Properties

Label 845.2.t.a.427.1
Level $845$
Weight $2$
Character 845.427
Analytic conductor $6.747$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(188,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.188"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2,-2,-8,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 427.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 845.427
Dual form 845.2.t.a.188.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(-1.36603 - 0.366025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-2.00000 - 1.00000i) q^{5} +(-1.36603 + 0.366025i) q^{6} +(1.00000 - 1.73205i) q^{7} +3.00000i q^{8} +(-0.866025 - 0.500000i) q^{9} +(-2.23205 + 0.133975i) q^{10} +(1.36603 + 0.366025i) q^{11} +(1.00000 - 1.00000i) q^{12} -2.00000i q^{14} +(2.36603 + 2.09808i) q^{15} +(0.500000 + 0.866025i) q^{16} +(-0.366025 - 1.36603i) q^{17} -1.00000 q^{18} +(1.83013 + 6.83013i) q^{19} +(1.86603 - 1.23205i) q^{20} +(-2.00000 + 2.00000i) q^{21} +(1.36603 - 0.366025i) q^{22} +(-1.09808 + 4.09808i) q^{23} +(1.09808 - 4.09808i) q^{24} +(3.00000 + 4.00000i) q^{25} +(4.00000 + 4.00000i) q^{27} +(1.00000 + 1.73205i) q^{28} +(3.09808 + 0.633975i) q^{30} +(5.00000 + 5.00000i) q^{31} +(-4.33013 - 2.50000i) q^{32} +(-1.73205 - 1.00000i) q^{33} +(-1.00000 - 1.00000i) q^{34} +(-3.73205 + 2.46410i) q^{35} +(0.866025 - 0.500000i) q^{36} +(5.00000 + 5.00000i) q^{38} +(3.00000 - 6.00000i) q^{40} +(-2.56218 + 9.56218i) q^{41} +(-0.732051 + 2.73205i) q^{42} +(-1.36603 + 0.366025i) q^{43} +(-1.00000 + 1.00000i) q^{44} +(1.23205 + 1.86603i) q^{45} +(1.09808 + 4.09808i) q^{46} +6.00000 q^{47} +(-0.366025 - 1.36603i) q^{48} +(1.50000 + 2.59808i) q^{49} +(4.59808 + 1.96410i) q^{50} +2.00000i q^{51} +(5.00000 - 5.00000i) q^{53} +(5.46410 + 1.46410i) q^{54} +(-2.36603 - 2.09808i) q^{55} +(5.19615 + 3.00000i) q^{56} -10.0000i q^{57} +(-9.56218 + 2.56218i) q^{59} +(-3.00000 + 1.00000i) q^{60} +(7.00000 - 12.1244i) q^{61} +(6.83013 + 1.83013i) q^{62} +(-1.73205 + 1.00000i) q^{63} -7.00000 q^{64} -2.00000 q^{66} +(-3.46410 + 2.00000i) q^{67} +(1.36603 + 0.366025i) q^{68} +(3.00000 - 5.19615i) q^{69} +(-2.00000 + 4.00000i) q^{70} +(-1.36603 + 0.366025i) q^{71} +(1.50000 - 2.59808i) q^{72} +10.0000i q^{73} +(-2.63397 - 6.56218i) q^{75} +(-6.83013 - 1.83013i) q^{76} +(2.00000 - 2.00000i) q^{77} -2.00000i q^{79} +(-0.133975 - 2.23205i) q^{80} +(-2.50000 - 4.33013i) q^{81} +(2.56218 + 9.56218i) q^{82} +6.00000 q^{83} +(-0.732051 - 2.73205i) q^{84} +(-0.633975 + 3.09808i) q^{85} +(-1.00000 + 1.00000i) q^{86} +(-1.09808 + 4.09808i) q^{88} +(-1.83013 + 6.83013i) q^{89} +(2.00000 + 1.00000i) q^{90} +(-3.00000 - 3.00000i) q^{92} +(-5.00000 - 8.66025i) q^{93} +(5.19615 - 3.00000i) q^{94} +(3.16987 - 15.4904i) q^{95} +(5.00000 + 5.00000i) q^{96} +(-1.73205 - 1.00000i) q^{97} +(2.59808 + 1.50000i) q^{98} +(-1.00000 - 1.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 2 q^{4} - 8 q^{5} - 2 q^{6} + 4 q^{7} - 2 q^{10} + 2 q^{11} + 4 q^{12} + 6 q^{15} + 2 q^{16} + 2 q^{17} - 4 q^{18} - 10 q^{19} + 4 q^{20} - 8 q^{21} + 2 q^{22} + 6 q^{23} - 6 q^{24} + 12 q^{25}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i −0.161521 0.986869i \(-0.551640\pi\)
0.773893 + 0.633316i \(0.218307\pi\)
\(3\) −1.36603 0.366025i −0.788675 0.211325i −0.158069 0.987428i \(-0.550527\pi\)
−0.630606 + 0.776103i \(0.717194\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −2.00000 1.00000i −0.894427 0.447214i
\(6\) −1.36603 + 0.366025i −0.557678 + 0.149429i
\(7\) 1.00000 1.73205i 0.377964 0.654654i −0.612801 0.790237i \(-0.709957\pi\)
0.990766 + 0.135583i \(0.0432908\pi\)
\(8\) 3.00000i 1.06066i
\(9\) −0.866025 0.500000i −0.288675 0.166667i
\(10\) −2.23205 + 0.133975i −0.705836 + 0.0423665i
\(11\) 1.36603 + 0.366025i 0.411872 + 0.110361i 0.458804 0.888537i \(-0.348278\pi\)
−0.0469323 + 0.998898i \(0.514945\pi\)
\(12\) 1.00000 1.00000i 0.288675 0.288675i
\(13\) 0 0
\(14\) 2.00000i 0.534522i
\(15\) 2.36603 + 2.09808i 0.610905 + 0.541721i
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) −0.366025 1.36603i −0.0887742 0.331310i 0.907228 0.420639i \(-0.138194\pi\)
−0.996002 + 0.0893296i \(0.971528\pi\)
\(18\) −1.00000 −0.235702
\(19\) 1.83013 + 6.83013i 0.419860 + 1.56694i 0.774898 + 0.632087i \(0.217801\pi\)
−0.355038 + 0.934852i \(0.615532\pi\)
\(20\) 1.86603 1.23205i 0.417256 0.275495i
\(21\) −2.00000 + 2.00000i −0.436436 + 0.436436i
\(22\) 1.36603 0.366025i 0.291238 0.0780369i
\(23\) −1.09808 + 4.09808i −0.228965 + 0.854508i 0.751812 + 0.659377i \(0.229180\pi\)
−0.980777 + 0.195131i \(0.937487\pi\)
\(24\) 1.09808 4.09808i 0.224144 0.836516i
\(25\) 3.00000 + 4.00000i 0.600000 + 0.800000i
\(26\) 0 0
\(27\) 4.00000 + 4.00000i 0.769800 + 0.769800i
\(28\) 1.00000 + 1.73205i 0.188982 + 0.327327i
\(29\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(30\) 3.09808 + 0.633975i 0.565629 + 0.115747i
\(31\) 5.00000 + 5.00000i 0.898027 + 0.898027i 0.995261 0.0972349i \(-0.0309998\pi\)
−0.0972349 + 0.995261i \(0.531000\pi\)
\(32\) −4.33013 2.50000i −0.765466 0.441942i
\(33\) −1.73205 1.00000i −0.301511 0.174078i
\(34\) −1.00000 1.00000i −0.171499 0.171499i
\(35\) −3.73205 + 2.46410i −0.630832 + 0.416509i
\(36\) 0.866025 0.500000i 0.144338 0.0833333i
\(37\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(38\) 5.00000 + 5.00000i 0.811107 + 0.811107i
\(39\) 0 0
\(40\) 3.00000 6.00000i 0.474342 0.948683i
\(41\) −2.56218 + 9.56218i −0.400145 + 1.49336i 0.412692 + 0.910870i \(0.364588\pi\)
−0.812837 + 0.582491i \(0.802078\pi\)
\(42\) −0.732051 + 2.73205i −0.112958 + 0.421565i
\(43\) −1.36603 + 0.366025i −0.208317 + 0.0558184i −0.361468 0.932384i \(-0.617724\pi\)
0.153151 + 0.988203i \(0.451058\pi\)
\(44\) −1.00000 + 1.00000i −0.150756 + 0.150756i
\(45\) 1.23205 + 1.86603i 0.183663 + 0.278171i
\(46\) 1.09808 + 4.09808i 0.161903 + 0.604228i
\(47\) 6.00000 0.875190 0.437595 0.899172i \(-0.355830\pi\)
0.437595 + 0.899172i \(0.355830\pi\)
\(48\) −0.366025 1.36603i −0.0528312 0.197169i
\(49\) 1.50000 + 2.59808i 0.214286 + 0.371154i
\(50\) 4.59808 + 1.96410i 0.650266 + 0.277766i
\(51\) 2.00000i 0.280056i
\(52\) 0 0
\(53\) 5.00000 5.00000i 0.686803 0.686803i −0.274721 0.961524i \(-0.588586\pi\)
0.961524 + 0.274721i \(0.0885855\pi\)
\(54\) 5.46410 + 1.46410i 0.743570 + 0.199239i
\(55\) −2.36603 2.09808i −0.319035 0.282905i
\(56\) 5.19615 + 3.00000i 0.694365 + 0.400892i
\(57\) 10.0000i 1.32453i
\(58\) 0 0
\(59\) −9.56218 + 2.56218i −1.24489 + 0.333567i −0.820360 0.571847i \(-0.806227\pi\)
−0.424529 + 0.905414i \(0.639560\pi\)
\(60\) −3.00000 + 1.00000i −0.387298 + 0.129099i
\(61\) 7.00000 12.1244i 0.896258 1.55236i 0.0640184 0.997949i \(-0.479608\pi\)
0.832240 0.554416i \(-0.187058\pi\)
\(62\) 6.83013 + 1.83013i 0.867427 + 0.232426i
\(63\) −1.73205 + 1.00000i −0.218218 + 0.125988i
\(64\) −7.00000 −0.875000
\(65\) 0 0
\(66\) −2.00000 −0.246183
\(67\) −3.46410 + 2.00000i −0.423207 + 0.244339i −0.696449 0.717607i \(-0.745238\pi\)
0.273241 + 0.961946i \(0.411904\pi\)
\(68\) 1.36603 + 0.366025i 0.165655 + 0.0443871i
\(69\) 3.00000 5.19615i 0.361158 0.625543i
\(70\) −2.00000 + 4.00000i −0.239046 + 0.478091i
\(71\) −1.36603 + 0.366025i −0.162117 + 0.0434392i −0.338965 0.940799i \(-0.610077\pi\)
0.176847 + 0.984238i \(0.443410\pi\)
\(72\) 1.50000 2.59808i 0.176777 0.306186i
\(73\) 10.0000i 1.17041i 0.810885 + 0.585206i \(0.198986\pi\)
−0.810885 + 0.585206i \(0.801014\pi\)
\(74\) 0 0
\(75\) −2.63397 6.56218i −0.304145 0.757735i
\(76\) −6.83013 1.83013i −0.783469 0.209930i
\(77\) 2.00000 2.00000i 0.227921 0.227921i
\(78\) 0 0
\(79\) 2.00000i 0.225018i −0.993651 0.112509i \(-0.964111\pi\)
0.993651 0.112509i \(-0.0358886\pi\)
\(80\) −0.133975 2.23205i −0.0149788 0.249551i
\(81\) −2.50000 4.33013i −0.277778 0.481125i
\(82\) 2.56218 + 9.56218i 0.282945 + 1.05597i
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) −0.732051 2.73205i −0.0798733 0.298091i
\(85\) −0.633975 + 3.09808i −0.0687642 + 0.336034i
\(86\) −1.00000 + 1.00000i −0.107833 + 0.107833i
\(87\) 0 0
\(88\) −1.09808 + 4.09808i −0.117055 + 0.436856i
\(89\) −1.83013 + 6.83013i −0.193993 + 0.723992i 0.798532 + 0.601952i \(0.205610\pi\)
−0.992525 + 0.122040i \(0.961056\pi\)
\(90\) 2.00000 + 1.00000i 0.210819 + 0.105409i
\(91\) 0 0
\(92\) −3.00000 3.00000i −0.312772 0.312772i
\(93\) −5.00000 8.66025i −0.518476 0.898027i
\(94\) 5.19615 3.00000i 0.535942 0.309426i
\(95\) 3.16987 15.4904i 0.325222 1.58928i
\(96\) 5.00000 + 5.00000i 0.510310 + 0.510310i
\(97\) −1.73205 1.00000i −0.175863 0.101535i 0.409484 0.912317i \(-0.365709\pi\)
−0.585348 + 0.810782i \(0.699042\pi\)
\(98\) 2.59808 + 1.50000i 0.262445 + 0.151523i
\(99\) −1.00000 1.00000i −0.100504 0.100504i
\(100\) −4.96410 + 0.598076i −0.496410 + 0.0598076i
\(101\) −10.3923 + 6.00000i −1.03407 + 0.597022i −0.918149 0.396236i \(-0.870316\pi\)
−0.115924 + 0.993258i \(0.536983\pi\)
\(102\) 1.00000 + 1.73205i 0.0990148 + 0.171499i
\(103\) −7.00000 7.00000i −0.689730 0.689730i 0.272442 0.962172i \(-0.412169\pi\)
−0.962172 + 0.272442i \(0.912169\pi\)
\(104\) 0 0
\(105\) 6.00000 2.00000i 0.585540 0.195180i
\(106\) 1.83013 6.83013i 0.177758 0.663401i
\(107\) 2.56218 9.56218i 0.247695 0.924411i −0.724315 0.689470i \(-0.757844\pi\)
0.972010 0.234941i \(-0.0754897\pi\)
\(108\) −5.46410 + 1.46410i −0.525783 + 0.140883i
\(109\) −9.00000 + 9.00000i −0.862044 + 0.862044i −0.991575 0.129532i \(-0.958653\pi\)
0.129532 + 0.991575i \(0.458653\pi\)
\(110\) −3.09808 0.633975i −0.295390 0.0604471i
\(111\) 0 0
\(112\) 2.00000 0.188982
\(113\) 1.83013 + 6.83013i 0.172164 + 0.642524i 0.997017 + 0.0771777i \(0.0245909\pi\)
−0.824853 + 0.565347i \(0.808742\pi\)
\(114\) −5.00000 8.66025i −0.468293 0.811107i
\(115\) 6.29423 7.09808i 0.586940 0.661899i
\(116\) 0 0
\(117\) 0 0
\(118\) −7.00000 + 7.00000i −0.644402 + 0.644402i
\(119\) −2.73205 0.732051i −0.250447 0.0671070i
\(120\) −6.29423 + 7.09808i −0.574582 + 0.647963i
\(121\) −7.79423 4.50000i −0.708566 0.409091i
\(122\) 14.0000i 1.26750i
\(123\) 7.00000 12.1244i 0.631169 1.09322i
\(124\) −6.83013 + 1.83013i −0.613364 + 0.164350i
\(125\) −2.00000 11.0000i −0.178885 0.983870i
\(126\) −1.00000 + 1.73205i −0.0890871 + 0.154303i
\(127\) 12.2942 + 3.29423i 1.09094 + 0.292316i 0.759069 0.651010i \(-0.225655\pi\)
0.331868 + 0.943326i \(0.392321\pi\)
\(128\) 2.59808 1.50000i 0.229640 0.132583i
\(129\) 2.00000 0.176090
\(130\) 0 0
\(131\) −20.0000 −1.74741 −0.873704 0.486458i \(-0.838289\pi\)
−0.873704 + 0.486458i \(0.838289\pi\)
\(132\) 1.73205 1.00000i 0.150756 0.0870388i
\(133\) 13.6603 + 3.66025i 1.18449 + 0.317384i
\(134\) −2.00000 + 3.46410i −0.172774 + 0.299253i
\(135\) −4.00000 12.0000i −0.344265 1.03280i
\(136\) 4.09808 1.09808i 0.351407 0.0941593i
\(137\) 8.00000 13.8564i 0.683486 1.18383i −0.290424 0.956898i \(-0.593796\pi\)
0.973910 0.226935i \(-0.0728704\pi\)
\(138\) 6.00000i 0.510754i
\(139\) 12.1244 + 7.00000i 1.02837 + 0.593732i 0.916519 0.399992i \(-0.130987\pi\)
0.111856 + 0.993724i \(0.464321\pi\)
\(140\) −0.267949 4.46410i −0.0226458 0.377285i
\(141\) −8.19615 2.19615i −0.690241 0.184949i
\(142\) −1.00000 + 1.00000i −0.0839181 + 0.0839181i
\(143\) 0 0
\(144\) 1.00000i 0.0833333i
\(145\) 0 0
\(146\) 5.00000 + 8.66025i 0.413803 + 0.716728i
\(147\) −1.09808 4.09808i −0.0905678 0.338004i
\(148\) 0 0
\(149\) 1.09808 + 4.09808i 0.0899579 + 0.335727i 0.996207 0.0870170i \(-0.0277334\pi\)
−0.906249 + 0.422744i \(0.861067\pi\)
\(150\) −5.56218 4.36603i −0.454150 0.356484i
\(151\) 7.00000 7.00000i 0.569652 0.569652i −0.362379 0.932031i \(-0.618035\pi\)
0.932031 + 0.362379i \(0.118035\pi\)
\(152\) −20.4904 + 5.49038i −1.66199 + 0.445329i
\(153\) −0.366025 + 1.36603i −0.0295914 + 0.110437i
\(154\) 0.732051 2.73205i 0.0589903 0.220155i
\(155\) −5.00000 15.0000i −0.401610 1.20483i
\(156\) 0 0
\(157\) 13.0000 + 13.0000i 1.03751 + 1.03751i 0.999268 + 0.0382445i \(0.0121766\pi\)
0.0382445 + 0.999268i \(0.487823\pi\)
\(158\) −1.00000 1.73205i −0.0795557 0.137795i
\(159\) −8.66025 + 5.00000i −0.686803 + 0.396526i
\(160\) 6.16025 + 9.33013i 0.487011 + 0.737611i
\(161\) 6.00000 + 6.00000i 0.472866 + 0.472866i
\(162\) −4.33013 2.50000i −0.340207 0.196419i
\(163\) 3.46410 + 2.00000i 0.271329 + 0.156652i 0.629492 0.777007i \(-0.283263\pi\)
−0.358162 + 0.933659i \(0.616597\pi\)
\(164\) −7.00000 7.00000i −0.546608 0.546608i
\(165\) 2.46410 + 3.73205i 0.191830 + 0.290540i
\(166\) 5.19615 3.00000i 0.403300 0.232845i
\(167\) 9.00000 + 15.5885i 0.696441 + 1.20627i 0.969693 + 0.244328i \(0.0785675\pi\)
−0.273252 + 0.961943i \(0.588099\pi\)
\(168\) −6.00000 6.00000i −0.462910 0.462910i
\(169\) 0 0
\(170\) 1.00000 + 3.00000i 0.0766965 + 0.230089i
\(171\) 1.83013 6.83013i 0.139953 0.522313i
\(172\) 0.366025 1.36603i 0.0279092 0.104158i
\(173\) −15.0263 + 4.02628i −1.14243 + 0.306112i −0.779926 0.625871i \(-0.784744\pi\)
−0.362500 + 0.931984i \(0.618077\pi\)
\(174\) 0 0
\(175\) 9.92820 1.19615i 0.750502 0.0904206i
\(176\) 0.366025 + 1.36603i 0.0275902 + 0.102968i
\(177\) 14.0000 1.05230
\(178\) 1.83013 + 6.83013i 0.137174 + 0.511940i
\(179\) −10.0000 17.3205i −0.747435 1.29460i −0.949048 0.315130i \(-0.897952\pi\)
0.201613 0.979465i \(-0.435382\pi\)
\(180\) −2.23205 + 0.133975i −0.166367 + 0.00998588i
\(181\) 8.00000i 0.594635i 0.954779 + 0.297318i \(0.0960920\pi\)
−0.954779 + 0.297318i \(0.903908\pi\)
\(182\) 0 0
\(183\) −14.0000 + 14.0000i −1.03491 + 1.03491i
\(184\) −12.2942 3.29423i −0.906343 0.242854i
\(185\) 0 0
\(186\) −8.66025 5.00000i −0.635001 0.366618i
\(187\) 2.00000i 0.146254i
\(188\) −3.00000 + 5.19615i −0.218797 + 0.378968i
\(189\) 10.9282 2.92820i 0.794910 0.212995i
\(190\) −5.00000 15.0000i −0.362738 1.08821i
\(191\) −4.00000 + 6.92820i −0.289430 + 0.501307i −0.973674 0.227946i \(-0.926799\pi\)
0.684244 + 0.729253i \(0.260132\pi\)
\(192\) 9.56218 + 2.56218i 0.690091 + 0.184909i
\(193\) −15.5885 + 9.00000i −1.12208 + 0.647834i −0.941932 0.335805i \(-0.890992\pi\)
−0.180150 + 0.983639i \(0.557658\pi\)
\(194\) −2.00000 −0.143592
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 5.19615 3.00000i 0.370211 0.213741i −0.303340 0.952882i \(-0.598102\pi\)
0.673550 + 0.739141i \(0.264768\pi\)
\(198\) −1.36603 0.366025i −0.0970792 0.0260123i
\(199\) −4.00000 + 6.92820i −0.283552 + 0.491127i −0.972257 0.233915i \(-0.924846\pi\)
0.688705 + 0.725042i \(0.258180\pi\)
\(200\) −12.0000 + 9.00000i −0.848528 + 0.636396i
\(201\) 5.46410 1.46410i 0.385408 0.103270i
\(202\) −6.00000 + 10.3923i −0.422159 + 0.731200i
\(203\) 0 0
\(204\) −1.73205 1.00000i −0.121268 0.0700140i
\(205\) 14.6865 16.5622i 1.02575 1.15675i
\(206\) −9.56218 2.56218i −0.666228 0.178515i
\(207\) 3.00000 3.00000i 0.208514 0.208514i
\(208\) 0 0
\(209\) 10.0000i 0.691714i
\(210\) 4.19615 4.73205i 0.289562 0.326543i
\(211\) −2.00000 3.46410i −0.137686 0.238479i 0.788935 0.614477i \(-0.210633\pi\)
−0.926620 + 0.375999i \(0.877300\pi\)
\(212\) 1.83013 + 6.83013i 0.125694 + 0.469095i
\(213\) 2.00000 0.137038
\(214\) −2.56218 9.56218i −0.175147 0.653657i
\(215\) 3.09808 + 0.633975i 0.211287 + 0.0432367i
\(216\) −12.0000 + 12.0000i −0.816497 + 0.816497i
\(217\) 13.6603 3.66025i 0.927318 0.248474i
\(218\) −3.29423 + 12.2942i −0.223113 + 0.832670i
\(219\) 3.66025 13.6603i 0.247337 0.923074i
\(220\) 3.00000 1.00000i 0.202260 0.0674200i
\(221\) 0 0
\(222\) 0 0
\(223\) −1.00000 1.73205i −0.0669650 0.115987i 0.830599 0.556871i \(-0.187998\pi\)
−0.897564 + 0.440884i \(0.854665\pi\)
\(224\) −8.66025 + 5.00000i −0.578638 + 0.334077i
\(225\) −0.598076 4.96410i −0.0398717 0.330940i
\(226\) 5.00000 + 5.00000i 0.332595 + 0.332595i
\(227\) 10.3923 + 6.00000i 0.689761 + 0.398234i 0.803523 0.595274i \(-0.202957\pi\)
−0.113761 + 0.993508i \(0.536290\pi\)
\(228\) 8.66025 + 5.00000i 0.573539 + 0.331133i
\(229\) 3.00000 + 3.00000i 0.198246 + 0.198246i 0.799248 0.601002i \(-0.205232\pi\)
−0.601002 + 0.799248i \(0.705232\pi\)
\(230\) 1.90192 9.29423i 0.125409 0.612843i
\(231\) −3.46410 + 2.00000i −0.227921 + 0.131590i
\(232\) 0 0
\(233\) −1.00000 1.00000i −0.0655122 0.0655122i 0.673592 0.739104i \(-0.264751\pi\)
−0.739104 + 0.673592i \(0.764751\pi\)
\(234\) 0 0
\(235\) −12.0000 6.00000i −0.782794 0.391397i
\(236\) 2.56218 9.56218i 0.166784 0.622445i
\(237\) −0.732051 + 2.73205i −0.0475518 + 0.177466i
\(238\) −2.73205 + 0.732051i −0.177093 + 0.0474518i
\(239\) −3.00000 + 3.00000i −0.194054 + 0.194054i −0.797445 0.603391i \(-0.793816\pi\)
0.603391 + 0.797445i \(0.293816\pi\)
\(240\) −0.633975 + 3.09808i −0.0409229 + 0.199980i
\(241\) 6.22243 + 23.2224i 0.400822 + 1.49589i 0.811633 + 0.584168i \(0.198579\pi\)
−0.410811 + 0.911721i \(0.634754\pi\)
\(242\) −9.00000 −0.578542
\(243\) −2.56218 9.56218i −0.164364 0.613414i
\(244\) 7.00000 + 12.1244i 0.448129 + 0.776182i
\(245\) −0.401924 6.69615i −0.0256780 0.427801i
\(246\) 14.0000i 0.892607i
\(247\) 0 0
\(248\) −15.0000 + 15.0000i −0.952501 + 0.952501i
\(249\) −8.19615 2.19615i −0.519410 0.139176i
\(250\) −7.23205 8.52628i −0.457395 0.539249i
\(251\) 1.73205 + 1.00000i 0.109326 + 0.0631194i 0.553666 0.832739i \(-0.313228\pi\)
−0.444340 + 0.895858i \(0.646562\pi\)
\(252\) 2.00000i 0.125988i
\(253\) −3.00000 + 5.19615i −0.188608 + 0.326679i
\(254\) 12.2942 3.29423i 0.771409 0.206698i
\(255\) 2.00000 4.00000i 0.125245 0.250490i
\(256\) 8.50000 14.7224i 0.531250 0.920152i
\(257\) −15.0263 4.02628i −0.937314 0.251152i −0.242343 0.970191i \(-0.577916\pi\)
−0.694971 + 0.719038i \(0.744583\pi\)
\(258\) 1.73205 1.00000i 0.107833 0.0622573i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −17.3205 + 10.0000i −1.07006 + 0.617802i
\(263\) −1.36603 0.366025i −0.0842327 0.0225701i 0.216457 0.976292i \(-0.430550\pi\)
−0.300689 + 0.953722i \(0.597217\pi\)
\(264\) 3.00000 5.19615i 0.184637 0.319801i
\(265\) −15.0000 + 5.00000i −0.921443 + 0.307148i
\(266\) 13.6603 3.66025i 0.837564 0.224425i
\(267\) 5.00000 8.66025i 0.305995 0.529999i
\(268\) 4.00000i 0.244339i
\(269\) −10.3923 6.00000i −0.633630 0.365826i 0.148527 0.988908i \(-0.452547\pi\)
−0.782157 + 0.623082i \(0.785880\pi\)
\(270\) −9.46410 8.39230i −0.575967 0.510739i
\(271\) 12.2942 + 3.29423i 0.746821 + 0.200110i 0.612108 0.790774i \(-0.290322\pi\)
0.134714 + 0.990885i \(0.456989\pi\)
\(272\) 1.00000 1.00000i 0.0606339 0.0606339i
\(273\) 0 0
\(274\) 16.0000i 0.966595i
\(275\) 2.63397 + 6.56218i 0.158835 + 0.395714i
\(276\) 3.00000 + 5.19615i 0.180579 + 0.312772i
\(277\) 5.49038 + 20.4904i 0.329885 + 1.23115i 0.909309 + 0.416121i \(0.136611\pi\)
−0.579424 + 0.815026i \(0.696722\pi\)
\(278\) 14.0000 0.839664
\(279\) −1.83013 6.83013i −0.109567 0.408909i
\(280\) −7.39230 11.1962i −0.441775 0.669098i
\(281\) 1.00000 1.00000i 0.0596550 0.0596550i −0.676650 0.736305i \(-0.736569\pi\)
0.736305 + 0.676650i \(0.236569\pi\)
\(282\) −8.19615 + 2.19615i −0.488074 + 0.130779i
\(283\) 3.29423 12.2942i 0.195822 0.730816i −0.796231 0.604993i \(-0.793176\pi\)
0.992053 0.125823i \(-0.0401573\pi\)
\(284\) 0.366025 1.36603i 0.0217196 0.0810587i
\(285\) −10.0000 + 20.0000i −0.592349 + 1.18470i
\(286\) 0 0
\(287\) 14.0000 + 14.0000i 0.826394 + 0.826394i
\(288\) 2.50000 + 4.33013i 0.147314 + 0.255155i
\(289\) 12.9904 7.50000i 0.764140 0.441176i
\(290\) 0 0
\(291\) 2.00000 + 2.00000i 0.117242 + 0.117242i
\(292\) −8.66025 5.00000i −0.506803 0.292603i
\(293\) −5.19615 3.00000i −0.303562 0.175262i 0.340480 0.940252i \(-0.389411\pi\)
−0.644042 + 0.764990i \(0.722744\pi\)
\(294\) −3.00000 3.00000i −0.174964 0.174964i
\(295\) 21.6865 + 4.43782i 1.26264 + 0.258380i
\(296\) 0 0
\(297\) 4.00000 + 6.92820i 0.232104 + 0.402015i
\(298\) 3.00000 + 3.00000i 0.173785 + 0.173785i
\(299\) 0 0
\(300\) 7.00000 + 1.00000i 0.404145 + 0.0577350i
\(301\) −0.732051 + 2.73205i −0.0421947 + 0.157473i
\(302\) 2.56218 9.56218i 0.147437 0.550242i
\(303\) 16.3923 4.39230i 0.941713 0.252331i
\(304\) −5.00000 + 5.00000i −0.286770 + 0.286770i
\(305\) −26.1244 + 17.2487i −1.49588 + 0.987658i
\(306\) 0.366025 + 1.36603i 0.0209243 + 0.0780905i
\(307\) 18.0000 1.02731 0.513657 0.857996i \(-0.328290\pi\)
0.513657 + 0.857996i \(0.328290\pi\)
\(308\) 0.732051 + 2.73205i 0.0417125 + 0.155673i
\(309\) 7.00000 + 12.1244i 0.398216 + 0.689730i
\(310\) −11.8301 10.4904i −0.671906 0.595814i
\(311\) 6.00000i 0.340229i −0.985424 0.170114i \(-0.945586\pi\)
0.985424 0.170114i \(-0.0544137\pi\)
\(312\) 0 0
\(313\) 9.00000 9.00000i 0.508710 0.508710i −0.405420 0.914130i \(-0.632875\pi\)
0.914130 + 0.405420i \(0.132875\pi\)
\(314\) 17.7583 + 4.75833i 1.00216 + 0.268528i
\(315\) 4.46410 0.267949i 0.251524 0.0150972i
\(316\) 1.73205 + 1.00000i 0.0974355 + 0.0562544i
\(317\) 14.0000i 0.786318i −0.919470 0.393159i \(-0.871382\pi\)
0.919470 0.393159i \(-0.128618\pi\)
\(318\) −5.00000 + 8.66025i −0.280386 + 0.485643i
\(319\) 0 0
\(320\) 14.0000 + 7.00000i 0.782624 + 0.391312i
\(321\) −7.00000 + 12.1244i −0.390702 + 0.676716i
\(322\) 8.19615 + 2.19615i 0.456754 + 0.122387i
\(323\) 8.66025 5.00000i 0.481869 0.278207i
\(324\) 5.00000 0.277778
\(325\) 0 0
\(326\) 4.00000 0.221540
\(327\) 15.5885 9.00000i 0.862044 0.497701i
\(328\) −28.6865 7.68653i −1.58395 0.424418i
\(329\) 6.00000 10.3923i 0.330791 0.572946i
\(330\) 4.00000 + 2.00000i 0.220193 + 0.110096i
\(331\) 4.09808 1.09808i 0.225251 0.0603557i −0.144428 0.989515i \(-0.546134\pi\)
0.369679 + 0.929160i \(0.379468\pi\)
\(332\) −3.00000 + 5.19615i −0.164646 + 0.285176i
\(333\) 0 0
\(334\) 15.5885 + 9.00000i 0.852962 + 0.492458i
\(335\) 8.92820 0.535898i 0.487800 0.0292793i
\(336\) −2.73205 0.732051i −0.149046 0.0399366i
\(337\) −13.0000 + 13.0000i −0.708155 + 0.708155i −0.966147 0.257992i \(-0.916939\pi\)
0.257992 + 0.966147i \(0.416939\pi\)
\(338\) 0 0
\(339\) 10.0000i 0.543125i
\(340\) −2.36603 2.09808i −0.128316 0.113784i
\(341\) 5.00000 + 8.66025i 0.270765 + 0.468979i
\(342\) −1.83013 6.83013i −0.0989619 0.369331i
\(343\) 20.0000 1.07990
\(344\) −1.09808 4.09808i −0.0592043 0.220953i
\(345\) −11.1962 + 7.39230i −0.602781 + 0.397988i
\(346\) −11.0000 + 11.0000i −0.591364 + 0.591364i
\(347\) −4.09808 + 1.09808i −0.219996 + 0.0589478i −0.367133 0.930168i \(-0.619661\pi\)
0.147137 + 0.989116i \(0.452994\pi\)
\(348\) 0 0
\(349\) −3.29423 + 12.2942i −0.176336 + 0.658095i 0.819984 + 0.572386i \(0.193982\pi\)
−0.996320 + 0.0857088i \(0.972685\pi\)
\(350\) 8.00000 6.00000i 0.427618 0.320713i
\(351\) 0 0
\(352\) −5.00000 5.00000i −0.266501 0.266501i
\(353\) 6.00000 + 10.3923i 0.319348 + 0.553127i 0.980352 0.197256i \(-0.0632029\pi\)
−0.661004 + 0.750382i \(0.729870\pi\)
\(354\) 12.1244 7.00000i 0.644402 0.372046i
\(355\) 3.09808 + 0.633975i 0.164429 + 0.0336479i
\(356\) −5.00000 5.00000i −0.264999 0.264999i
\(357\) 3.46410 + 2.00000i 0.183340 + 0.105851i
\(358\) −17.3205 10.0000i −0.915417 0.528516i
\(359\) −1.00000 1.00000i −0.0527780 0.0527780i 0.680225 0.733003i \(-0.261882\pi\)
−0.733003 + 0.680225i \(0.761882\pi\)
\(360\) −5.59808 + 3.69615i −0.295045 + 0.194804i
\(361\) −26.8468 + 15.5000i −1.41299 + 0.815789i
\(362\) 4.00000 + 6.92820i 0.210235 + 0.364138i
\(363\) 9.00000 + 9.00000i 0.472377 + 0.472377i
\(364\) 0 0
\(365\) 10.0000 20.0000i 0.523424 1.04685i
\(366\) −5.12436 + 19.1244i −0.267854 + 0.999646i
\(367\) −0.366025 + 1.36603i −0.0191064 + 0.0713059i −0.974821 0.222990i \(-0.928418\pi\)
0.955714 + 0.294296i \(0.0950850\pi\)
\(368\) −4.09808 + 1.09808i −0.213627 + 0.0572412i
\(369\) 7.00000 7.00000i 0.364405 0.364405i
\(370\) 0 0
\(371\) −3.66025 13.6603i −0.190031 0.709205i
\(372\) 10.0000 0.518476
\(373\) −5.49038 20.4904i −0.284281 1.06095i −0.949363 0.314181i \(-0.898270\pi\)
0.665082 0.746770i \(-0.268397\pi\)
\(374\) −1.00000 1.73205i −0.0517088 0.0895622i
\(375\) −1.29423 + 15.7583i −0.0668337 + 0.813757i
\(376\) 18.0000i 0.928279i
\(377\) 0 0
\(378\) 8.00000 8.00000i 0.411476 0.411476i
\(379\) −1.36603 0.366025i −0.0701680 0.0188015i 0.223564 0.974689i \(-0.428231\pi\)
−0.293732 + 0.955888i \(0.594897\pi\)
\(380\) 11.8301 + 10.4904i 0.606873 + 0.538145i
\(381\) −15.5885 9.00000i −0.798621 0.461084i
\(382\) 8.00000i 0.409316i
\(383\) 15.0000 25.9808i 0.766464 1.32755i −0.173005 0.984921i \(-0.555348\pi\)
0.939469 0.342634i \(-0.111319\pi\)
\(384\) −4.09808 + 1.09808i −0.209129 + 0.0560360i
\(385\) −6.00000 + 2.00000i −0.305788 + 0.101929i
\(386\) −9.00000 + 15.5885i −0.458088 + 0.793432i
\(387\) 1.36603 + 0.366025i 0.0694390 + 0.0186061i
\(388\) 1.73205 1.00000i 0.0879316 0.0507673i
\(389\) 18.0000 0.912636 0.456318 0.889817i \(-0.349168\pi\)
0.456318 + 0.889817i \(0.349168\pi\)
\(390\) 0 0
\(391\) 6.00000 0.303433
\(392\) −7.79423 + 4.50000i −0.393668 + 0.227284i
\(393\) 27.3205 + 7.32051i 1.37814 + 0.369271i
\(394\) 3.00000 5.19615i 0.151138 0.261778i
\(395\) −2.00000 + 4.00000i −0.100631 + 0.201262i
\(396\) 1.36603 0.366025i 0.0686454 0.0183935i
\(397\) −8.00000 + 13.8564i −0.401508 + 0.695433i −0.993908 0.110211i \(-0.964847\pi\)
0.592400 + 0.805644i \(0.298181\pi\)
\(398\) 8.00000i 0.401004i
\(399\) −17.3205 10.0000i −0.867110 0.500626i
\(400\) −1.96410 + 4.59808i −0.0982051 + 0.229904i
\(401\) 15.0263 + 4.02628i 0.750377 + 0.201063i 0.613685 0.789551i \(-0.289686\pi\)
0.136691 + 0.990614i \(0.456353\pi\)
\(402\) 4.00000 4.00000i 0.199502 0.199502i
\(403\) 0 0
\(404\) 12.0000i 0.597022i
\(405\) 0.669873 + 11.1603i 0.0332863 + 0.554557i
\(406\) 0 0
\(407\) 0 0
\(408\) −6.00000 −0.297044
\(409\) 2.56218 + 9.56218i 0.126692 + 0.472819i 0.999894 0.0145378i \(-0.00462769\pi\)
−0.873203 + 0.487357i \(0.837961\pi\)
\(410\) 4.43782 21.6865i 0.219168 1.07102i
\(411\) −16.0000 + 16.0000i −0.789222 + 0.789222i
\(412\) 9.56218 2.56218i 0.471095 0.126229i
\(413\) −5.12436 + 19.1244i −0.252153 + 0.941048i
\(414\) 1.09808 4.09808i 0.0539675 0.201409i
\(415\) −12.0000 6.00000i −0.589057 0.294528i
\(416\) 0 0
\(417\) −14.0000 14.0000i −0.685583 0.685583i
\(418\) 5.00000 + 8.66025i 0.244558 + 0.423587i
\(419\) −32.9090 + 19.0000i −1.60771 + 0.928211i −0.617827 + 0.786314i \(0.711987\pi\)
−0.989882 + 0.141896i \(0.954680\pi\)
\(420\) −1.26795 + 6.19615i −0.0618696 + 0.302341i
\(421\) −11.0000 11.0000i −0.536107 0.536107i 0.386276 0.922383i \(-0.373761\pi\)
−0.922383 + 0.386276i \(0.873761\pi\)
\(422\) −3.46410 2.00000i −0.168630 0.0973585i
\(423\) −5.19615 3.00000i −0.252646 0.145865i
\(424\) 15.0000 + 15.0000i 0.728464 + 0.728464i
\(425\) 4.36603 5.56218i 0.211783 0.269805i
\(426\) 1.73205 1.00000i 0.0839181 0.0484502i
\(427\) −14.0000 24.2487i −0.677507 1.17348i
\(428\) 7.00000 + 7.00000i 0.338358 + 0.338358i
\(429\) 0 0
\(430\) 3.00000 1.00000i 0.144673 0.0482243i
\(431\) 4.75833 17.7583i 0.229201 0.855389i −0.751477 0.659759i \(-0.770658\pi\)
0.980678 0.195630i \(-0.0626750\pi\)
\(432\) −1.46410 + 5.46410i −0.0704416 + 0.262892i
\(433\) 23.2224 6.22243i 1.11600 0.299031i 0.346736 0.937963i \(-0.387290\pi\)
0.769263 + 0.638932i \(0.220623\pi\)
\(434\) 10.0000 10.0000i 0.480015 0.480015i
\(435\) 0 0
\(436\) −3.29423 12.2942i −0.157765 0.588787i
\(437\) −30.0000 −1.43509
\(438\) −3.66025 13.6603i −0.174894 0.652712i
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 6.29423 7.09808i 0.300066 0.338388i
\(441\) 3.00000i 0.142857i
\(442\) 0 0
\(443\) 25.0000 25.0000i 1.18779 1.18779i 0.210108 0.977678i \(-0.432619\pi\)
0.977678 0.210108i \(-0.0673814\pi\)
\(444\) 0 0
\(445\) 10.4904 11.8301i 0.497292 0.560802i
\(446\) −1.73205 1.00000i −0.0820150 0.0473514i
\(447\) 6.00000i 0.283790i
\(448\) −7.00000 + 12.1244i −0.330719 + 0.572822i
\(449\) −4.09808 + 1.09808i −0.193400 + 0.0518214i −0.354219 0.935163i \(-0.615253\pi\)
0.160819 + 0.986984i \(0.448587\pi\)
\(450\) −3.00000 4.00000i −0.141421 0.188562i
\(451\) −7.00000 + 12.1244i −0.329617 + 0.570914i
\(452\) −6.83013 1.83013i −0.321262 0.0860819i
\(453\) −12.1244 + 7.00000i −0.569652 + 0.328889i
\(454\) 12.0000 0.563188
\(455\) 0 0
\(456\) 30.0000 1.40488
\(457\) 1.73205 1.00000i 0.0810219 0.0467780i −0.458942 0.888466i \(-0.651771\pi\)
0.539964 + 0.841688i \(0.318438\pi\)
\(458\) 4.09808 + 1.09808i 0.191491 + 0.0513097i
\(459\) 4.00000 6.92820i 0.186704 0.323381i
\(460\) 3.00000 + 9.00000i 0.139876 + 0.419627i
\(461\) −23.2224 + 6.22243i −1.08158 + 0.289808i −0.755241 0.655447i \(-0.772480\pi\)
−0.326335 + 0.945254i \(0.605814\pi\)
\(462\) −2.00000 + 3.46410i −0.0930484 + 0.161165i
\(463\) 24.0000i 1.11537i 0.830051 + 0.557687i \(0.188311\pi\)
−0.830051 + 0.557687i \(0.811689\pi\)
\(464\) 0 0
\(465\) 1.33975 + 22.3205i 0.0621292 + 1.03509i
\(466\) −1.36603 0.366025i −0.0632799 0.0169558i
\(467\) −9.00000 + 9.00000i −0.416470 + 0.416470i −0.883985 0.467515i \(-0.845149\pi\)
0.467515 + 0.883985i \(0.345149\pi\)
\(468\) 0 0
\(469\) 8.00000i 0.369406i
\(470\) −13.3923 + 0.803848i −0.617741 + 0.0370787i
\(471\) −13.0000 22.5167i −0.599008 1.03751i
\(472\) −7.68653 28.6865i −0.353801 1.32040i
\(473\) −2.00000 −0.0919601
\(474\) 0.732051 + 2.73205i 0.0336242 + 0.125487i
\(475\) −21.8301 + 27.8109i −1.00163 + 1.27605i
\(476\) 2.00000 2.00000i 0.0916698 0.0916698i
\(477\) −6.83013 + 1.83013i −0.312730 + 0.0837958i
\(478\) −1.09808 + 4.09808i −0.0502248 + 0.187442i
\(479\) 2.56218 9.56218i 0.117069 0.436907i −0.882364 0.470567i \(-0.844050\pi\)
0.999433 + 0.0336596i \(0.0107162\pi\)
\(480\) −5.00000 15.0000i −0.228218 0.684653i
\(481\) 0 0
\(482\) 17.0000 + 17.0000i 0.774329 + 0.774329i
\(483\) −6.00000 10.3923i −0.273009 0.472866i
\(484\) 7.79423 4.50000i 0.354283 0.204545i
\(485\) 2.46410 + 3.73205i 0.111889 + 0.169464i
\(486\) −7.00000 7.00000i −0.317526 0.317526i
\(487\) −13.8564 8.00000i −0.627894 0.362515i 0.152042 0.988374i \(-0.451415\pi\)
−0.779936 + 0.625859i \(0.784748\pi\)
\(488\) 36.3731 + 21.0000i 1.64653 + 0.950625i
\(489\) −4.00000 4.00000i −0.180886 0.180886i
\(490\) −3.69615 5.59808i −0.166975 0.252895i
\(491\) 19.0526 11.0000i 0.859830 0.496423i −0.00412539 0.999991i \(-0.501313\pi\)
0.863955 + 0.503568i \(0.167980\pi\)
\(492\) 7.00000 + 12.1244i 0.315584 + 0.546608i
\(493\) 0 0
\(494\) 0 0
\(495\) 1.00000 + 3.00000i 0.0449467 + 0.134840i
\(496\) −1.83013 + 6.83013i −0.0821751 + 0.306682i
\(497\) −0.732051 + 2.73205i −0.0328370 + 0.122549i
\(498\) −8.19615 + 2.19615i −0.367278 + 0.0984119i
\(499\) −3.00000 + 3.00000i −0.134298 + 0.134298i −0.771060 0.636762i \(-0.780273\pi\)
0.636762 + 0.771060i \(0.280273\pi\)
\(500\) 10.5263 + 3.76795i 0.470750 + 0.168508i
\(501\) −6.58846 24.5885i −0.294351 1.09853i
\(502\) 2.00000 0.0892644
\(503\) −1.09808 4.09808i −0.0489608 0.182724i 0.937115 0.349021i \(-0.113486\pi\)
−0.986076 + 0.166297i \(0.946819\pi\)
\(504\) −3.00000 5.19615i −0.133631 0.231455i
\(505\) 26.7846 1.60770i 1.19190 0.0715415i
\(506\) 6.00000i 0.266733i
\(507\) 0 0
\(508\) −9.00000 + 9.00000i −0.399310 + 0.399310i
\(509\) 17.7583 + 4.75833i 0.787124 + 0.210909i 0.629923 0.776657i \(-0.283086\pi\)
0.157201 + 0.987567i \(0.449753\pi\)
\(510\) −0.267949 4.46410i −0.0118650 0.197674i
\(511\) 17.3205 + 10.0000i 0.766214 + 0.442374i
\(512\) 11.0000i 0.486136i
\(513\) −20.0000 + 34.6410i −0.883022 + 1.52944i
\(514\) −15.0263 + 4.02628i −0.662781 + 0.177592i
\(515\) 7.00000 + 21.0000i 0.308457 + 0.925371i
\(516\) −1.00000 + 1.73205i −0.0440225 + 0.0762493i
\(517\) 8.19615 + 2.19615i 0.360466 + 0.0965867i
\(518\) 0 0
\(519\) 22.0000 0.965693
\(520\) 0 0
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 0 0
\(523\) −12.2942 3.29423i −0.537589 0.144047i −0.0201986 0.999796i \(-0.506430\pi\)
−0.517390 + 0.855749i \(0.673097\pi\)
\(524\) 10.0000 17.3205i 0.436852 0.756650i
\(525\) −14.0000 2.00000i −0.611010 0.0872872i
\(526\) −1.36603 + 0.366025i −0.0595615 + 0.0159595i
\(527\) 5.00000 8.66025i 0.217803 0.377247i
\(528\) 2.00000i 0.0870388i
\(529\) 4.33013 + 2.50000i 0.188266 + 0.108696i
\(530\) −10.4904 + 11.8301i −0.455673 + 0.513868i
\(531\) 9.56218 + 2.56218i 0.414963 + 0.111189i
\(532\) −10.0000 + 10.0000i −0.433555 + 0.433555i
\(533\) 0 0
\(534\) 10.0000i 0.432742i
\(535\) −14.6865 + 16.5622i −0.634954 + 0.716045i
\(536\) −6.00000 10.3923i −0.259161 0.448879i
\(537\) 7.32051 + 27.3205i 0.315903 + 1.17897i
\(538\) −12.0000 −0.517357
\(539\) 1.09808 + 4.09808i 0.0472975 + 0.176517i
\(540\) 12.3923 + 2.53590i 0.533280 + 0.109128i
\(541\) 9.00000 9.00000i 0.386940 0.386940i −0.486654 0.873595i \(-0.661783\pi\)
0.873595 + 0.486654i \(0.161783\pi\)
\(542\) 12.2942 3.29423i 0.528082 0.141499i
\(543\) 2.92820 10.9282i 0.125661 0.468974i
\(544\) −1.83013 + 6.83013i −0.0784660 + 0.292839i
\(545\) 27.0000 9.00000i 1.15655 0.385518i
\(546\) 0 0
\(547\) −9.00000 9.00000i −0.384812 0.384812i 0.488020 0.872832i \(-0.337719\pi\)
−0.872832 + 0.488020i \(0.837719\pi\)
\(548\) 8.00000 + 13.8564i 0.341743 + 0.591916i
\(549\) −12.1244 + 7.00000i −0.517455 + 0.298753i
\(550\) 5.56218 + 4.36603i 0.237172 + 0.186168i
\(551\) 0 0
\(552\) 15.5885 + 9.00000i 0.663489 + 0.383065i
\(553\) −3.46410 2.00000i −0.147309 0.0850487i
\(554\) 15.0000 + 15.0000i 0.637289 + 0.637289i
\(555\) 0 0
\(556\) −12.1244 + 7.00000i −0.514187 + 0.296866i
\(557\) −12.0000 20.7846i −0.508456 0.880672i −0.999952 0.00979220i \(-0.996883\pi\)
0.491496 0.870880i \(-0.336450\pi\)
\(558\) −5.00000 5.00000i −0.211667 0.211667i
\(559\) 0 0
\(560\) −4.00000 2.00000i −0.169031 0.0845154i
\(561\) −0.732051 + 2.73205i −0.0309072 + 0.115347i
\(562\) 0.366025 1.36603i 0.0154398 0.0576223i
\(563\) 20.4904 5.49038i 0.863567 0.231392i 0.200263 0.979742i \(-0.435820\pi\)
0.663304 + 0.748350i \(0.269154\pi\)
\(564\) 6.00000 6.00000i 0.252646 0.252646i
\(565\) 3.16987 15.4904i 0.133358 0.651685i
\(566\) −3.29423 12.2942i −0.138467 0.516765i
\(567\) −10.0000 −0.419961
\(568\) −1.09808 4.09808i −0.0460743 0.171951i
\(569\) 3.00000 + 5.19615i 0.125767 + 0.217834i 0.922032 0.387113i \(-0.126528\pi\)
−0.796266 + 0.604947i \(0.793194\pi\)
\(570\) 1.33975 + 22.3205i 0.0561158 + 0.934903i
\(571\) 6.00000i 0.251092i 0.992088 + 0.125546i \(0.0400683\pi\)
−0.992088 + 0.125546i \(0.959932\pi\)
\(572\) 0 0
\(573\) 8.00000 8.00000i 0.334205 0.334205i
\(574\) 19.1244 + 5.12436i 0.798235 + 0.213886i
\(575\) −19.6865 + 7.90192i −0.820985 + 0.329533i
\(576\) 6.06218 + 3.50000i 0.252591 + 0.145833i
\(577\) 46.0000i 1.91501i 0.288425 + 0.957503i \(0.406868\pi\)
−0.288425 + 0.957503i \(0.593132\pi\)
\(578\) 7.50000 12.9904i 0.311959 0.540329i
\(579\) 24.5885 6.58846i 1.02186 0.273807i
\(580\) 0 0
\(581\) 6.00000 10.3923i 0.248922 0.431145i
\(582\) 2.73205 + 0.732051i 0.113247 + 0.0303445i
\(583\) 8.66025 5.00000i 0.358671 0.207079i
\(584\) −30.0000 −1.24141
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) −3.46410 + 2.00000i −0.142979 + 0.0825488i −0.569783 0.821795i \(-0.692973\pi\)
0.426804 + 0.904344i \(0.359639\pi\)
\(588\) 4.09808 + 1.09808i 0.169002 + 0.0452839i
\(589\) −25.0000 + 43.3013i −1.03011 + 1.78420i
\(590\) 21.0000 7.00000i 0.864556 0.288185i
\(591\) −8.19615 + 2.19615i −0.337145 + 0.0903376i
\(592\) 0 0
\(593\) 10.0000i 0.410651i −0.978694 0.205325i \(-0.934175\pi\)
0.978694 0.205325i \(-0.0658253\pi\)
\(594\) 6.92820 + 4.00000i 0.284268 + 0.164122i
\(595\) 4.73205 + 4.19615i 0.193995 + 0.172025i
\(596\) −4.09808 1.09808i −0.167864 0.0449790i
\(597\) 8.00000 8.00000i 0.327418 0.327418i
\(598\) 0 0
\(599\) 30.0000i 1.22577i 0.790173 + 0.612883i \(0.209990\pi\)
−0.790173 + 0.612883i \(0.790010\pi\)
\(600\) 19.6865 7.90192i 0.803699 0.322595i
\(601\) 19.0000 + 32.9090i 0.775026 + 1.34238i 0.934780 + 0.355228i \(0.115597\pi\)
−0.159754 + 0.987157i \(0.551070\pi\)
\(602\) 0.732051 + 2.73205i 0.0298362 + 0.111350i
\(603\) 4.00000 0.162893
\(604\) 2.56218 + 9.56218i 0.104254 + 0.389079i
\(605\) 11.0885 + 16.7942i 0.450810 + 0.682782i
\(606\) 12.0000 12.0000i 0.487467 0.487467i
\(607\) 17.7583 4.75833i 0.720788 0.193135i 0.120265 0.992742i \(-0.461626\pi\)
0.600523 + 0.799607i \(0.294959\pi\)
\(608\) 9.15064 34.1506i 0.371107 1.38499i
\(609\) 0 0
\(610\) −14.0000 + 28.0000i −0.566843 + 1.13369i
\(611\) 0 0
\(612\) −1.00000 1.00000i −0.0404226 0.0404226i
\(613\) 10.0000 + 17.3205i 0.403896 + 0.699569i 0.994192 0.107618i \(-0.0343224\pi\)
−0.590296 + 0.807187i \(0.700989\pi\)
\(614\) 15.5885 9.00000i 0.629099 0.363210i
\(615\) −26.1244 + 17.2487i −1.05344 + 0.695535i
\(616\) 6.00000 + 6.00000i 0.241747 + 0.241747i
\(617\) 19.0526 + 11.0000i 0.767027 + 0.442843i 0.831813 0.555056i \(-0.187303\pi\)
−0.0647859 + 0.997899i \(0.520636\pi\)
\(618\) 12.1244 + 7.00000i 0.487713 + 0.281581i
\(619\) −25.0000 25.0000i −1.00483 1.00483i −0.999988 0.00484658i \(-0.998457\pi\)
−0.00484658 0.999988i \(-0.501543\pi\)
\(620\) 15.4904 + 3.16987i 0.622109 + 0.127305i
\(621\) −20.7846 + 12.0000i −0.834058 + 0.481543i
\(622\) −3.00000 5.19615i −0.120289 0.208347i
\(623\) 10.0000 + 10.0000i 0.400642 + 0.400642i
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 3.29423 12.2942i 0.131664 0.491376i
\(627\) 3.66025 13.6603i 0.146176 0.545538i
\(628\) −17.7583 + 4.75833i −0.708635 + 0.189878i
\(629\) 0 0
\(630\) 3.73205 2.46410i 0.148688 0.0981722i
\(631\) 4.02628 + 15.0263i 0.160284 + 0.598187i 0.998595 + 0.0529946i \(0.0168766\pi\)
−0.838311 + 0.545192i \(0.816457\pi\)
\(632\) 6.00000 0.238667
\(633\) 1.46410 + 5.46410i 0.0581928 + 0.217179i
\(634\) −7.00000 12.1244i −0.278006 0.481520i
\(635\) −21.2942 18.8827i −0.845036 0.749337i
\(636\) 10.0000i 0.396526i
\(637\) 0 0
\(638\) 0 0
\(639\) 1.36603 + 0.366025i 0.0540391 + 0.0144797i
\(640\) −6.69615 + 0.401924i −0.264689 + 0.0158874i
\(641\) −20.7846 12.0000i −0.820943 0.473972i 0.0297987 0.999556i \(-0.490513\pi\)
−0.850741 + 0.525584i \(0.823847\pi\)
\(642\) 14.0000i 0.552536i
\(643\) 17.0000 29.4449i 0.670415 1.16119i −0.307372 0.951589i \(-0.599450\pi\)
0.977787 0.209603i \(-0.0672170\pi\)
\(644\) −8.19615 + 2.19615i −0.322974 + 0.0865405i
\(645\) −4.00000 2.00000i −0.157500 0.0787499i
\(646\) 5.00000 8.66025i 0.196722 0.340733i
\(647\) 1.36603 + 0.366025i 0.0537040 + 0.0143899i 0.285571 0.958358i \(-0.407817\pi\)
−0.231867 + 0.972747i \(0.574483\pi\)
\(648\) 12.9904 7.50000i 0.510310 0.294628i
\(649\) −14.0000 −0.549548
\(650\) 0 0
\(651\) −20.0000 −0.783862
\(652\) −3.46410 + 2.00000i −0.135665 + 0.0783260i
\(653\) −17.7583 4.75833i −0.694937 0.186208i −0.105975 0.994369i \(-0.533796\pi\)
−0.588962 + 0.808161i \(0.700463\pi\)
\(654\) 9.00000 15.5885i 0.351928 0.609557i
\(655\) 40.0000 + 20.0000i 1.56293 + 0.781465i
\(656\) −9.56218 + 2.56218i −0.373340 + 0.100036i
\(657\) 5.00000 8.66025i 0.195069 0.337869i
\(658\) 12.0000i 0.467809i
\(659\) −22.5167 13.0000i −0.877125 0.506408i −0.00741531 0.999973i \(-0.502360\pi\)
−0.869709 + 0.493564i \(0.835694\pi\)
\(660\) −4.46410 + 0.267949i −0.173765 + 0.0104299i
\(661\) −23.2224 6.22243i −0.903248 0.242025i −0.222837 0.974856i \(-0.571532\pi\)
−0.680411 + 0.732831i \(0.738199\pi\)
\(662\) 3.00000 3.00000i 0.116598 0.116598i
\(663\) 0 0
\(664\) 18.0000i 0.698535i
\(665\) −23.6603 20.9808i −0.917505 0.813599i
\(666\) 0 0
\(667\) 0 0
\(668\) −18.0000 −0.696441
\(669\) 0.732051 + 2.73205i 0.0283027 + 0.105627i
\(670\) 7.46410 4.92820i 0.288363 0.190393i
\(671\) 14.0000 14.0000i 0.540464 0.540464i
\(672\) 13.6603 3.66025i 0.526956 0.141197i
\(673\) 5.49038 20.4904i 0.211639 0.789846i −0.775684 0.631121i \(-0.782595\pi\)
0.987323 0.158725i \(-0.0507383\pi\)
\(674\) −4.75833 + 17.7583i −0.183284 + 0.684025i
\(675\) −4.00000 + 28.0000i −0.153960 + 1.07772i
\(676\) 0 0
\(677\) −23.0000 23.0000i −0.883962 0.883962i 0.109973 0.993935i \(-0.464924\pi\)
−0.993935 + 0.109973i \(0.964924\pi\)
\(678\) −5.00000 8.66025i −0.192024 0.332595i
\(679\) −3.46410 + 2.00000i −0.132940 + 0.0767530i
\(680\) −9.29423 1.90192i −0.356417 0.0729354i
\(681\) −12.0000 12.0000i −0.459841 0.459841i
\(682\) 8.66025 + 5.00000i 0.331618 + 0.191460i
\(683\) −10.3923 6.00000i −0.397650 0.229584i 0.287819 0.957685i \(-0.407070\pi\)
−0.685470 + 0.728101i \(0.740403\pi\)
\(684\) 5.00000 + 5.00000i 0.191180 + 0.191180i
\(685\) −29.8564 + 19.7128i −1.14075 + 0.753188i
\(686\) 17.3205 10.0000i 0.661300 0.381802i
\(687\) −3.00000 5.19615i −0.114457 0.198246i
\(688\) −1.00000 1.00000i −0.0381246 0.0381246i
\(689\) 0 0
\(690\) −6.00000 + 12.0000i −0.228416 + 0.456832i
\(691\) −1.09808 + 4.09808i −0.0417728 + 0.155898i −0.983662 0.180026i \(-0.942382\pi\)
0.941889 + 0.335924i \(0.109049\pi\)
\(692\) 4.02628 15.0263i 0.153056 0.571213i
\(693\) −2.73205 + 0.732051i −0.103782 + 0.0278083i
\(694\) −3.00000 + 3.00000i −0.113878 + 0.113878i
\(695\) −17.2487 26.1244i −0.654281 0.990953i
\(696\) 0 0
\(697\) 14.0000 0.530288
\(698\) 3.29423 + 12.2942i 0.124688 + 0.465343i
\(699\) 1.00000 + 1.73205i 0.0378235 + 0.0655122i
\(700\) −3.92820 + 9.19615i −0.148472 + 0.347582i
\(701\) 12.0000i 0.453234i −0.973984 0.226617i \(-0.927233\pi\)
0.973984 0.226617i \(-0.0727665\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −9.56218 2.56218i −0.360388 0.0965657i
\(705\) 14.1962 + 12.5885i 0.534658 + 0.474109i
\(706\) 10.3923 + 6.00000i 0.391120 + 0.225813i
\(707\) 24.0000i 0.902613i
\(708\) −7.00000 + 12.1244i −0.263076 + 0.455661i
\(709\) 39.6147 10.6147i 1.48776 0.398645i 0.578782 0.815482i \(-0.303528\pi\)
0.908981 + 0.416838i \(0.136862\pi\)
\(710\) 3.00000 1.00000i 0.112588 0.0375293i
\(711\) −1.00000 + 1.73205i −0.0375029 + 0.0649570i
\(712\) −20.4904 5.49038i −0.767909 0.205761i
\(713\) −25.9808 + 15.0000i −0.972987 + 0.561754i
\(714\) 4.00000 0.149696
\(715\) 0 0
\(716\) 20.0000 0.747435
\(717\) 5.19615 3.00000i 0.194054 0.112037i
\(718\) −1.36603 0.366025i −0.0509796 0.0136599i
\(719\) −4.00000 + 6.92820i −0.149175 + 0.258378i −0.930923 0.365216i \(-0.880995\pi\)
0.781748 + 0.623595i \(0.214328\pi\)
\(720\) −1.00000 + 2.00000i −0.0372678 + 0.0745356i
\(721\) −19.1244 + 5.12436i −0.712228 + 0.190841i
\(722\) −15.5000 + 26.8468i −0.576850 + 0.999134i
\(723\) 34.0000i 1.26447i
\(724\) −6.92820 4.00000i −0.257485 0.148659i
\(725\) 0 0
\(726\) 12.2942 + 3.29423i 0.456282 + 0.122260i
\(727\) 35.0000 35.0000i 1.29808 1.29808i 0.368418 0.929660i \(-0.379900\pi\)
0.929660 0.368418i \(-0.120100\pi\)
\(728\) 0 0
\(729\) 29.0000i 1.07407i
\(730\) −1.33975 22.3205i −0.0495862 0.826119i
\(731\) 1.00000 + 1.73205i 0.0369863 + 0.0640622i
\(732\) −5.12436 19.1244i −0.189402 0.706857i
\(733\) −4.00000 −0.147743 −0.0738717 0.997268i \(-0.523536\pi\)
−0.0738717 + 0.997268i \(0.523536\pi\)
\(734\) 0.366025 + 1.36603i 0.0135102 + 0.0504209i
\(735\) −1.90192 + 9.29423i −0.0701535 + 0.342823i
\(736\) 15.0000 15.0000i 0.552907 0.552907i
\(737\) −5.46410 + 1.46410i −0.201273 + 0.0539309i
\(738\) 2.56218 9.56218i 0.0943151 0.351989i
\(739\) 1.09808 4.09808i 0.0403934 0.150750i −0.942784 0.333405i \(-0.891802\pi\)
0.983177 + 0.182655i \(0.0584691\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −10.0000 10.0000i −0.367112 0.367112i
\(743\) −17.0000 29.4449i −0.623670 1.08023i −0.988797 0.149270i \(-0.952308\pi\)
0.365127 0.930958i \(-0.381026\pi\)
\(744\) 25.9808 15.0000i 0.952501 0.549927i
\(745\) 1.90192 9.29423i 0.0696811 0.340514i
\(746\) −15.0000 15.0000i −0.549189 0.549189i
\(747\) −5.19615 3.00000i −0.190117 0.109764i
\(748\) 1.73205 + 1.00000i 0.0633300 + 0.0365636i
\(749\) −14.0000 14.0000i −0.511549 0.511549i
\(750\) 6.75833 + 14.2942i 0.246779 + 0.521951i
\(751\) 43.3013 25.0000i 1.58009 0.912263i 0.585240 0.810860i \(-0.301000\pi\)
0.994845 0.101403i \(-0.0323332\pi\)
\(752\) 3.00000 + 5.19615i 0.109399 + 0.189484i
\(753\) −2.00000 2.00000i −0.0728841 0.0728841i
\(754\) 0 0
\(755\) −21.0000 + 7.00000i −0.764268 + 0.254756i
\(756\) −2.92820 + 10.9282i −0.106498 + 0.397455i
\(757\) −12.8109 + 47.8109i −0.465620 + 1.73772i 0.189207 + 0.981937i \(0.439408\pi\)
−0.654827 + 0.755779i \(0.727258\pi\)
\(758\) −1.36603 + 0.366025i −0.0496163 + 0.0132946i
\(759\) 6.00000 6.00000i 0.217786 0.217786i
\(760\) 46.4711 + 9.50962i 1.68569 + 0.344950i
\(761\) −2.56218 9.56218i −0.0928789 0.346629i 0.903810 0.427933i \(-0.140758\pi\)
−0.996689 + 0.0813044i \(0.974091\pi\)
\(762\) −18.0000 −0.652071
\(763\) 6.58846 + 24.5885i 0.238518 + 0.890162i
\(764\) −4.00000 6.92820i −0.144715 0.250654i
\(765\) 2.09808 2.36603i 0.0758561 0.0855438i
\(766\) 30.0000i 1.08394i
\(767\) 0 0
\(768\) −17.0000 + 17.0000i −0.613435 + 0.613435i
\(769\) −20.4904 5.49038i −0.738902 0.197988i −0.130312 0.991473i \(-0.541598\pi\)
−0.608590 + 0.793485i \(0.708265\pi\)
\(770\) −4.19615 + 4.73205i −0.151219 + 0.170531i
\(771\) 19.0526 + 11.0000i 0.686161 + 0.396155i
\(772\) 18.0000i 0.647834i
\(773\) 16.0000 27.7128i 0.575480 0.996761i −0.420509 0.907288i \(-0.638149\pi\)
0.995989 0.0894724i \(-0.0285181\pi\)
\(774\) 1.36603 0.366025i 0.0491008 0.0131565i
\(775\) −5.00000 + 35.0000i −0.179605 + 1.25724i
\(776\) 3.00000 5.19615i 0.107694 0.186531i
\(777\) 0 0
\(778\) 15.5885 9.00000i 0.558873 0.322666i
\(779\) −70.0000 −2.50801
\(780\) 0 0
\(781\) −2.00000 −0.0715656
\(782\) 5.19615 3.00000i 0.185814 0.107280i
\(783\) 0 0
\(784\) −1.50000 + 2.59808i −0.0535714 + 0.0927884i
\(785\) −13.0000 39.0000i −0.463990 1.39197i
\(786\) 27.3205 7.32051i 0.974490 0.261114i
\(787\) 11.0000 19.0526i 0.392108 0.679150i −0.600620 0.799535i \(-0.705079\pi\)
0.992727 + 0.120384i \(0.0384127\pi\)
\(788\) 6.00000i 0.213741i
\(789\) 1.73205 + 1.00000i 0.0616626 + 0.0356009i
\(790\) 0.267949 + 4.46410i 0.00953320 + 0.158826i
\(791\) 13.6603 + 3.66025i 0.485703 + 0.130144i
\(792\) 3.00000 3.00000i 0.106600 0.106600i
\(793\) 0 0
\(794\) 16.0000i 0.567819i
\(795\) 22.3205 1.33975i 0.791627 0.0475159i
\(796\) −4.00000 6.92820i −0.141776 0.245564i
\(797\) −6.22243 23.2224i −0.220410 0.822581i −0.984192 0.177106i \(-0.943326\pi\)
0.763782 0.645474i \(-0.223340\pi\)
\(798\) −20.0000 −0.707992
\(799\) −2.19615 8.19615i −0.0776943 0.289959i
\(800\) −2.99038 24.8205i −0.105726 0.877537i
\(801\) 5.00000 5.00000i 0.176666 0.176666i
\(802\) 15.0263 4.02628i 0.530596 0.142173i
\(803\) −3.66025 + 13.6603i −0.129168 + 0.482060i
\(804\) −1.46410 + 5.46410i −0.0516349 + 0.192704i
\(805\) −6.00000 18.0000i −0.211472 0.634417i
\(806\) 0 0
\(807\) 12.0000 + 12.0000i 0.422420 + 0.422420i
\(808\) −18.0000 31.1769i −0.633238 1.09680i
\(809\) 24.2487 14.0000i 0.852539 0.492214i −0.00896753 0.999960i \(-0.502854\pi\)
0.861507 + 0.507746i \(0.169521\pi\)
\(810\) 6.16025 + 9.33013i 0.216449 + 0.327827i
\(811\) −27.0000 27.0000i −0.948098 0.948098i 0.0506198 0.998718i \(-0.483880\pi\)
−0.998718 + 0.0506198i \(0.983880\pi\)
\(812\) 0 0
\(813\) −15.5885 9.00000i −0.546711 0.315644i
\(814\) 0 0
\(815\) −4.92820 7.46410i −0.172627 0.261456i
\(816\) −1.73205 + 1.00000i −0.0606339 + 0.0350070i
\(817\) −5.00000 8.66025i −0.174928 0.302984i
\(818\) 7.00000 + 7.00000i 0.244749 + 0.244749i
\(819\) 0 0
\(820\) 7.00000 + 21.0000i 0.244451 + 0.733352i
\(821\) 3.29423 12.2942i 0.114969 0.429072i −0.884315 0.466890i \(-0.845374\pi\)
0.999285 + 0.0378188i \(0.0120410\pi\)
\(822\) −5.85641 + 21.8564i −0.204266 + 0.762330i
\(823\) −12.2942 + 3.29423i −0.428550 + 0.114830i −0.466645 0.884445i \(-0.654538\pi\)
0.0380955 + 0.999274i \(0.487871\pi\)
\(824\) 21.0000 21.0000i 0.731570 0.731570i
\(825\) −1.19615 9.92820i −0.0416447 0.345656i
\(826\) 5.12436 + 19.1244i 0.178299 + 0.665421i
\(827\) −46.0000 −1.59958 −0.799788 0.600282i \(-0.795055\pi\)
−0.799788 + 0.600282i \(0.795055\pi\)
\(828\) 1.09808 + 4.09808i 0.0381608 + 0.142418i
\(829\) 17.0000 + 29.4449i 0.590434 + 1.02266i 0.994174 + 0.107788i \(0.0343769\pi\)
−0.403739 + 0.914874i \(0.632290\pi\)
\(830\) −13.3923 + 0.803848i −0.464854 + 0.0279020i
\(831\) 30.0000i 1.04069i
\(832\) 0 0
\(833\) 3.00000 3.00000i 0.103944 0.103944i
\(834\) −19.1244 5.12436i −0.662222 0.177442i
\(835\) −2.41154 40.1769i −0.0834549 1.39038i
\(836\) −8.66025 5.00000i −0.299521 0.172929i
\(837\) 40.0000i 1.38260i
\(838\) −19.0000 + 32.9090i −0.656344 + 1.13682i
\(839\) −47.8109 + 12.8109i −1.65062 + 0.442281i −0.959785 0.280736i \(-0.909421\pi\)
−0.690830 + 0.723017i \(0.742755\pi\)
\(840\) 6.00000 + 18.0000i 0.207020 + 0.621059i
\(841\) −14.5000 + 25.1147i −0.500000 + 0.866025i
\(842\) −15.0263 4.02628i −0.517840 0.138755i
\(843\) −1.73205 + 1.00000i −0.0596550 + 0.0344418i
\(844\) 4.00000 0.137686
\(845\) 0 0
\(846\) −6.00000 −0.206284
\(847\) −15.5885 + 9.00000i −0.535626 + 0.309244i
\(848\) 6.83013 + 1.83013i 0.234548 + 0.0628468i
\(849\) −9.00000 + 15.5885i −0.308879 + 0.534994i
\(850\) 1.00000 7.00000i 0.0342997 0.240098i
\(851\) 0 0
\(852\) −1.00000 + 1.73205i −0.0342594 + 0.0593391i
\(853\) 26.0000i 0.890223i −0.895475 0.445112i \(-0.853164\pi\)
0.895475 0.445112i \(-0.146836\pi\)
\(854\) −24.2487 14.0000i −0.829774 0.479070i
\(855\) −10.4904 + 11.8301i −0.358763 + 0.404582i
\(856\) 28.6865 + 7.68653i 0.980486 + 0.262720i
\(857\) 3.00000 3.00000i 0.102478 0.102478i −0.654009 0.756487i \(-0.726914\pi\)
0.756487 + 0.654009i \(0.226914\pi\)
\(858\) 0 0
\(859\) 30.0000i 1.02359i −0.859109 0.511793i \(-0.828981\pi\)
0.859109 0.511793i \(-0.171019\pi\)
\(860\) −2.09808 + 2.36603i −0.0715438 + 0.0806808i
\(861\) −14.0000 24.2487i −0.477119 0.826394i
\(862\) −4.75833 17.7583i −0.162069 0.604851i
\(863\) −30.0000 −1.02121 −0.510606 0.859815i \(-0.670579\pi\)
−0.510606 + 0.859815i \(0.670579\pi\)
\(864\) −7.32051 27.3205i −0.249049 0.929463i
\(865\) 34.0788 + 6.97372i 1.15872 + 0.237114i
\(866\) 17.0000 17.0000i 0.577684 0.577684i
\(867\) −20.4904 + 5.49038i −0.695890 + 0.186463i
\(868\) −3.66025 + 13.6603i −0.124237 + 0.463659i
\(869\) 0.732051 2.73205i 0.0248331 0.0926785i
\(870\) 0 0
\(871\) 0 0
\(872\) −27.0000 27.0000i −0.914335 0.914335i
\(873\) 1.00000 + 1.73205i 0.0338449 + 0.0586210i
\(874\) −25.9808 + 15.0000i −0.878812 + 0.507383i
\(875\) −21.0526 7.53590i −0.711706 0.254760i
\(876\) 10.0000 + 10.0000i 0.337869 + 0.337869i
\(877\) −32.9090 19.0000i −1.11126 0.641584i −0.172102 0.985079i \(-0.555056\pi\)
−0.939155 + 0.343495i \(0.888389\pi\)
\(878\) 0 0
\(879\) 6.00000 + 6.00000i 0.202375 + 0.202375i
\(880\) 0.633975 3.09808i 0.0213713 0.104436i
\(881\) 45.0333 26.0000i 1.51721 0.875962i 0.517416 0.855734i \(-0.326894\pi\)
0.999795 0.0202281i \(-0.00643924\pi\)
\(882\) −1.50000 2.59808i −0.0505076 0.0874818i
\(883\) −39.0000 39.0000i −1.31245 1.31245i −0.919601 0.392853i \(-0.871488\pi\)
−0.392853 0.919601i \(-0.628512\pi\)
\(884\) 0 0
\(885\) −28.0000 14.0000i −0.941210 0.470605i
\(886\) 9.15064 34.1506i 0.307422 1.14731i
\(887\) −0.366025 + 1.36603i −0.0122899 + 0.0458666i −0.971799 0.235813i \(-0.924225\pi\)
0.959509 + 0.281679i \(0.0908915\pi\)
\(888\) 0 0
\(889\) 18.0000 18.0000i 0.603701 0.603701i
\(890\) 3.16987 15.4904i 0.106254 0.519239i
\(891\) −1.83013 6.83013i −0.0613116 0.228818i
\(892\) 2.00000 0.0669650
\(893\) 10.9808 + 40.9808i 0.367457 + 1.37137i
\(894\) −3.00000 5.19615i −0.100335 0.173785i
\(895\) 2.67949 + 44.6410i 0.0895655 + 1.49218i
\(896\) 6.00000i 0.200446i
\(897\) 0 0
\(898\) −3.00000 + 3.00000i −0.100111 + 0.100111i
\(899\) 0 0
\(900\) 4.59808 + 1.96410i 0.153269 + 0.0654701i
\(901\) −8.66025 5.00000i −0.288515 0.166574i
\(902\) 14.0000i 0.466149i
\(903\) 2.00000 3.46410i 0.0665558 0.115278i
\(904\) −20.4904 + 5.49038i −0.681500 + 0.182607i
\(905\) 8.00000 16.0000i 0.265929 0.531858i
\(906\) −7.00000 + 12.1244i −0.232559 + 0.402805i
\(907\) −53.2750 14.2750i −1.76897 0.473993i −0.780465 0.625200i \(-0.785018\pi\)
−0.988502 + 0.151206i \(0.951684\pi\)
\(908\) −10.3923 + 6.00000i −0.344881 + 0.199117i
\(909\) 12.0000 0.398015
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 8.66025 5.00000i 0.286770 0.165567i
\(913\) 8.19615 + 2.19615i 0.271253 + 0.0726820i
\(914\) 1.00000 1.73205i 0.0330771 0.0572911i
\(915\) 42.0000 14.0000i 1.38848 0.462826i
\(916\) −4.09808 + 1.09808i −0.135404 + 0.0362815i
\(917\) −20.0000 + 34.6410i −0.660458 + 1.14395i
\(918\) 8.00000i 0.264039i
\(919\) 8.66025 + 5.00000i 0.285675 + 0.164935i 0.635990 0.771697i \(-0.280592\pi\)
−0.350315 + 0.936632i \(0.613925\pi\)
\(920\) 21.2942 + 18.8827i 0.702050 + 0.622544i
\(921\) −24.5885 6.58846i −0.810217 0.217097i
\(922\) −17.0000 + 17.0000i −0.559865 + 0.559865i
\(923\) 0 0
\(924\) 4.00000i 0.131590i
\(925\) 0 0
\(926\) 12.0000 + 20.7846i 0.394344 + 0.683025i
\(927\) 2.56218 + 9.56218i 0.0841530 + 0.314063i
\(928\) 0 0
\(929\) 6.95448 + 25.9545i 0.228169 + 0.851539i 0.981110 + 0.193451i \(0.0619680\pi\)
−0.752941 + 0.658088i \(0.771365\pi\)
\(930\) 12.3205 + 18.6603i 0.404005 + 0.611894i
\(931\) −15.0000 + 15.0000i −0.491605 + 0.491605i
\(932\) 1.36603 0.366025i 0.0447456 0.0119896i
\(933\) −2.19615 + 8.19615i −0.0718988 + 0.268330i
\(934\) −3.29423 + 12.2942i −0.107790 + 0.402279i
\(935\) −2.00000 + 4.00000i −0.0654070 + 0.130814i
\(936\) 0 0
\(937\) −7.00000 7.00000i −0.228680 0.228680i 0.583461 0.812141i \(-0.301698\pi\)
−0.812141 + 0.583461i \(0.801698\pi\)
\(938\) 4.00000 + 6.92820i 0.130605 + 0.226214i
\(939\) −15.5885 + 9.00000i −0.508710 + 0.293704i
\(940\) 11.1962 7.39230i 0.365178 0.241110i
\(941\) 21.0000 + 21.0000i 0.684580 + 0.684580i 0.961029 0.276448i \(-0.0891575\pi\)
−0.276448 + 0.961029i \(0.589157\pi\)
\(942\) −22.5167 13.0000i −0.733632 0.423563i
\(943\) −36.3731 21.0000i −1.18447 0.683854i
\(944\) −7.00000 7.00000i −0.227831 0.227831i
\(945\) −24.7846 5.07180i −0.806243 0.164986i
\(946\) −1.73205 + 1.00000i −0.0563138 + 0.0325128i
\(947\) −9.00000 15.5885i −0.292461 0.506557i 0.681930 0.731417i \(-0.261141\pi\)
−0.974391 + 0.224860i \(0.927807\pi\)
\(948\) −2.00000 2.00000i −0.0649570 0.0649570i
\(949\) 0 0
\(950\) −5.00000 + 35.0000i −0.162221 + 1.13555i
\(951\) −5.12436 + 19.1244i −0.166169 + 0.620150i
\(952\) 2.19615 8.19615i 0.0711777 0.265639i
\(953\) 17.7583 4.75833i 0.575249 0.154137i 0.0405460 0.999178i \(-0.487090\pi\)
0.534703 + 0.845040i \(0.320424\pi\)
\(954\) −5.00000 + 5.00000i −0.161881 + 0.161881i
\(955\) 14.9282 9.85641i 0.483065 0.318946i
\(956\) −1.09808 4.09808i −0.0355143 0.132541i
\(957\) 0 0
\(958\) −2.56218 9.56218i −0.0827802 0.308940i
\(959\) −16.0000 27.7128i −0.516667 0.894893i
\(960\) −16.5622 14.6865i −0.534542 0.474006i
\(961\) 19.0000i 0.612903i
\(962\) 0 0
\(963\) −7.00000 + 7.00000i −0.225572 + 0.225572i
\(964\) −23.2224 6.22243i −0.747944 0.200411i
\(965\) 40.1769 2.41154i 1.29334 0.0776303i
\(966\) −10.3923 6.00000i −0.334367 0.193047i
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 13.5000 23.3827i 0.433906 0.751548i
\(969\) −13.6603 + 3.66025i −0.438831 + 0.117584i
\(970\) 4.00000 + 2.00000i 0.128432 + 0.0642161i
\(971\) 30.0000 51.9615i 0.962746 1.66752i 0.247193 0.968966i \(-0.420492\pi\)
0.715553 0.698558i \(-0.246175\pi\)
\(972\) 9.56218 + 2.56218i 0.306707 + 0.0821819i
\(973\) 24.2487 14.0000i 0.777378 0.448819i
\(974\) −16.0000 −0.512673
\(975\) 0 0
\(976\) 14.0000 0.448129
\(977\) 53.6936 31.0000i 1.71781 0.991778i 0.794919 0.606715i \(-0.207513\pi\)
0.922890 0.385063i \(-0.125820\pi\)
\(978\) −5.46410 1.46410i −0.174723 0.0468168i
\(979\) −5.00000 + 8.66025i −0.159801 + 0.276783i
\(980\) 6.00000 + 3.00000i 0.191663 + 0.0958315i
\(981\) 12.2942 3.29423i 0.392525 0.105177i
\(982\) 11.0000 19.0526i 0.351024 0.607992i
\(983\) 24.0000i 0.765481i 0.923856 + 0.382741i \(0.125020\pi\)
−0.923856 + 0.382741i \(0.874980\pi\)
\(984\) 36.3731 + 21.0000i 1.15953 + 0.669456i
\(985\) −13.3923 + 0.803848i −0.426714 + 0.0256127i
\(986\) 0 0
\(987\) −12.0000 + 12.0000i −0.381964 + 0.381964i
\(988\) 0 0
\(989\) 6.00000i 0.190789i
\(990\) 2.36603 + 2.09808i 0.0751972 + 0.0666812i
\(991\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(992\) −9.15064 34.1506i −0.290533 1.08428i
\(993\) −6.00000 −0.190404
\(994\) 0.732051 + 2.73205i 0.0232192 + 0.0866554i
\(995\) 14.9282 9.85641i 0.473256 0.312469i
\(996\) 6.00000 6.00000i 0.190117 0.190117i
\(997\) −12.2942 + 3.29423i −0.389362 + 0.104329i −0.448189 0.893939i \(-0.647931\pi\)
0.0588266 + 0.998268i \(0.481264\pi\)
\(998\) −1.09808 + 4.09808i −0.0347590 + 0.129722i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.t.a.427.1 4
5.3 odd 4 845.2.o.a.258.1 4
13.2 odd 12 65.2.k.a.57.1 yes 2
13.3 even 3 65.2.f.a.47.1 yes 2
13.4 even 6 845.2.t.b.657.1 4
13.5 odd 4 845.2.o.a.587.1 4
13.6 odd 12 845.2.o.a.357.1 4
13.7 odd 12 845.2.o.b.357.1 4
13.8 odd 4 845.2.o.b.587.1 4
13.9 even 3 inner 845.2.t.a.657.1 4
13.10 even 6 845.2.f.a.437.1 2
13.11 odd 12 845.2.k.a.577.1 2
13.12 even 2 845.2.t.b.427.1 4
39.2 even 12 585.2.w.b.577.1 2
39.29 odd 6 585.2.n.c.307.1 2
52.3 odd 6 1040.2.cd.b.177.1 2
52.15 even 12 1040.2.bg.a.577.1 2
65.2 even 12 325.2.f.a.18.1 2
65.3 odd 12 65.2.k.a.8.1 yes 2
65.8 even 4 845.2.t.b.418.1 4
65.18 even 4 inner 845.2.t.a.418.1 4
65.23 odd 12 845.2.k.a.268.1 2
65.28 even 12 65.2.f.a.18.1 2
65.29 even 6 325.2.f.a.307.1 2
65.33 even 12 845.2.t.b.188.1 4
65.38 odd 4 845.2.o.b.258.1 4
65.42 odd 12 325.2.k.a.268.1 2
65.43 odd 12 845.2.o.b.488.1 4
65.48 odd 12 845.2.o.a.488.1 4
65.54 odd 12 325.2.k.a.57.1 2
65.58 even 12 inner 845.2.t.a.188.1 4
65.63 even 12 845.2.f.a.408.1 2
195.68 even 12 585.2.w.b.73.1 2
195.158 odd 12 585.2.n.c.343.1 2
260.3 even 12 1040.2.bg.a.593.1 2
260.223 odd 12 1040.2.cd.b.993.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.f.a.18.1 2 65.28 even 12
65.2.f.a.47.1 yes 2 13.3 even 3
65.2.k.a.8.1 yes 2 65.3 odd 12
65.2.k.a.57.1 yes 2 13.2 odd 12
325.2.f.a.18.1 2 65.2 even 12
325.2.f.a.307.1 2 65.29 even 6
325.2.k.a.57.1 2 65.54 odd 12
325.2.k.a.268.1 2 65.42 odd 12
585.2.n.c.307.1 2 39.29 odd 6
585.2.n.c.343.1 2 195.158 odd 12
585.2.w.b.73.1 2 195.68 even 12
585.2.w.b.577.1 2 39.2 even 12
845.2.f.a.408.1 2 65.63 even 12
845.2.f.a.437.1 2 13.10 even 6
845.2.k.a.268.1 2 65.23 odd 12
845.2.k.a.577.1 2 13.11 odd 12
845.2.o.a.258.1 4 5.3 odd 4
845.2.o.a.357.1 4 13.6 odd 12
845.2.o.a.488.1 4 65.48 odd 12
845.2.o.a.587.1 4 13.5 odd 4
845.2.o.b.258.1 4 65.38 odd 4
845.2.o.b.357.1 4 13.7 odd 12
845.2.o.b.488.1 4 65.43 odd 12
845.2.o.b.587.1 4 13.8 odd 4
845.2.t.a.188.1 4 65.58 even 12 inner
845.2.t.a.418.1 4 65.18 even 4 inner
845.2.t.a.427.1 4 1.1 even 1 trivial
845.2.t.a.657.1 4 13.9 even 3 inner
845.2.t.b.188.1 4 65.33 even 12
845.2.t.b.418.1 4 65.8 even 4
845.2.t.b.427.1 4 13.12 even 2
845.2.t.b.657.1 4 13.4 even 6
1040.2.bg.a.577.1 2 52.15 even 12
1040.2.bg.a.593.1 2 260.3 even 12
1040.2.cd.b.177.1 2 52.3 odd 6
1040.2.cd.b.993.1 2 260.223 odd 12