 0.659759i \(-0.770658\pi\)
0.980678 0.195630i \(-0.0626750\pi\)
\(432\) 5.46410 + 1.46410i 0.262892 + 0.0704416i
\(433\) 6.22243 + 23.2224i 0.299031 + 1.11600i 0.937963 + 0.346736i \(0.112710\pi\)
−0.638932 + 0.769263i \(0.720623\pi\)
\(434\) −10.0000 + 10.0000i −0.480015 + 0.480015i
\(435\) 0 0
\(436\) −3.29423 12.2942i −0.157765 0.588787i
\(437\) 30.0000i 1.43509i
\(438\) 13.6603 3.66025i 0.652712 0.174894i
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 1.90192 + 9.29423i 0.0906707 + 0.443085i
\(441\) 3.00000i 0.142857i
\(442\) 0 0
\(443\) 25.0000 + 25.0000i 1.18779 + 1.18779i 0.977678 + 0.210108i \(0.0673814\pi\)
0.210108 + 0.977678i \(0.432619\pi\)
\(444\) 0 0
\(445\) −15.4904 + 3.16987i −0.734314 + 0.150266i
\(446\) −1.73205 1.00000i −0.0820150 0.0473514i
\(447\) −6.00000 −0.283790
\(448\) −12.1244 7.00000i −0.572822 0.330719i
\(449\) 4.09808 1.09808i 0.193400 0.0518214i −0.160819 0.986984i \(-0.551413\pi\)
0.354219 + 0.935163i \(0.384747\pi\)
\(450\) 4.00000 + 3.00000i 0.188562 + 0.141421i
\(451\) −7.00000 + 12.1244i −0.329617 + 0.570914i
\(452\) −1.83013 + 6.83013i −0.0860819 + 0.321262i
\(453\) −7.00000 12.1244i −0.328889 0.569652i
\(454\) −12.0000 −0.563188
\(455\) 0 0
\(456\) 30.0000 1.40488
\(457\) −1.00000 1.73205i −0.0467780 0.0810219i 0.841688 0.539964i \(-0.181562\pi\)
−0.888466 + 0.458942i \(0.848229\pi\)
\(458\) −1.09808 + 4.09808i −0.0513097 + 0.191491i
\(459\) −4.00000 + 6.92820i −0.186704 + 0.323381i
\(460\) 9.00000 + 3.00000i 0.419627 + 0.139876i
\(461\) −23.2224 + 6.22243i −1.08158 + 0.289808i −0.755241 0.655447i \(-0.772480\pi\)
−0.326335 + 0.945254i \(0.605814\pi\)
\(462\) 3.46410 + 2.00000i 0.161165 + 0.0930484i
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) 0 0
\(465\) −18.6603 12.3205i −0.865349 0.571350i
\(466\) −1.36603 0.366025i −0.0632799 0.0169558i
\(467\) 9.00000 + 9.00000i 0.416470 + 0.416470i 0.883985 0.467515i \(-0.154851\pi\)
−0.467515 + 0.883985i \(0.654851\pi\)
\(468\) 0 0
\(469\) 8.00000i 0.369406i
\(470\) 11.1962 + 7.39230i 0.516440 + 0.340982i
\(471\) −13.0000 22.5167i −0.599008 1.03751i
\(472\) −28.6865 + 7.68653i −1.32040 + 0.353801i
\(473\) 2.00000i 0.0919601i
\(474\) −0.732051 2.73205i −0.0336242 0.125487i
\(475\) 32.8109 + 13.1699i 1.50547 + 0.604275i
\(476\) 2.00000 2.00000i 0.0916698 0.0916698i
\(477\) 1.83013 + 6.83013i 0.0837958 + 0.312730i
\(478\) −4.09808 1.09808i −0.187442 0.0502248i
\(479\) −2.56218 + 9.56218i −0.117069 + 0.436907i −0.999433 0.0336596i \(-0.989284\pi\)
0.882364 + 0.470567i \(0.155950\pi\)
\(480\) 5.00000 15.0000i 0.228218 0.684653i
\(481\) 0 0
\(482\) 17.0000 17.0000i 0.774329 0.774329i
\(483\) 10.3923 6.00000i 0.472866 0.273009i
\(484\) −7.79423 + 4.50000i −0.354283 + 0.204545i
\(485\) 4.46410 + 0.267949i 0.202704 + 0.0121669i
\(486\) −7.00000 7.00000i −0.317526 0.317526i
\(487\) −8.00000 + 13.8564i −0.362515 + 0.627894i −0.988374 0.152042i \(-0.951415\pi\)
0.625859 + 0.779936i \(0.284748\pi\)
\(488\) −21.0000 + 36.3731i −0.950625 + 1.64653i
\(489\) 4.00000 + 4.00000i 0.180886 + 0.180886i
\(490\) 6.69615 + 0.401924i 0.302501 + 0.0181571i
\(491\) 19.0526 11.0000i 0.859830 0.496423i −0.00412539 0.999991i \(-0.501313\pi\)
0.863955 + 0.503568i \(0.167980\pi\)
\(492\) 12.1244 7.00000i 0.546608 0.315584i
\(493\) 0 0
\(494\) 0 0
\(495\) 1.00000 3.00000i 0.0449467 0.134840i
\(496\) −1.83013 + 6.83013i −0.0821751 + 0.306682i
\(497\) 2.73205 + 0.732051i 0.122549 + 0.0328370i
\(498\) −2.19615 8.19615i −0.0984119 0.367278i
\(499\) 3.00000 3.00000i 0.134298 0.134298i −0.636762 0.771060i \(-0.719727\pi\)
0.771060 + 0.636762i \(0.219727\pi\)
\(500\) 7.23205 8.52628i 0.323427 0.381307i
\(501\) −6.58846 24.5885i −0.294351 1.09853i
\(502\) 2.00000i 0.0892644i
\(503\) 4.09808 1.09808i 0.182724 0.0489608i −0.166297 0.986076i \(-0.553181\pi\)
0.349021 + 0.937115i \(0.386514\pi\)
\(504\) 3.00000 + 5.19615i 0.133631 + 0.231455i
\(505\) 22.3923 + 14.7846i 0.996444 + 0.657906i
\(506\) 6.00000i 0.266733i
\(507\) 0 0
\(508\) −9.00000 9.00000i −0.399310 0.399310i
\(509\) −17.7583 4.75833i −0.787124 0.210909i −0.157201 0.987567i \(-0.550247\pi\)
−0.629923 + 0.776657i \(0.716914\pi\)
\(510\) −3.73205 2.46410i −0.165258 0.109112i
\(511\) 17.3205 + 10.0000i 0.766214 + 0.442374i
\(512\) −11.0000 −0.486136
\(513\) −34.6410 20.0000i −1.52944 0.883022i
\(514\) 15.0263 4.02628i 0.662781 0.177592i
\(515\) −21.0000 7.00000i −0.925371 0.308457i
\(516\) −1.00000 + 1.73205i −0.0440225 + 0.0762493i
\(517\) 2.19615 8.19615i 0.0965867 0.360466i
\(518\) 0 0
\(519\) −22.0000 −0.965693
\(520\) 0 0
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 0 0
\(523\) 3.29423 12.2942i 0.144047 0.537589i −0.855749 0.517390i \(-0.826903\pi\)
0.999796 0.0201986i \(-0.00642985\pi\)
\(524\) −10.0000 + 17.3205i −0.436852 + 0.756650i
\(525\) −2.00000 14.0000i −0.0872872 0.611010i
\(526\) −1.36603 + 0.366025i −0.0595615 + 0.0159595i
\(527\) −8.66025 5.00000i −0.377247 0.217803i
\(528\) 2.00000 0.0870388
\(529\) −4.33013 2.50000i −0.188266 0.108696i
\(530\) −15.4904 + 3.16987i −0.672859 + 0.137690i
\(531\) 9.56218 + 2.56218i 0.414963 + 0.111189i
\(532\) 10.0000 + 10.0000i 0.433555 + 0.433555i
\(533\) 0 0
\(534\) 10.0000i 0.432742i
\(535\) 4.43782 + 21.6865i 0.191864 + 0.937591i
\(536\) −6.00000 10.3923i −0.259161 0.448879i
\(537\) 27.3205 7.32051i 1.17897 0.315903i
\(538\) 12.0000i 0.517357i
\(539\) −1.09808 4.09808i −0.0472975 0.176517i
\(540\) −9.46410 + 8.39230i −0.407270 + 0.361147i
\(541\) 9.00000 9.00000i 0.386940 0.386940i −0.486654 0.873595i \(-0.661783\pi\)
0.873595 + 0.486654i \(0.161783\pi\)
\(542\) −3.29423 12.2942i −0.141499 0.528082i
\(543\) 10.9282 + 2.92820i 0.468974 + 0.125661i
\(544\) 1.83013 6.83013i 0.0784660 0.292839i
\(545\) −27.0000 9.00000i −1.15655 0.385518i
\(546\) 0 0
\(547\) −9.00000 + 9.00000i −0.384812 + 0.384812i −0.872832 0.488020i \(-0.837719\pi\)
0.488020 + 0.872832i \(0.337719\pi\)
\(548\) −13.8564 + 8.00000i −0.591916 + 0.341743i
\(549\) 12.1244 7.00000i 0.517455 0.298753i
\(550\) 6.56218 + 2.63397i 0.279812 + 0.112313i
\(551\) 0 0
\(552\) 9.00000 15.5885i 0.383065 0.663489i
\(553\) 2.00000 3.46410i 0.0850487 0.147309i
\(554\) −15.0000 15.0000i −0.637289 0.637289i
\(555\) 0 0
\(556\) −12.1244 + 7.00000i −0.514187 + 0.296866i
\(557\) −20.7846 + 12.0000i −0.880672 + 0.508456i −0.870880 0.491496i \(-0.836450\pi\)
−0.00979220 + 0.999952i \(0.503117\pi\)
\(558\) 5.00000 5.00000i 0.211667 0.211667i
\(559\) 0 0
\(560\) −4.00000 + 2.00000i −0.169031 + 0.0845154i
\(561\) −0.732051 + 2.73205i −0.0309072 + 0.115347i
\(562\) −1.36603 0.366025i −0.0576223 0.0154398i
\(563\) 5.49038 + 20.4904i 0.231392 + 0.863567i 0.979742 + 0.200263i \(0.0641796\pi\)
−0.748350 + 0.663304i \(0.769154\pi\)
\(564\) −6.00000 + 6.00000i −0.252646 + 0.252646i
\(565\) 10.4904 + 11.8301i 0.441334 + 0.497697i
\(566\) −3.29423 12.2942i −0.138467 0.516765i
\(567\) 10.0000i 0.419961i
\(568\) 4.09808 1.09808i 0.171951 0.0460743i
\(569\) −3.00000 5.19615i −0.125767 0.217834i 0.796266 0.604947i \(-0.206806\pi\)
−0.922032 + 0.387113i \(0.873472\pi\)
\(570\) 12.3205 18.6603i 0.516049 0.781592i
\(571\) 6.00000i 0.251092i 0.992088 + 0.125546i \(0.0400683\pi\)
−0.992088 + 0.125546i \(0.959932\pi\)
\(572\) 0 0
\(573\) 8.00000 + 8.00000i 0.334205 + 0.334205i
\(574\) −19.1244 5.12436i −0.798235 0.213886i
\(575\) 16.6865 13.0981i 0.695877 0.546228i
\(576\) 6.06218 + 3.50000i 0.252591 + 0.145833i
\(577\) 46.0000 1.91501 0.957503 0.288425i \(-0.0931316\pi\)
0.957503 + 0.288425i \(0.0931316\pi\)
\(578\) 12.9904 + 7.50000i 0.540329 + 0.311959i
\(579\) −24.5885 + 6.58846i −1.02186 + 0.273807i
\(580\) 0 0
\(581\) 6.00000 10.3923i 0.248922 0.431145i
\(582\) 0.732051 2.73205i 0.0303445 0.113247i
\(583\) 5.00000 + 8.66025i 0.207079 + 0.358671i
\(584\) 30.0000 1.24141
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) 2.00000 + 3.46410i 0.0825488 + 0.142979i 0.904344 0.426804i \(-0.140361\pi\)
−0.821795 + 0.569783i \(0.807027\pi\)
\(588\) −1.09808 + 4.09808i −0.0452839 + 0.169002i
\(589\) 25.0000 43.3013i 1.03011 1.78420i
\(590\) −7.00000 + 21.0000i −0.288185 + 0.864556i
\(591\) −8.19615 + 2.19615i −0.337145 + 0.0903376i
\(592\) 0 0
\(593\) 10.0000 0.410651 0.205325 0.978694i \(-0.434175\pi\)
0.205325 + 0.978694i \(0.434175\pi\)
\(594\) −6.92820 4.00000i −0.284268 0.164122i
\(595\) −1.26795 6.19615i −0.0519808 0.254017i
\(596\) −4.09808 1.09808i −0.167864 0.0449790i
\(597\) −8.00000 8.00000i −0.327418 0.327418i
\(598\) 0 0
\(599\) 30.0000i 1.22577i −0.790173 0.612883i \(-0.790010\pi\)
0.790173 0.612883i \(-0.209990\pi\)
\(600\) −13.0981 16.6865i −0.534727 0.681225i
\(601\) 19.0000 + 32.9090i 0.775026 + 1.34238i 0.934780 + 0.355228i \(0.115597\pi\)
−0.159754 + 0.987157i \(0.551070\pi\)
\(602\) 2.73205 0.732051i 0.111350 0.0298362i
\(603\) 4.00000i 0.162893i
\(604\) −2.56218 9.56218i −0.104254 0.389079i
\(605\) −1.20577 + 20.0885i −0.0490216 + 0.816712i
\(606\) 12.0000 12.0000i 0.487467 0.487467i
\(607\) −4.75833 17.7583i −0.193135 0.720788i −0.992742 0.120265i \(-0.961626\pi\)
0.799607 0.600523i \(-0.205041\pi\)
\(608\) 34.1506 + 9.15064i 1.38499 + 0.371107i
\(609\) 0 0
\(610\) 14.0000 + 28.0000i 0.566843 + 1.13369i
\(611\) 0 0
\(612\) −1.00000 + 1.00000i −0.0404226 + 0.0404226i
\(613\) −17.3205 + 10.0000i −0.699569 + 0.403896i −0.807187 0.590296i \(-0.799011\pi\)
0.107618 + 0.994192i \(0.465678\pi\)
\(614\) −15.5885 + 9.00000i −0.629099 + 0.363210i
\(615\) 1.87564 31.2487i 0.0756333 1.26007i
\(616\) 6.00000 + 6.00000i 0.241747 + 0.241747i
\(617\) 11.0000 19.0526i 0.442843 0.767027i −0.555056 0.831813i \(-0.687303\pi\)
0.997899 + 0.0647859i \(0.0206365\pi\)
\(618\) −7.00000 + 12.1244i −0.281581 + 0.487713i
\(619\) 25.0000 + 25.0000i 1.00483 + 1.00483i 0.999988 + 0.00484658i \(0.00154272\pi\)
0.00484658 + 0.999988i \(0.498457\pi\)
\(620\) −10.4904 11.8301i −0.421304 0.475109i
\(621\) −20.7846 + 12.0000i −0.834058 + 0.481543i
\(622\) −5.19615 + 3.00000i −0.208347 + 0.120289i
\(623\) −10.0000 + 10.0000i −0.400642 + 0.400642i
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 3.29423 12.2942i 0.131664 0.491376i
\(627\) −13.6603 3.66025i −0.545538 0.146176i
\(628\) −4.75833 17.7583i −0.189878 0.708635i
\(629\) 0 0
\(630\) 4.46410 + 0.267949i 0.177854 + 0.0106754i
\(631\) 4.02628 + 15.0263i 0.160284 + 0.598187i 0.998595 + 0.0529946i \(0.0168766\pi\)
−0.838311 + 0.545192i \(0.816457\pi\)
\(632\) 6.00000i 0.238667i
\(633\) −5.46410 + 1.46410i −0.217179 + 0.0581928i
\(634\) 7.00000 + 12.1244i 0.278006 + 0.481520i
\(635\) −27.8827 + 5.70577i −1.10649 + 0.226427i
\(636\) 10.0000i 0.396526i
\(637\) 0 0
\(638\) 0 0
\(639\) −1.36603 0.366025i −0.0540391 0.0144797i
\(640\) 3.69615 5.59808i 0.146103 0.221283i
\(641\) −20.7846 12.0000i −0.820943 0.473972i 0.0297987 0.999556i \(-0.490513\pi\)
−0.850741 + 0.525584i \(0.823847\pi\)
\(642\) 14.0000 0.552536
\(643\) 29.4449 + 17.0000i 1.16119 + 0.670415i 0.951589 0.307372i \(-0.0994496\pi\)
0.209603 + 0.977787i \(0.432783\pi\)
\(644\) 8.19615 2.19615i 0.322974 0.0865405i
\(645\) 2.00000 + 4.00000i 0.0787499 + 0.157500i
\(646\) 5.00000 8.66025i 0.196722 0.340733i
\(647\) 0.366025 1.36603i 0.0143899 0.0537040i −0.958358 0.285571i \(-0.907817\pi\)
0.972747 + 0.231867i \(0.0744834\pi\)
\(648\) 7.50000 + 12.9904i 0.294628 + 0.510310i
\(649\) 14.0000 0.549548
\(650\) 0 0
\(651\) −20.0000 −0.783862
\(652\) 2.00000 + 3.46410i 0.0783260 + 0.135665i
\(653\) 4.75833 17.7583i 0.186208 0.694937i −0.808161 0.588962i \(-0.799537\pi\)
0.994369 0.105975i \(-0.0337965\pi\)
\(654\) −9.00000 + 15.5885i −0.351928 + 0.609557i
\(655\) 20.0000 + 40.0000i 0.781465 + 1.56293i
\(656\) −9.56218 + 2.56218i −0.373340 + 0.100036i
\(657\) −8.66025 5.00000i −0.337869 0.195069i
\(658\) 12.0000 0.467809
\(659\) 22.5167 + 13.0000i 0.877125 + 0.506408i 0.869709 0.493564i \(-0.164306\pi\)
0.00741531 + 0.999973i \(0.497640\pi\)
\(660\) −2.46410 + 3.73205i −0.0959150 + 0.145270i
\(661\) −23.2224 6.22243i −0.903248 0.242025i −0.222837 0.974856i \(-0.571532\pi\)
−0.680411 + 0.732831i \(0.738199\pi\)
\(662\) −3.00000 3.00000i −0.116598 0.116598i
\(663\) 0 0
\(664\) 18.0000i 0.698535i
\(665\) 30.9808 6.33975i 1.20138 0.245845i
\(666\) 0 0
\(667\) 0 0
\(668\) 18.0000i 0.696441i
\(669\) −0.732051 2.73205i −0.0283027 0.105627i
\(670\) −8.92820 0.535898i −0.344927 0.0207036i
\(671\) 14.0000 14.0000i 0.540464 0.540464i
\(672\) −3.66025 13.6603i −0.141197 0.526956i
\(673\) 20.4904 + 5.49038i 0.789846 + 0.211639i 0.631121 0.775684i \(-0.282595\pi\)
0.158725 + 0.987323i \(0.449262\pi\)
\(674\) 4.75833 17.7583i 0.183284 0.684025i
\(675\) 4.00000 + 28.0000i 0.153960 + 1.07772i
\(676\) 0 0
\(677\) −23.0000 + 23.0000i −0.883962 + 0.883962i −0.993935 0.109973i \(-0.964924\pi\)
0.109973 + 0.993935i \(0.464924\pi\)
\(678\) 8.66025 5.00000i 0.332595 0.192024i
\(679\) 3.46410 2.00000i 0.132940 0.0767530i
\(680\) −6.29423 7.09808i −0.241373 0.272199i
\(681\) −12.0000 12.0000i −0.459841 0.459841i
\(682\) 5.00000 8.66025i 0.191460 0.331618i
\(683\) 6.00000 10.3923i 0.229584 0.397650i −0.728101 0.685470i \(-0.759597\pi\)
0.957685 + 0.287819i \(0.0929302\pi\)
\(684\) −5.00000 5.00000i −0.191180 0.191180i
\(685\) −2.14359 + 35.7128i −0.0819025 + 1.36452i
\(686\) 17.3205 10.0000i 0.661300 0.381802i
\(687\) −5.19615 + 3.00000i −0.198246 + 0.114457i
\(688\) 1.00000 1.00000i 0.0381246 0.0381246i
\(689\) 0 0
\(690\) −6.00000 12.0000i −0.228416 0.456832i
\(691\) −1.09808 + 4.09808i −0.0417728 + 0.155898i −0.983662 0.180026i \(-0.942382\pi\)
0.941889 + 0.335924i \(0.109049\pi\)
\(692\) −15.0263 4.02628i −0.571213 0.153056i
\(693\) −0.732051 2.73205i −0.0278083 0.103782i
\(694\) 3.00000 3.00000i 0.113878 0.113878i
\(695\) −1.87564 + 31.2487i −0.0711472 + 1.18533i
\(696\) 0 0
\(697\) 14.0000i 0.530288i
\(698\) −12.2942 + 3.29423i −0.465343 + 0.124688i
\(699\) −1.00000 1.73205i −0.0378235 0.0655122i
\(700\) 1.19615 9.92820i 0.0452103 0.375251i
\(701\) 12.0000i 0.453234i −0.973984 0.226617i \(-0.927233\pi\)
0.973984 0.226617i \(-0.0727665\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 9.56218 + 2.56218i 0.360388 + 0.0965657i
\(705\) 3.80385 + 18.5885i 0.143261 + 0.700082i
\(706\) 10.3923 + 6.00000i 0.391120 + 0.225813i
\(707\) 24.0000 0.902613
\(708\) −12.1244 7.00000i −0.455661 0.263076i
\(709\) −39.6147 + 10.6147i −1.48776 + 0.398645i −0.908981 0.416838i \(-0.863138\pi\)
−0.578782 + 0.815482i \(0.696472\pi\)
\(710\) 1.00000 3.00000i 0.0375293 0.112588i
\(711\) −1.00000 + 1.73205i −0.0375029 + 0.0649570i
\(712\) −5.49038 + 20.4904i −0.205761 + 0.767909i
\(713\) −15.0000 25.9808i −0.561754 0.972987i
\(714\) −4.00000 −0.149696
\(715\) 0 0
\(716\) 20.0000 0.747435
\(717\) −3.00000 5.19615i −0.112037 0.194054i
\(718\) 0.366025 1.36603i 0.0136599 0.0509796i
\(719\) 4.00000 6.92820i 0.149175 0.258378i −0.781748 0.623595i \(-0.785672\pi\)
0.930923 + 0.365216i \(0.119005\pi\)
\(720\) 2.00000 1.00000i 0.0745356 0.0372678i
\(721\) −19.1244 + 5.12436i −0.712228 + 0.190841i
\(722\) 26.8468 + 15.5000i 0.999134 + 0.576850i
\(723\) 34.0000 1.26447
\(724\) 6.92820 + 4.00000i 0.257485 + 0.148659i
\(725\) 0 0
\(726\) 12.2942 + 3.29423i 0.456282 + 0.122260i
\(727\) −35.0000 35.0000i −1.29808 1.29808i −0.929660 0.368418i \(-0.879900\pi\)
−0.368418 0.929660i \(-0.620100\pi\)
\(728\) 0 0
\(729\) 29.0000i 1.07407i
\(730\) 12.3205 18.6603i 0.456002 0.690647i
\(731\) 1.00000 + 1.73205i 0.0369863 + 0.0640622i
\(732\) −19.1244 + 5.12436i −0.706857 + 0.189402i
\(733\) 4.00000i 0.147743i −0.997268 0.0738717i \(-0.976464\pi\)
0.997268 0.0738717i \(-0.0235355\pi\)
\(734\) −0.366025 1.36603i −0.0135102 0.0504209i
\(735\) 6.29423 + 7.09808i 0.232166 + 0.261816i
\(736\) 15.0000 15.0000i 0.552907 0.552907i
\(737\) 1.46410 + 5.46410i 0.0539309 + 0.201273i
\(738\) 9.56218 + 2.56218i 0.351989 + 0.0943151i
\(739\) −1.09808 + 4.09808i −0.0403934 + 0.150750i −0.983177 0.182655i \(-0.941531\pi\)
0.942784 + 0.333405i \(0.108198\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −10.0000 + 10.0000i −0.367112 + 0.367112i
\(743\) 29.4449 17.0000i 1.08023 0.623670i 0.149270 0.988797i \(-0.452308\pi\)
0.930958 + 0.365127i \(0.118974\pi\)
\(744\) −25.9808 + 15.0000i −0.952501 + 0.549927i
\(745\) −7.09808 + 6.29423i −0.260053 + 0.230603i
\(746\) −15.0000 15.0000i −0.549189 0.549189i
\(747\) −3.00000 + 5.19615i −0.109764 + 0.190117i
\(748\) −1.00000 + 1.73205i −0.0365636 + 0.0633300i
\(749\) 14.0000 + 14.0000i 0.511549 + 0.511549i
\(750\) −15.7583 + 1.29423i −0.575413 + 0.0472585i
\(751\) 43.3013 25.0000i 1.58009 0.912263i 0.585240 0.810860i \(-0.301000\pi\)
0.994845 0.101403i \(-0.0323332\pi\)
\(752\) 5.19615 3.00000i 0.189484 0.109399i
\(753\) 2.00000 2.00000i 0.0728841 0.0728841i
\(754\) 0 0
\(755\) −21.0000 7.00000i −0.764268 0.254756i
\(756\) −2.92820 + 10.9282i −0.106498 + 0.397455i
\(757\) 47.8109 + 12.8109i 1.73772 + 0.465620i 0.981937 0.189207i \(-0.0605917\pi\)
0.755779 + 0.654827i \(0.227258\pi\)
\(758\) −0.366025 1.36603i −0.0132946 0.0496163i
\(759\) −6.00000 + 6.00000i −0.217786 + 0.217786i
\(760\) 35.4904 31.4711i 1.28737 1.14158i
\(761\) −2.56218 9.56218i −0.0928789 0.346629i 0.903810 0.427933i \(-0.140758\pi\)
−0.996689 + 0.0813044i \(0.974091\pi\)
\(762\) 18.0000i 0.652071i
\(763\) −24.5885 + 6.58846i −0.890162 + 0.238518i
\(764\) 4.00000 + 6.92820i 0.144715 + 0.250654i
\(765\) 0.633975 + 3.09808i 0.0229214 + 0.112011i
\(766\) 30.0000i 1.08394i
\(767\) 0 0
\(768\) −17.0000 17.0000i −0.613435 0.613435i
\(769\) 20.4904 + 5.49038i 0.738902 + 0.197988i 0.608590 0.793485i \(-0.291735\pi\)
0.130312 + 0.991473i \(0.458402\pi\)
\(770\) 6.19615 1.26795i 0.223294 0.0456937i
\(771\) 19.0526 + 11.0000i 0.686161 + 0.396155i
\(772\) −18.0000 −0.647834
\(773\) 27.7128 + 16.0000i 0.996761 + 0.575480i 0.907288 0.420509i \(-0.138149\pi\)
0.0894724 + 0.995989i \(0.471482\pi\)
\(774\) −1.36603 + 0.366025i −0.0491008 + 0.0131565i
\(775\) −35.0000 + 5.00000i −1.25724 + 0.179605i
\(776\) 3.00000 5.19615i 0.107694 0.186531i
\(777\) 0 0
\(778\) 9.00000 + 15.5885i 0.322666 + 0.558873i
\(779\) 70.0000 2.50801
\(780\) 0 0
\(781\) −2.00000 −0.0715656
\(782\) −3.00000 5.19615i −0.107280 0.185814i
\(783\) 0 0
\(784\) 1.50000 2.59808i 0.0535714 0.0927884i
\(785\) −39.0000 13.0000i −1.39197 0.463990i
\(786\) 27.3205 7.32051i 0.974490 0.261114i
\(787\) −19.0526 11.0000i −0.679150 0.392108i 0.120384 0.992727i \(-0.461587\pi\)
−0.799535 + 0.600620i \(0.794921\pi\)
\(788\) −6.00000 −0.213741
\(789\) −1.73205 1.00000i −0.0616626 0.0356009i
\(790\) −3.73205 2.46410i −0.132780 0.0876688i
\(791\) 13.6603 + 3.66025i 0.485703 + 0.130144i
\(792\) −3.00000 3.00000i −0.106600 0.106600i
\(793\) 0 0
\(794\) 16.0000i 0.567819i
\(795\) −18.6603 12.3205i −0.661811 0.436963i
\(796\) −4.00000 6.92820i −0.141776 0.245564i
\(797\) −23.2224 + 6.22243i −0.822581 + 0.220410i −0.645474 0.763782i \(-0.723340\pi\)
−0.177106 + 0.984192i \(0.556674\pi\)
\(798\) 20.0000i 0.707992i
\(799\) 2.19615 + 8.19615i 0.0776943 + 0.289959i
\(800\) −9.82051 22.9904i −0.347207 0.812833i
\(801\) 5.00000 5.00000i 0.176666 0.176666i
\(802\) −4.02628 15.0263i −0.142173 0.530596i
\(803\) −13.6603 3.66025i −0.482060 0.129168i
\(804\) 1.46410 5.46410i 0.0516349 0.192704i
\(805\) 6.00000 18.0000i 0.211472 0.634417i
\(806\) 0 0
\(807\) 12.0000 12.0000i 0.422420 0.422420i
\(808\) 31.1769 18.0000i 1.09680 0.633238i
\(809\) −24.2487 + 14.0000i −0.852539 + 0.492214i −0.861507 0.507746i \(-0.830479\pi\)
0.00896753 + 0.999960i \(0.497146\pi\)
\(810\) 11.1603 + 0.669873i 0.392131 + 0.0235369i
\(811\) −27.0000 27.0000i −0.948098 0.948098i 0.0506198 0.998718i \(-0.483880\pi\)
−0.998718 + 0.0506198i \(0.983880\pi\)
\(812\) 0 0
\(813\) 9.00000 15.5885i 0.315644 0.546711i
\(814\) 0 0
\(815\) 8.92820 + 0.535898i 0.312741 + 0.0187717i
\(816\) −1.73205 + 1.00000i −0.0606339 + 0.0350070i
\(817\) −8.66025 + 5.00000i −0.302984 + 0.174928i
\(818\) −7.00000 + 7.00000i −0.244749 + 0.244749i
\(819\) 0 0
\(820\) 7.00000 21.0000i 0.244451 0.733352i
\(821\) 3.29423 12.2942i 0.114969 0.429072i −0.884315 0.466890i \(-0.845374\pi\)
0.999285 + 0.0378188i \(0.0120410\pi\)
\(822\) 21.8564 + 5.85641i 0.762330 + 0.204266i
\(823\) −3.29423 12.2942i −0.114830 0.428550i 0.884445 0.466645i \(-0.154538\pi\)
−0.999274 + 0.0380955i \(0.987871\pi\)
\(824\) −21.0000 + 21.0000i −0.731570 + 0.731570i
\(825\) 3.92820 + 9.19615i 0.136762 + 0.320169i
\(826\) 5.12436 + 19.1244i 0.178299 + 0.665421i
\(827\) 46.0000i 1.59958i 0.600282 + 0.799788i \(0.295055\pi\)
−0.600282 + 0.799788i \(0.704945\pi\)
\(828\) −4.09808 + 1.09808i −0.142418 + 0.0381608i
\(829\) −17.0000 29.4449i −0.590434 1.02266i −0.994174 0.107788i \(-0.965623\pi\)
0.403739 0.914874i \(-0.367710\pi\)
\(830\) −11.1962 7.39230i −0.388624 0.256591i
\(831\) 30.0000i 1.04069i
\(832\) 0 0
\(833\) 3.00000 + 3.00000i 0.103944 + 0.103944i
\(834\) 19.1244 + 5.12436i 0.662222 + 0.177442i
\(835\) −33.5885 22.1769i −1.16238 0.767464i
\(836\) −8.66025 5.00000i −0.299521 0.172929i
\(837\) 40.0000 1.38260
\(838\) −32.9090 19.0000i −1.13682 0.656344i
\(839\) 47.8109 12.8109i 1.65062 0.442281i 0.690830 0.723017i \(-0.257245\pi\)
0.959785 + 0.280736i \(0.0905785\pi\)
\(840\) −18.0000 6.00000i −0.621059 0.207020i
\(841\) −14.5000 + 25.1147i −0.500000 + 0.866025i
\(842\) −4.02628 + 15.0263i −0.138755 + 0.517840i
\(843\) −1.00000 1.73205i −0.0344418 0.0596550i
\(844\) −4.00000 −0.137686
\(845\) 0 0
\(846\) −6.00000 −0.206284
\(847\) 9.00000 + 15.5885i 0.309244 + 0.535626i
\(848\) −1.83013 + 6.83013i −0.0628468 + 0.234548i
\(849\) 9.00000 15.5885i 0.308879 0.534994i
\(850\) −7.00000 + 1.00000i −0.240098 + 0.0342997i
\(851\) 0 0
\(852\) 1.73205 + 1.00000i 0.0593391 + 0.0342594i
\(853\) 26.0000 0.890223 0.445112 0.895475i \(-0.353164\pi\)
0.445112 + 0.895475i \(0.353164\pi\)
\(854\) 24.2487 + 14.0000i 0.829774 + 0.479070i
\(855\) −15.4904 + 3.16987i −0.529760 + 0.108407i
\(856\) 28.6865 + 7.68653i 0.980486 + 0.262720i
\(857\) −3.00000 3.00000i −0.102478 0.102478i 0.654009 0.756487i \(-0.273086\pi\)
−0.756487 + 0.654009i \(0.773086\pi\)
\(858\) 0 0
\(859\) 30.0000i 1.02359i 0.859109 + 0.511793i \(0.171019\pi\)
−0.859109 + 0.511793i \(0.828981\pi\)
\(860\) 0.633975 + 3.09808i 0.0216184 + 0.105644i
\(861\) −14.0000 24.2487i −0.477119 0.826394i
\(862\) −17.7583 + 4.75833i −0.604851 + 0.162069i
\(863\) 30.0000i 1.02121i −0.859815 0.510606i \(-0.829421\pi\)
0.859815 0.510606i \(-0.170579\pi\)
\(864\) 7.32051 + 27.3205i 0.249049 + 0.929463i
\(865\) −26.0263 + 23.0788i −0.884920 + 0.784704i
\(866\) 17.0000 17.0000i 0.577684 0.577684i
\(867\) 5.49038 + 20.4904i 0.186463 + 0.695890i
\(868\) −13.6603 3.66025i −0.463659 0.124237i
\(869\) −0.732051 + 2.73205i −0.0248331 + 0.0926785i
\(870\) 0 0
\(871\) 0 0
\(872\) −27.0000 + 27.0000i −0.914335 + 0.914335i
\(873\) −1.73205 + 1.00000i −0.0586210 + 0.0338449i
\(874\) 25.9808 15.0000i 0.878812 0.507383i
\(875\) −17.0526 14.4641i −0.576482 0.488976i
\(876\) 10.0000 + 10.0000i 0.337869 + 0.337869i
\(877\) −19.0000 + 32.9090i −0.641584 + 1.11126i 0.343495 + 0.939155i \(0.388389\pi\)
−0.985079 + 0.172102i \(0.944944\pi\)
\(878\) 0 0
\(879\) −6.00000 6.00000i −0.202375 0.202375i
\(880\) 2.36603 2.09808i 0.0797587 0.0707261i
\(881\) 45.0333 26.0000i 1.51721 0.875962i 0.517416 0.855734i \(-0.326894\pi\)
0.999795 0.0202281i \(-0.00643924\pi\)
\(882\) −2.59808 + 1.50000i −0.0874818 + 0.0505076i
\(883\) 39.0000 39.0000i 1.31245 1.31245i 0.392853 0.919601i \(-0.371488\pi\)
0.919601 0.392853i \(-0.128512\pi\)
\(884\) 0 0
\(885\) −28.0000 + 14.0000i −0.941210 + 0.470605i
\(886\) 9.15064 34.1506i 0.307422 1.14731i
\(887\) 1.36603 + 0.366025i 0.0458666 + 0.0122899i 0.281679 0.959509i \(-0.409109\pi\)
−0.235813 + 0.971799i \(0.575775\pi\)
\(888\) 0 0
\(889\) −18.0000 + 18.0000i −0.603701 + 0.603701i
\(890\) 10.4904 + 11.8301i 0.351638 + 0.396547i
\(891\) −1.83013 6.83013i −0.0613116 0.228818i
\(892\) 2.00000i 0.0669650i
\(893\) −40.9808 + 10.9808i −1.37137 + 0.367457i
\(894\) 3.00000 + 5.19615i 0.100335 + 0.173785i
\(895\) 24.6410 37.3205i 0.823658 1.24749i
\(896\) 6.00000i 0.200446i
\(897\) 0 0
\(898\) −3.00000 3.00000i −0.100111 0.100111i
\(899\) 0 0
\(900\) −0.598076 + 4.96410i −0.0199359 + 0.165470i
\(901\) −8.66025 5.00000i −0.288515 0.166574i
\(902\) 14.0000 0.466149
\(903\) 3.46410 + 2.00000i 0.115278 + 0.0665558i
\(904\) 20.4904 5.49038i 0.681500 0.182607i
\(905\) 16.0000 8.00000i 0.531858 0.265929i
\(906\) −7.00000 + 12.1244i −0.232559 + 0.402805i
\(907\) −14.2750 + 53.2750i −0.473993 + 1.76897i 0.151206 + 0.988502i \(0.451684\pi\)
−0.625200 + 0.780465i \(0.714982\pi\)
\(908\) −6.00000 10.3923i −0.199117 0.344881i
\(909\) −12.0000 −0.398015
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) −5.00000 8.66025i −0.165567 0.286770i
\(913\) −2.19615 + 8.19615i −0.0726820 + 0.271253i
\(914\) −1.00000 + 1.73205i −0.0330771 + 0.0572911i
\(915\) −14.0000 + 42.0000i −0.462826 + 1.38848i
\(916\) −4.09808 + 1.09808i −0.135404 + 0.0362815i
\(917\) 34.6410 + 20.0000i 1.14395 + 0.660458i
\(918\) 8.00000 0.264039
\(919\) −8.66025 5.00000i −0.285675 0.164935i 0.350315 0.936632i \(-0.386075\pi\)
−0.635990 + 0.771697i \(0.719408\pi\)
\(920\) −5.70577 27.8827i −0.188114 0.919265i
\(921\) −24.5885 6.58846i −0.810217 0.217097i
\(922\) 17.0000 + 17.0000i 0.559865 + 0.559865i
\(923\) 0 0
\(924\) 4.00000i 0.131590i
\(925\) 0 0
\(926\) 12.0000 + 20.7846i 0.394344 + 0.683025i
\(927\) 9.56218 2.56218i 0.314063 0.0841530i
\(928\) 0 0
\(929\) −6.95448 25.9545i −0.228169 0.851539i −0.981110 0.193451i \(-0.938032\pi\)
0.752941 0.658088i \(-0.228635\pi\)
\(930\) −1.33975 + 22.3205i −0.0439320 + 0.731918i
\(931\) −15.0000 + 15.0000i −0.491605 + 0.491605i
\(932\) −0.366025 1.36603i −0.0119896 0.0447456i
\(933\) −8.19615 2.19615i −0.268330 0.0718988i
\(934\) 3.29423 12.2942i 0.107790 0.402279i
\(935\) 2.00000 + 4.00000i 0.0654070 + 0.130814i
\(936\) 0 0
\(937\) −7.00000 + 7.00000i −0.228680 + 0.228680i −0.812141 0.583461i \(-0.801698\pi\)
0.583461 + 0.812141i \(0.301698\pi\)
\(938\) −6.92820 + 4.00000i −0.226214 + 0.130605i
\(939\) 15.5885 9.00000i 0.508710 0.293704i
\(940\) −0.803848 + 13.3923i −0.0262186 + 0.436809i
\(941\) 21.0000 + 21.0000i 0.684580 + 0.684580i 0.961029 0.276448i \(-0.0891575\pi\)
−0.276448 + 0.961029i \(0.589157\pi\)
\(942\) −13.0000 + 22.5167i −0.423563 + 0.733632i
\(943\) 21.0000 36.3731i 0.683854 1.18447i
\(944\) 7.00000 + 7.00000i 0.227831 + 0.227831i
\(945\) 16.7846 + 18.9282i 0.546003 + 0.615734i
\(946\) −1.73205 + 1.00000i −0.0563138 + 0.0325128i
\(947\) −15.5885 + 9.00000i −0.506557 + 0.292461i −0.731417 0.681930i \(-0.761141\pi\)
0.224860 + 0.974391i \(0.427807\pi\)
\(948\) 2.00000 2.00000i 0.0649570 0.0649570i
\(949\) 0 0
\(950\) −5.00000 35.0000i −0.162221 1.13555i
\(951\) −5.12436 + 19.1244i −0.166169 + 0.620150i
\(952\) −8.19615 2.19615i −0.265639 0.0711777i
\(953\) 4.75833 + 17.7583i 0.154137 + 0.575249i 0.999178 + 0.0405460i \(0.0129097\pi\)
−0.845040 + 0.534703i \(0.820424\pi\)
\(954\) 5.00000 5.00000i 0.161881 0.161881i
\(955\) 17.8564 + 1.07180i 0.577820 + 0.0346825i
\(956\) −1.09808 4.09808i −0.0355143 0.132541i
\(957\) 0 0
\(958\) 9.56218 2.56218i 0.308940 0.0827802i
\(959\) 16.0000 + 27.7128i 0.516667 + 0.894893i
\(960\) −21.6865 + 4.43782i −0.699930 + 0.143230i
\(961\) 19.0000i 0.612903i
\(962\) 0 0
\(963\) −7.00000 7.00000i −0.225572 0.225572i
\(964\) 23.2224 + 6.22243i 0.747944 + 0.200411i
\(965\) −22.1769 + 33.5885i −0.713900 + 1.08125i
\(966\) −10.3923 6.00000i −0.334367 0.193047i
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 23.3827 + 13.5000i 0.751548 + 0.433906i
\(969\) 13.6603 3.66025i 0.438831 0.117584i
\(970\) −2.00000 4.00000i −0.0642161 0.128432i
\(971\) 30.0000 51.9615i 0.962746 1.66752i 0.247193 0.968966i \(-0.420492\pi\)
0.715553 0.698558i \(-0.246175\pi\)
\(972\) 2.56218 9.56218i 0.0821819 0.306707i
\(973\) 14.0000 + 24.2487i 0.448819 + 0.777378i
\(974\) 16.0000 0.512673
\(975\) 0 0
\(976\) 14.0000 0.448129
\(977\) −31.0000 53.6936i −0.991778 1.71781i −0.606715 0.794919i \(-0.707513\pi\)
−0.385063 0.922890i \(-0.625820\pi\)
\(978\) 1.46410 5.46410i 0.0468168 0.174723i
\(979\) 5.00000 8.66025i 0.159801 0.276783i
\(980\) 3.00000 + 6.00000i 0.0958315 + 0.191663i
\(981\) 12.2942 3.29423i 0.392525 0.105177i
\(982\) −19.0526 11.0000i −0.607992 0.351024i
\(983\) −24.0000 −0.765481 −0.382741 0.923856i \(-0.625020\pi\)
−0.382741 + 0.923856i \(0.625020\pi\)
\(984\) −36.3731 21.0000i −1.15953 0.669456i
\(985\) −7.39230 + 11.1962i −0.235538 + 0.356739i
\(986\) 0 0
\(987\) 12.0000 + 12.0000i 0.381964 + 0.381964i
\(988\) 0 0
\(989\) 6.00000i 0.190789i
\(990\) −3.09808 + 0.633975i −0.0984633 + 0.0201490i
\(991\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(992\) −34.1506 + 9.15064i −1.08428 + 0.290533i
\(993\) 6.00000i 0.190404i
\(994\) −0.732051 2.73205i −0.0232192 0.0866554i
\(995\) −17.8564 1.07180i −0.566086 0.0339782i
\(996\) 6.00000 6.00000i 0.190117 0.190117i
\(997\) 3.29423 + 12.2942i 0.104329 + 0.389362i 0.998268 0.0588266i \(-0.0187359\pi\)
−0.893939 + 0.448189i \(0.852069\pi\)
\(998\) −4.09808 1.09808i −0.129722 0.0347590i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.o.a.258.1 4
5.2 odd 4 845.2.t.a.427.1 4
13.2 odd 12 65.2.f.a.18.1 2
13.3 even 3 65.2.k.a.8.1 yes 2
13.4 even 6 845.2.o.b.488.1 4
13.5 odd 4 845.2.t.a.418.1 4
13.6 odd 12 845.2.t.a.188.1 4
13.7 odd 12 845.2.t.b.188.1 4
13.8 odd 4 845.2.t.b.418.1 4
13.9 even 3 inner 845.2.o.a.488.1 4
13.10 even 6 845.2.k.a.268.1 2
13.11 odd 12 845.2.f.a.408.1 2
13.12 even 2 845.2.o.b.258.1 4
39.2 even 12 585.2.n.c.343.1 2
39.29 odd 6 585.2.w.b.73.1 2
52.3 odd 6 1040.2.bg.a.593.1 2
52.15 even 12 1040.2.cd.b.993.1 2
65.2 even 12 65.2.k.a.57.1 yes 2
65.3 odd 12 325.2.f.a.307.1 2
65.7 even 12 845.2.o.b.357.1 4
65.12 odd 4 845.2.t.b.427.1 4
65.17 odd 12 845.2.t.b.657.1 4
65.22 odd 12 845.2.t.a.657.1 4
65.28 even 12 325.2.k.a.57.1 2
65.29 even 6 325.2.k.a.268.1 2
65.32 even 12 inner 845.2.o.a.357.1 4
65.37 even 12 845.2.k.a.577.1 2
65.42 odd 12 65.2.f.a.47.1 yes 2
65.47 even 4 845.2.o.b.587.1 4
65.54 odd 12 325.2.f.a.18.1 2
65.57 even 4 inner 845.2.o.a.587.1 4
65.62 odd 12 845.2.f.a.437.1 2
195.2 odd 12 585.2.w.b.577.1 2
195.107 even 12 585.2.n.c.307.1 2
260.67 odd 12 1040.2.bg.a.577.1 2
260.107 even 12 1040.2.cd.b.177.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.f.a.18.1 2 13.2 odd 12
65.2.f.a.47.1 yes 2 65.42 odd 12
65.2.k.a.8.1 yes 2 13.3 even 3
65.2.k.a.57.1 yes 2 65.2 even 12
325.2.f.a.18.1 2 65.54 odd 12
325.2.f.a.307.1 2 65.3 odd 12
325.2.k.a.57.1 2 65.28 even 12
325.2.k.a.268.1 2 65.29 even 6
585.2.n.c.307.1 2 195.107 even 12
585.2.n.c.343.1 2 39.2 even 12
585.2.w.b.73.1 2 39.29 odd 6
585.2.w.b.577.1 2 195.2 odd 12
845.2.f.a.408.1 2 13.11 odd 12
845.2.f.a.437.1 2 65.62 odd 12
845.2.k.a.268.1 2 13.10 even 6
845.2.k.a.577.1 2 65.37 even 12
845.2.o.a.258.1 4 1.1 even 1 trivial
845.2.o.a.357.1 4 65.32 even 12 inner
845.2.o.a.488.1 4 13.9 even 3 inner
845.2.o.a.587.1 4 65.57 even 4 inner
845.2.o.b.258.1 4 13.12 even 2
845.2.o.b.357.1 4 65.7 even 12
845.2.o.b.488.1 4 13.4 even 6
845.2.o.b.587.1 4 65.47 even 4
845.2.t.a.188.1 4 13.6 odd 12
845.2.t.a.418.1 4 13.5 odd 4
845.2.t.a.427.1 4 5.2 odd 4
845.2.t.a.657.1 4 65.22 odd 12
845.2.t.b.188.1 4 13.7 odd 12
845.2.t.b.418.1 4 13.8 odd 4
845.2.t.b.427.1 4 65.12 odd 4
845.2.t.b.657.1 4 65.17 odd 12
1040.2.bg.a.577.1 2 260.67 odd 12
1040.2.bg.a.593.1 2 52.3 odd 6
1040.2.cd.b.177.1 2 260.107 even 12
1040.2.cd.b.993.1 2 52.15 even 12