Properties

Label 845.2.o.a.488.1
Level $845$
Weight $2$
Character 845.488
Analytic conductor $6.747$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(258,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.258"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.o (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2,-2,2,-4,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 488.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 845.488
Dual form 845.2.o.a.587.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-1.36603 + 0.366025i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-1.00000 - 2.00000i) q^{5} +(0.366025 - 1.36603i) q^{6} +(1.73205 - 1.00000i) q^{7} -3.00000 q^{8} +(-0.866025 + 0.500000i) q^{9} +(2.23205 + 0.133975i) q^{10} +(-0.366025 - 1.36603i) q^{11} +(-1.00000 - 1.00000i) q^{12} +2.00000i q^{14} +(2.09808 + 2.36603i) q^{15} +(0.500000 - 0.866025i) q^{16} +(0.366025 - 1.36603i) q^{17} -1.00000i q^{18} +(6.83013 + 1.83013i) q^{19} +(1.23205 - 1.86603i) q^{20} +(-2.00000 + 2.00000i) q^{21} +(1.36603 + 0.366025i) q^{22} +(1.09808 + 4.09808i) q^{23} +(4.09808 - 1.09808i) q^{24} +(-3.00000 + 4.00000i) q^{25} +(4.00000 - 4.00000i) q^{27} +(1.73205 + 1.00000i) q^{28} +(-3.09808 + 0.633975i) q^{30} +(5.00000 + 5.00000i) q^{31} +(-2.50000 - 4.33013i) q^{32} +(1.00000 + 1.73205i) q^{33} +(1.00000 + 1.00000i) q^{34} +(-3.73205 - 2.46410i) q^{35} +(-0.866025 - 0.500000i) q^{36} +(-5.00000 + 5.00000i) q^{38} +(3.00000 + 6.00000i) q^{40} +(9.56218 - 2.56218i) q^{41} +(-0.732051 - 2.73205i) q^{42} +(1.36603 + 0.366025i) q^{43} +(1.00000 - 1.00000i) q^{44} +(1.86603 + 1.23205i) q^{45} +(-4.09808 - 1.09808i) q^{46} -6.00000i q^{47} +(-0.366025 + 1.36603i) q^{48} +(-1.50000 + 2.59808i) q^{49} +(-1.96410 - 4.59808i) q^{50} +2.00000i q^{51} +(5.00000 + 5.00000i) q^{53} +(1.46410 + 5.46410i) q^{54} +(-2.36603 + 2.09808i) q^{55} +(-5.19615 + 3.00000i) q^{56} -10.0000 q^{57} +(-2.56218 + 9.56218i) q^{59} +(-1.00000 + 3.00000i) q^{60} +(7.00000 + 12.1244i) q^{61} +(-6.83013 + 1.83013i) q^{62} +(-1.00000 + 1.73205i) q^{63} +7.00000 q^{64} -2.00000 q^{66} +(2.00000 - 3.46410i) q^{67} +(1.36603 - 0.366025i) q^{68} +(-3.00000 - 5.19615i) q^{69} +(4.00000 - 2.00000i) q^{70} +(0.366025 - 1.36603i) q^{71} +(2.59808 - 1.50000i) q^{72} -10.0000 q^{73} +(2.63397 - 6.56218i) q^{75} +(1.83013 + 6.83013i) q^{76} +(-2.00000 - 2.00000i) q^{77} +2.00000i q^{79} +(-2.23205 - 0.133975i) q^{80} +(-2.50000 + 4.33013i) q^{81} +(-2.56218 + 9.56218i) q^{82} +6.00000i q^{83} +(-2.73205 - 0.732051i) q^{84} +(-3.09808 + 0.633975i) q^{85} +(-1.00000 + 1.00000i) q^{86} +(1.09808 + 4.09808i) q^{88} +(-6.83013 + 1.83013i) q^{89} +(-2.00000 + 1.00000i) q^{90} +(-3.00000 + 3.00000i) q^{92} +(-8.66025 - 5.00000i) q^{93} +(5.19615 + 3.00000i) q^{94} +(-3.16987 - 15.4904i) q^{95} +(5.00000 + 5.00000i) q^{96} +(-1.00000 - 1.73205i) q^{97} +(-1.50000 - 2.59808i) q^{98} +(1.00000 + 1.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{3} + 2 q^{4} - 4 q^{5} - 2 q^{6} - 12 q^{8} + 2 q^{10} + 2 q^{11} - 4 q^{12} - 2 q^{15} + 2 q^{16} - 2 q^{17} + 10 q^{19} - 2 q^{20} - 8 q^{21} + 2 q^{22} - 6 q^{23} + 6 q^{24} - 12 q^{25}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i −0.986869 0.161521i \(-0.948360\pi\)
0.633316 + 0.773893i \(0.281693\pi\)
\(3\) −1.36603 + 0.366025i −0.788675 + 0.211325i −0.630606 0.776103i \(-0.717194\pi\)
−0.158069 + 0.987428i \(0.550527\pi\)
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −1.00000 2.00000i −0.447214 0.894427i
\(6\) 0.366025 1.36603i 0.149429 0.557678i
\(7\) 1.73205 1.00000i 0.654654 0.377964i −0.135583 0.990766i \(-0.543291\pi\)
0.790237 + 0.612801i \(0.209957\pi\)
\(8\) −3.00000 −1.06066
\(9\) −0.866025 + 0.500000i −0.288675 + 0.166667i
\(10\) 2.23205 + 0.133975i 0.705836 + 0.0423665i
\(11\) −0.366025 1.36603i −0.110361 0.411872i 0.888537 0.458804i \(-0.151722\pi\)
−0.998898 + 0.0469323i \(0.985055\pi\)
\(12\) −1.00000 1.00000i −0.288675 0.288675i
\(13\) 0 0
\(14\) 2.00000i 0.534522i
\(15\) 2.09808 + 2.36603i 0.541721 + 0.610905i
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) 0.366025 1.36603i 0.0887742 0.331310i −0.907228 0.420639i \(-0.861806\pi\)
0.996002 + 0.0893296i \(0.0284724\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 6.83013 + 1.83013i 1.56694 + 0.419860i 0.934852 0.355038i \(-0.115532\pi\)
0.632087 + 0.774898i \(0.282199\pi\)
\(20\) 1.23205 1.86603i 0.275495 0.417256i
\(21\) −2.00000 + 2.00000i −0.436436 + 0.436436i
\(22\) 1.36603 + 0.366025i 0.291238 + 0.0780369i
\(23\) 1.09808 + 4.09808i 0.228965 + 0.854508i 0.980777 + 0.195131i \(0.0625132\pi\)
−0.751812 + 0.659377i \(0.770820\pi\)
\(24\) 4.09808 1.09808i 0.836516 0.224144i
\(25\) −3.00000 + 4.00000i −0.600000 + 0.800000i
\(26\) 0 0
\(27\) 4.00000 4.00000i 0.769800 0.769800i
\(28\) 1.73205 + 1.00000i 0.327327 + 0.188982i
\(29\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(30\) −3.09808 + 0.633975i −0.565629 + 0.115747i
\(31\) 5.00000 + 5.00000i 0.898027 + 0.898027i 0.995261 0.0972349i \(-0.0309998\pi\)
−0.0972349 + 0.995261i \(0.531000\pi\)
\(32\) −2.50000 4.33013i −0.441942 0.765466i
\(33\) 1.00000 + 1.73205i 0.174078 + 0.301511i
\(34\) 1.00000 + 1.00000i 0.171499 + 0.171499i
\(35\) −3.73205 2.46410i −0.630832 0.416509i
\(36\) −0.866025 0.500000i −0.144338 0.0833333i
\(37\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(38\) −5.00000 + 5.00000i −0.811107 + 0.811107i
\(39\) 0 0
\(40\) 3.00000 + 6.00000i 0.474342 + 0.948683i
\(41\) 9.56218 2.56218i 1.49336 0.400145i 0.582491 0.812837i \(-0.302078\pi\)
0.910870 + 0.412692i \(0.135412\pi\)
\(42\) −0.732051 2.73205i −0.112958 0.421565i
\(43\) 1.36603 + 0.366025i 0.208317 + 0.0558184i 0.361468 0.932384i \(-0.382276\pi\)
−0.153151 + 0.988203i \(0.548942\pi\)
\(44\) 1.00000 1.00000i 0.150756 0.150756i
\(45\) 1.86603 + 1.23205i 0.278171 + 0.183663i
\(46\) −4.09808 1.09808i −0.604228 0.161903i
\(47\) 6.00000i 0.875190i −0.899172 0.437595i \(-0.855830\pi\)
0.899172 0.437595i \(-0.144170\pi\)
\(48\) −0.366025 + 1.36603i −0.0528312 + 0.197169i
\(49\) −1.50000 + 2.59808i −0.214286 + 0.371154i
\(50\) −1.96410 4.59808i −0.277766 0.650266i
\(51\) 2.00000i 0.280056i
\(52\) 0 0
\(53\) 5.00000 + 5.00000i 0.686803 + 0.686803i 0.961524 0.274721i \(-0.0885855\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) 1.46410 + 5.46410i 0.199239 + 0.743570i
\(55\) −2.36603 + 2.09808i −0.319035 + 0.282905i
\(56\) −5.19615 + 3.00000i −0.694365 + 0.400892i
\(57\) −10.0000 −1.32453
\(58\) 0 0
\(59\) −2.56218 + 9.56218i −0.333567 + 1.24489i 0.571847 + 0.820360i \(0.306227\pi\)
−0.905414 + 0.424529i \(0.860440\pi\)
\(60\) −1.00000 + 3.00000i −0.129099 + 0.387298i
\(61\) 7.00000 + 12.1244i 0.896258 + 1.55236i 0.832240 + 0.554416i \(0.187058\pi\)
0.0640184 + 0.997949i \(0.479608\pi\)
\(62\) −6.83013 + 1.83013i −0.867427 + 0.232426i
\(63\) −1.00000 + 1.73205i −0.125988 + 0.218218i
\(64\) 7.00000 0.875000
\(65\) 0 0
\(66\) −2.00000 −0.246183
\(67\) 2.00000 3.46410i 0.244339 0.423207i −0.717607 0.696449i \(-0.754762\pi\)
0.961946 + 0.273241i \(0.0880957\pi\)
\(68\) 1.36603 0.366025i 0.165655 0.0443871i
\(69\) −3.00000 5.19615i −0.361158 0.625543i
\(70\) 4.00000 2.00000i 0.478091 0.239046i
\(71\) 0.366025 1.36603i 0.0434392 0.162117i −0.940799 0.338965i \(-0.889923\pi\)
0.984238 + 0.176847i \(0.0565899\pi\)
\(72\) 2.59808 1.50000i 0.306186 0.176777i
\(73\) −10.0000 −1.17041 −0.585206 0.810885i \(-0.698986\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) 0 0
\(75\) 2.63397 6.56218i 0.304145 0.757735i
\(76\) 1.83013 + 6.83013i 0.209930 + 0.783469i
\(77\) −2.00000 2.00000i −0.227921 0.227921i
\(78\) 0 0
\(79\) 2.00000i 0.225018i 0.993651 + 0.112509i \(0.0358886\pi\)
−0.993651 + 0.112509i \(0.964111\pi\)
\(80\) −2.23205 0.133975i −0.249551 0.0149788i
\(81\) −2.50000 + 4.33013i −0.277778 + 0.481125i
\(82\) −2.56218 + 9.56218i −0.282945 + 1.05597i
\(83\) 6.00000i 0.658586i 0.944228 + 0.329293i \(0.106810\pi\)
−0.944228 + 0.329293i \(0.893190\pi\)
\(84\) −2.73205 0.732051i −0.298091 0.0798733i
\(85\) −3.09808 + 0.633975i −0.336034 + 0.0687642i
\(86\) −1.00000 + 1.00000i −0.107833 + 0.107833i
\(87\) 0 0
\(88\) 1.09808 + 4.09808i 0.117055 + 0.436856i
\(89\) −6.83013 + 1.83013i −0.723992 + 0.193993i −0.601952 0.798532i \(-0.705610\pi\)
−0.122040 + 0.992525i \(0.538944\pi\)
\(90\) −2.00000 + 1.00000i −0.210819 + 0.105409i
\(91\) 0 0
\(92\) −3.00000 + 3.00000i −0.312772 + 0.312772i
\(93\) −8.66025 5.00000i −0.898027 0.518476i
\(94\) 5.19615 + 3.00000i 0.535942 + 0.309426i
\(95\) −3.16987 15.4904i −0.325222 1.58928i
\(96\) 5.00000 + 5.00000i 0.510310 + 0.510310i
\(97\) −1.00000 1.73205i −0.101535 0.175863i 0.810782 0.585348i \(-0.199042\pi\)
−0.912317 + 0.409484i \(0.865709\pi\)
\(98\) −1.50000 2.59808i −0.151523 0.262445i
\(99\) 1.00000 + 1.00000i 0.100504 + 0.100504i
\(100\) −4.96410 0.598076i −0.496410 0.0598076i
\(101\) 10.3923 + 6.00000i 1.03407 + 0.597022i 0.918149 0.396236i \(-0.129684\pi\)
0.115924 + 0.993258i \(0.463017\pi\)
\(102\) −1.73205 1.00000i −0.171499 0.0990148i
\(103\) 7.00000 7.00000i 0.689730 0.689730i −0.272442 0.962172i \(-0.587831\pi\)
0.962172 + 0.272442i \(0.0878312\pi\)
\(104\) 0 0
\(105\) 6.00000 + 2.00000i 0.585540 + 0.195180i
\(106\) −6.83013 + 1.83013i −0.663401 + 0.177758i
\(107\) 2.56218 + 9.56218i 0.247695 + 0.924411i 0.972010 + 0.234941i \(0.0754897\pi\)
−0.724315 + 0.689470i \(0.757844\pi\)
\(108\) 5.46410 + 1.46410i 0.525783 + 0.140883i
\(109\) 9.00000 9.00000i 0.862044 0.862044i −0.129532 0.991575i \(-0.541347\pi\)
0.991575 + 0.129532i \(0.0413474\pi\)
\(110\) −0.633975 3.09808i −0.0604471 0.295390i
\(111\) 0 0
\(112\) 2.00000i 0.188982i
\(113\) 1.83013 6.83013i 0.172164 0.642524i −0.824853 0.565347i \(-0.808742\pi\)
0.997017 0.0771777i \(-0.0245909\pi\)
\(114\) 5.00000 8.66025i 0.468293 0.811107i
\(115\) 7.09808 6.29423i 0.661899 0.586940i
\(116\) 0 0
\(117\) 0 0
\(118\) −7.00000 7.00000i −0.644402 0.644402i
\(119\) −0.732051 2.73205i −0.0671070 0.250447i
\(120\) −6.29423 7.09808i −0.574582 0.647963i
\(121\) 7.79423 4.50000i 0.708566 0.409091i
\(122\) −14.0000 −1.26750
\(123\) −12.1244 + 7.00000i −1.09322 + 0.631169i
\(124\) −1.83013 + 6.83013i −0.164350 + 0.613364i
\(125\) 11.0000 + 2.00000i 0.983870 + 0.178885i
\(126\) −1.00000 1.73205i −0.0890871 0.154303i
\(127\) −12.2942 + 3.29423i −1.09094 + 0.292316i −0.759069 0.651010i \(-0.774345\pi\)
−0.331868 + 0.943326i \(0.607679\pi\)
\(128\) 1.50000 2.59808i 0.132583 0.229640i
\(129\) −2.00000 −0.176090
\(130\) 0 0
\(131\) −20.0000 −1.74741 −0.873704 0.486458i \(-0.838289\pi\)
−0.873704 + 0.486458i \(0.838289\pi\)
\(132\) −1.00000 + 1.73205i −0.0870388 + 0.150756i
\(133\) 13.6603 3.66025i 1.18449 0.317384i
\(134\) 2.00000 + 3.46410i 0.172774 + 0.299253i
\(135\) −12.0000 4.00000i −1.03280 0.344265i
\(136\) −1.09808 + 4.09808i −0.0941593 + 0.351407i
\(137\) 13.8564 8.00000i 1.18383 0.683486i 0.226935 0.973910i \(-0.427130\pi\)
0.956898 + 0.290424i \(0.0937963\pi\)
\(138\) 6.00000 0.510754
\(139\) 12.1244 7.00000i 1.02837 0.593732i 0.111856 0.993724i \(-0.464321\pi\)
0.916519 + 0.399992i \(0.130987\pi\)
\(140\) 0.267949 4.46410i 0.0226458 0.377285i
\(141\) 2.19615 + 8.19615i 0.184949 + 0.690241i
\(142\) 1.00000 + 1.00000i 0.0839181 + 0.0839181i
\(143\) 0 0
\(144\) 1.00000i 0.0833333i
\(145\) 0 0
\(146\) 5.00000 8.66025i 0.413803 0.716728i
\(147\) 1.09808 4.09808i 0.0905678 0.338004i
\(148\) 0 0
\(149\) 4.09808 + 1.09808i 0.335727 + 0.0899579i 0.422744 0.906249i \(-0.361067\pi\)
−0.0870170 + 0.996207i \(0.527733\pi\)
\(150\) 4.36603 + 5.56218i 0.356484 + 0.454150i
\(151\) 7.00000 7.00000i 0.569652 0.569652i −0.362379 0.932031i \(-0.618035\pi\)
0.932031 + 0.362379i \(0.118035\pi\)
\(152\) −20.4904 5.49038i −1.66199 0.445329i
\(153\) 0.366025 + 1.36603i 0.0295914 + 0.110437i
\(154\) 2.73205 0.732051i 0.220155 0.0589903i
\(155\) 5.00000 15.0000i 0.401610 1.20483i
\(156\) 0 0
\(157\) 13.0000 13.0000i 1.03751 1.03751i 0.0382445 0.999268i \(-0.487823\pi\)
0.999268 0.0382445i \(-0.0121766\pi\)
\(158\) −1.73205 1.00000i −0.137795 0.0795557i
\(159\) −8.66025 5.00000i −0.686803 0.396526i
\(160\) −6.16025 + 9.33013i −0.487011 + 0.737611i
\(161\) 6.00000 + 6.00000i 0.472866 + 0.472866i
\(162\) −2.50000 4.33013i −0.196419 0.340207i
\(163\) −2.00000 3.46410i −0.156652 0.271329i 0.777007 0.629492i \(-0.216737\pi\)
−0.933659 + 0.358162i \(0.883403\pi\)
\(164\) 7.00000 + 7.00000i 0.546608 + 0.546608i
\(165\) 2.46410 3.73205i 0.191830 0.290540i
\(166\) −5.19615 3.00000i −0.403300 0.232845i
\(167\) −15.5885 9.00000i −1.20627 0.696441i −0.244328 0.969693i \(-0.578568\pi\)
−0.961943 + 0.273252i \(0.911901\pi\)
\(168\) 6.00000 6.00000i 0.462910 0.462910i
\(169\) 0 0
\(170\) 1.00000 3.00000i 0.0766965 0.230089i
\(171\) −6.83013 + 1.83013i −0.522313 + 0.139953i
\(172\) 0.366025 + 1.36603i 0.0279092 + 0.104158i
\(173\) 15.0263 + 4.02628i 1.14243 + 0.306112i 0.779926 0.625871i \(-0.215256\pi\)
0.362500 + 0.931984i \(0.381923\pi\)
\(174\) 0 0
\(175\) −1.19615 + 9.92820i −0.0904206 + 0.750502i
\(176\) −1.36603 0.366025i −0.102968 0.0275902i
\(177\) 14.0000i 1.05230i
\(178\) 1.83013 6.83013i 0.137174 0.511940i
\(179\) 10.0000 17.3205i 0.747435 1.29460i −0.201613 0.979465i \(-0.564618\pi\)
0.949048 0.315130i \(-0.102048\pi\)
\(180\) −0.133975 + 2.23205i −0.00998588 + 0.166367i
\(181\) 8.00000i 0.594635i 0.954779 + 0.297318i \(0.0960920\pi\)
−0.954779 + 0.297318i \(0.903908\pi\)
\(182\) 0 0
\(183\) −14.0000 14.0000i −1.03491 1.03491i
\(184\) −3.29423 12.2942i −0.242854 0.906343i
\(185\) 0 0
\(186\) 8.66025 5.00000i 0.635001 0.366618i
\(187\) −2.00000 −0.146254
\(188\) 5.19615 3.00000i 0.378968 0.218797i
\(189\) 2.92820 10.9282i 0.212995 0.794910i
\(190\) 15.0000 + 5.00000i 1.08821 + 0.362738i
\(191\) −4.00000 6.92820i −0.289430 0.501307i 0.684244 0.729253i \(-0.260132\pi\)
−0.973674 + 0.227946i \(0.926799\pi\)
\(192\) −9.56218 + 2.56218i −0.690091 + 0.184909i
\(193\) −9.00000 + 15.5885i −0.647834 + 1.12208i 0.335805 + 0.941932i \(0.390992\pi\)
−0.983639 + 0.180150i \(0.942342\pi\)
\(194\) 2.00000 0.143592
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) −3.00000 + 5.19615i −0.213741 + 0.370211i −0.952882 0.303340i \(-0.901898\pi\)
0.739141 + 0.673550i \(0.235232\pi\)
\(198\) −1.36603 + 0.366025i −0.0970792 + 0.0260123i
\(199\) 4.00000 + 6.92820i 0.283552 + 0.491127i 0.972257 0.233915i \(-0.0751537\pi\)
−0.688705 + 0.725042i \(0.741820\pi\)
\(200\) 9.00000 12.0000i 0.636396 0.848528i
\(201\) −1.46410 + 5.46410i −0.103270 + 0.385408i
\(202\) −10.3923 + 6.00000i −0.731200 + 0.422159i
\(203\) 0 0
\(204\) −1.73205 + 1.00000i −0.121268 + 0.0700140i
\(205\) −14.6865 16.5622i −1.02575 1.15675i
\(206\) 2.56218 + 9.56218i 0.178515 + 0.666228i
\(207\) −3.00000 3.00000i −0.208514 0.208514i
\(208\) 0 0
\(209\) 10.0000i 0.691714i
\(210\) −4.73205 + 4.19615i −0.326543 + 0.289562i
\(211\) −2.00000 + 3.46410i −0.137686 + 0.238479i −0.926620 0.375999i \(-0.877300\pi\)
0.788935 + 0.614477i \(0.210633\pi\)
\(212\) −1.83013 + 6.83013i −0.125694 + 0.469095i
\(213\) 2.00000i 0.137038i
\(214\) −9.56218 2.56218i −0.653657 0.175147i
\(215\) −0.633975 3.09808i −0.0432367 0.211287i
\(216\) −12.0000 + 12.0000i −0.816497 + 0.816497i
\(217\) 13.6603 + 3.66025i 0.927318 + 0.248474i
\(218\) 3.29423 + 12.2942i 0.223113 + 0.832670i
\(219\) 13.6603 3.66025i 0.923074 0.247337i
\(220\) −3.00000 1.00000i −0.202260 0.0674200i
\(221\) 0 0
\(222\) 0 0
\(223\) −1.73205 1.00000i −0.115987 0.0669650i 0.440884 0.897564i \(-0.354665\pi\)
−0.556871 + 0.830599i \(0.687998\pi\)
\(224\) −8.66025 5.00000i −0.578638 0.334077i
\(225\) 0.598076 4.96410i 0.0398717 0.330940i
\(226\) 5.00000 + 5.00000i 0.332595 + 0.332595i
\(227\) 6.00000 + 10.3923i 0.398234 + 0.689761i 0.993508 0.113761i \(-0.0362899\pi\)
−0.595274 + 0.803523i \(0.702957\pi\)
\(228\) −5.00000 8.66025i −0.331133 0.573539i
\(229\) −3.00000 3.00000i −0.198246 0.198246i 0.601002 0.799248i \(-0.294768\pi\)
−0.799248 + 0.601002i \(0.794768\pi\)
\(230\) 1.90192 + 9.29423i 0.125409 + 0.612843i
\(231\) 3.46410 + 2.00000i 0.227921 + 0.131590i
\(232\) 0 0
\(233\) 1.00000 1.00000i 0.0655122 0.0655122i −0.673592 0.739104i \(-0.735249\pi\)
0.739104 + 0.673592i \(0.235249\pi\)
\(234\) 0 0
\(235\) −12.0000 + 6.00000i −0.782794 + 0.391397i
\(236\) −9.56218 + 2.56218i −0.622445 + 0.166784i
\(237\) −0.732051 2.73205i −0.0475518 0.177466i
\(238\) 2.73205 + 0.732051i 0.177093 + 0.0474518i
\(239\) 3.00000 3.00000i 0.194054 0.194054i −0.603391 0.797445i \(-0.706184\pi\)
0.797445 + 0.603391i \(0.206184\pi\)
\(240\) 3.09808 0.633975i 0.199980 0.0409229i
\(241\) −23.2224 6.22243i −1.49589 0.400822i −0.584168 0.811633i \(-0.698579\pi\)
−0.911721 + 0.410811i \(0.865246\pi\)
\(242\) 9.00000i 0.578542i
\(243\) −2.56218 + 9.56218i −0.164364 + 0.613414i
\(244\) −7.00000 + 12.1244i −0.448129 + 0.776182i
\(245\) 6.69615 + 0.401924i 0.427801 + 0.0256780i
\(246\) 14.0000i 0.892607i
\(247\) 0 0
\(248\) −15.0000 15.0000i −0.952501 0.952501i
\(249\) −2.19615 8.19615i −0.139176 0.519410i
\(250\) −7.23205 + 8.52628i −0.457395 + 0.539249i
\(251\) −1.73205 + 1.00000i −0.109326 + 0.0631194i −0.553666 0.832739i \(-0.686772\pi\)
0.444340 + 0.895858i \(0.353438\pi\)
\(252\) −2.00000 −0.125988
\(253\) 5.19615 3.00000i 0.326679 0.188608i
\(254\) 3.29423 12.2942i 0.206698 0.771409i
\(255\) 4.00000 2.00000i 0.250490 0.125245i
\(256\) 8.50000 + 14.7224i 0.531250 + 0.920152i
\(257\) 15.0263 4.02628i 0.937314 0.251152i 0.242343 0.970191i \(-0.422084\pi\)
0.694971 + 0.719038i \(0.255417\pi\)
\(258\) 1.00000 1.73205i 0.0622573 0.107833i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 10.0000 17.3205i 0.617802 1.07006i
\(263\) −1.36603 + 0.366025i −0.0842327 + 0.0225701i −0.300689 0.953722i \(-0.597217\pi\)
0.216457 + 0.976292i \(0.430550\pi\)
\(264\) −3.00000 5.19615i −0.184637 0.319801i
\(265\) 5.00000 15.0000i 0.307148 0.921443i
\(266\) −3.66025 + 13.6603i −0.224425 + 0.837564i
\(267\) 8.66025 5.00000i 0.529999 0.305995i
\(268\) 4.00000 0.244339
\(269\) −10.3923 + 6.00000i −0.633630 + 0.365826i −0.782157 0.623082i \(-0.785880\pi\)
0.148527 + 0.988908i \(0.452547\pi\)
\(270\) 9.46410 8.39230i 0.575967 0.510739i
\(271\) −3.29423 12.2942i −0.200110 0.746821i −0.990885 0.134714i \(-0.956989\pi\)
0.790774 0.612108i \(-0.209678\pi\)
\(272\) −1.00000 1.00000i −0.0606339 0.0606339i
\(273\) 0 0
\(274\) 16.0000i 0.966595i
\(275\) 6.56218 + 2.63397i 0.395714 + 0.158835i
\(276\) 3.00000 5.19615i 0.180579 0.312772i
\(277\) −5.49038 + 20.4904i −0.329885 + 1.23115i 0.579424 + 0.815026i \(0.303278\pi\)
−0.909309 + 0.416121i \(0.863389\pi\)
\(278\) 14.0000i 0.839664i
\(279\) −6.83013 1.83013i −0.408909 0.109567i
\(280\) 11.1962 + 7.39230i 0.669098 + 0.441775i
\(281\) 1.00000 1.00000i 0.0596550 0.0596550i −0.676650 0.736305i \(-0.736569\pi\)
0.736305 + 0.676650i \(0.236569\pi\)
\(282\) −8.19615 2.19615i −0.488074 0.130779i
\(283\) −3.29423 12.2942i −0.195822 0.730816i −0.992053 0.125823i \(-0.959843\pi\)
0.796231 0.604993i \(-0.206824\pi\)
\(284\) 1.36603 0.366025i 0.0810587 0.0217196i
\(285\) 10.0000 + 20.0000i 0.592349 + 1.18470i
\(286\) 0 0
\(287\) 14.0000 14.0000i 0.826394 0.826394i
\(288\) 4.33013 + 2.50000i 0.255155 + 0.147314i
\(289\) 12.9904 + 7.50000i 0.764140 + 0.441176i
\(290\) 0 0
\(291\) 2.00000 + 2.00000i 0.117242 + 0.117242i
\(292\) −5.00000 8.66025i −0.292603 0.506803i
\(293\) 3.00000 + 5.19615i 0.175262 + 0.303562i 0.940252 0.340480i \(-0.110589\pi\)
−0.764990 + 0.644042i \(0.777256\pi\)
\(294\) 3.00000 + 3.00000i 0.174964 + 0.174964i
\(295\) 21.6865 4.43782i 1.26264 0.258380i
\(296\) 0 0
\(297\) −6.92820 4.00000i −0.402015 0.232104i
\(298\) −3.00000 + 3.00000i −0.173785 + 0.173785i
\(299\) 0 0
\(300\) 7.00000 1.00000i 0.404145 0.0577350i
\(301\) 2.73205 0.732051i 0.157473 0.0421947i
\(302\) 2.56218 + 9.56218i 0.147437 + 0.550242i
\(303\) −16.3923 4.39230i −0.941713 0.252331i
\(304\) 5.00000 5.00000i 0.286770 0.286770i
\(305\) 17.2487 26.1244i 0.987658 1.49588i
\(306\) −1.36603 0.366025i −0.0780905 0.0209243i
\(307\) 18.0000i 1.02731i −0.857996 0.513657i \(-0.828290\pi\)
0.857996 0.513657i \(-0.171710\pi\)
\(308\) 0.732051 2.73205i 0.0417125 0.155673i
\(309\) −7.00000 + 12.1244i −0.398216 + 0.689730i
\(310\) 10.4904 + 11.8301i 0.595814 + 0.671906i
\(311\) 6.00000i 0.340229i −0.985424 0.170114i \(-0.945586\pi\)
0.985424 0.170114i \(-0.0544137\pi\)
\(312\) 0 0
\(313\) 9.00000 + 9.00000i 0.508710 + 0.508710i 0.914130 0.405420i \(-0.132875\pi\)
−0.405420 + 0.914130i \(0.632875\pi\)
\(314\) 4.75833 + 17.7583i 0.268528 + 1.00216i
\(315\) 4.46410 + 0.267949i 0.251524 + 0.0150972i
\(316\) −1.73205 + 1.00000i −0.0974355 + 0.0562544i
\(317\) −14.0000 −0.786318 −0.393159 0.919470i \(-0.628618\pi\)
−0.393159 + 0.919470i \(0.628618\pi\)
\(318\) 8.66025 5.00000i 0.485643 0.280386i
\(319\) 0 0
\(320\) −7.00000 14.0000i −0.391312 0.782624i
\(321\) −7.00000 12.1244i −0.390702 0.676716i
\(322\) −8.19615 + 2.19615i −0.456754 + 0.122387i
\(323\) 5.00000 8.66025i 0.278207 0.481869i
\(324\) −5.00000 −0.277778
\(325\) 0 0
\(326\) 4.00000 0.221540
\(327\) −9.00000 + 15.5885i −0.497701 + 0.862044i
\(328\) −28.6865 + 7.68653i −1.58395 + 0.424418i
\(329\) −6.00000 10.3923i −0.330791 0.572946i
\(330\) 2.00000 + 4.00000i 0.110096 + 0.220193i
\(331\) −1.09808 + 4.09808i −0.0603557 + 0.225251i −0.989515 0.144428i \(-0.953866\pi\)
0.929160 + 0.369679i \(0.120532\pi\)
\(332\) −5.19615 + 3.00000i −0.285176 + 0.164646i
\(333\) 0 0
\(334\) 15.5885 9.00000i 0.852962 0.492458i
\(335\) −8.92820 0.535898i −0.487800 0.0292793i
\(336\) 0.732051 + 2.73205i 0.0399366 + 0.149046i
\(337\) 13.0000 + 13.0000i 0.708155 + 0.708155i 0.966147 0.257992i \(-0.0830608\pi\)
−0.257992 + 0.966147i \(0.583061\pi\)
\(338\) 0 0
\(339\) 10.0000i 0.543125i
\(340\) −2.09808 2.36603i −0.113784 0.128316i
\(341\) 5.00000 8.66025i 0.270765 0.468979i
\(342\) 1.83013 6.83013i 0.0989619 0.369331i
\(343\) 20.0000i 1.07990i
\(344\) −4.09808 1.09808i −0.220953 0.0592043i
\(345\) −7.39230 + 11.1962i −0.397988 + 0.602781i
\(346\) −11.0000 + 11.0000i −0.591364 + 0.591364i
\(347\) −4.09808 1.09808i −0.219996 0.0589478i 0.147137 0.989116i \(-0.452994\pi\)
−0.367133 + 0.930168i \(0.619661\pi\)
\(348\) 0 0
\(349\) −12.2942 + 3.29423i −0.658095 + 0.176336i −0.572386 0.819984i \(-0.693982\pi\)
−0.0857088 + 0.996320i \(0.527315\pi\)
\(350\) −8.00000 6.00000i −0.427618 0.320713i
\(351\) 0 0
\(352\) −5.00000 + 5.00000i −0.266501 + 0.266501i
\(353\) 10.3923 + 6.00000i 0.553127 + 0.319348i 0.750382 0.661004i \(-0.229870\pi\)
−0.197256 + 0.980352i \(0.563203\pi\)
\(354\) 12.1244 + 7.00000i 0.644402 + 0.372046i
\(355\) −3.09808 + 0.633975i −0.164429 + 0.0336479i
\(356\) −5.00000 5.00000i −0.264999 0.264999i
\(357\) 2.00000 + 3.46410i 0.105851 + 0.183340i
\(358\) 10.0000 + 17.3205i 0.528516 + 0.915417i
\(359\) 1.00000 + 1.00000i 0.0527780 + 0.0527780i 0.733003 0.680225i \(-0.238118\pi\)
−0.680225 + 0.733003i \(0.738118\pi\)
\(360\) −5.59808 3.69615i −0.295045 0.194804i
\(361\) 26.8468 + 15.5000i 1.41299 + 0.815789i
\(362\) −6.92820 4.00000i −0.364138 0.210235i
\(363\) −9.00000 + 9.00000i −0.472377 + 0.472377i
\(364\) 0 0
\(365\) 10.0000 + 20.0000i 0.523424 + 1.04685i
\(366\) 19.1244 5.12436i 0.999646 0.267854i
\(367\) −0.366025 1.36603i −0.0191064 0.0713059i 0.955714 0.294296i \(-0.0950850\pi\)
−0.974821 + 0.222990i \(0.928418\pi\)
\(368\) 4.09808 + 1.09808i 0.213627 + 0.0572412i
\(369\) −7.00000 + 7.00000i −0.364405 + 0.364405i
\(370\) 0 0
\(371\) 13.6603 + 3.66025i 0.709205 + 0.190031i
\(372\) 10.0000i 0.518476i
\(373\) −5.49038 + 20.4904i −0.284281 + 1.06095i 0.665082 + 0.746770i \(0.268397\pi\)
−0.949363 + 0.314181i \(0.898270\pi\)
\(374\) 1.00000 1.73205i 0.0517088 0.0895622i
\(375\) −15.7583 + 1.29423i −0.813757 + 0.0668337i
\(376\) 18.0000i 0.928279i
\(377\) 0 0
\(378\) 8.00000 + 8.00000i 0.411476 + 0.411476i
\(379\) −0.366025 1.36603i −0.0188015 0.0701680i 0.955888 0.293732i \(-0.0948974\pi\)
−0.974689 + 0.223564i \(0.928231\pi\)
\(380\) 11.8301 10.4904i 0.606873 0.538145i
\(381\) 15.5885 9.00000i 0.798621 0.461084i
\(382\) 8.00000 0.409316
\(383\) −25.9808 + 15.0000i −1.32755 + 0.766464i −0.984921 0.173005i \(-0.944652\pi\)
−0.342634 + 0.939469i \(0.611319\pi\)
\(384\) −1.09808 + 4.09808i −0.0560360 + 0.209129i
\(385\) −2.00000 + 6.00000i −0.101929 + 0.305788i
\(386\) −9.00000 15.5885i −0.458088 0.793432i
\(387\) −1.36603 + 0.366025i −0.0694390 + 0.0186061i
\(388\) 1.00000 1.73205i 0.0507673 0.0879316i
\(389\) −18.0000 −0.912636 −0.456318 0.889817i \(-0.650832\pi\)
−0.456318 + 0.889817i \(0.650832\pi\)
\(390\) 0 0
\(391\) 6.00000 0.303433
\(392\) 4.50000 7.79423i 0.227284 0.393668i
\(393\) 27.3205 7.32051i 1.37814 0.369271i
\(394\) −3.00000 5.19615i −0.151138 0.261778i
\(395\) 4.00000 2.00000i 0.201262 0.100631i
\(396\) −0.366025 + 1.36603i −0.0183935 + 0.0686454i
\(397\) −13.8564 + 8.00000i −0.695433 + 0.401508i −0.805644 0.592400i \(-0.798181\pi\)
0.110211 + 0.993908i \(0.464847\pi\)
\(398\) −8.00000 −0.401004
\(399\) −17.3205 + 10.0000i −0.867110 + 0.500626i
\(400\) 1.96410 + 4.59808i 0.0982051 + 0.229904i
\(401\) −4.02628 15.0263i −0.201063 0.750377i −0.990614 0.136691i \(-0.956353\pi\)
0.789551 0.613685i \(-0.210314\pi\)
\(402\) −4.00000 4.00000i −0.199502 0.199502i
\(403\) 0 0
\(404\) 12.0000i 0.597022i
\(405\) 11.1603 + 0.669873i 0.554557 + 0.0332863i
\(406\) 0 0
\(407\) 0 0
\(408\) 6.00000i 0.297044i
\(409\) 9.56218 + 2.56218i 0.472819 + 0.126692i 0.487357 0.873203i \(-0.337961\pi\)
−0.0145378 + 0.999894i \(0.504628\pi\)
\(410\) 21.6865 4.43782i 1.07102 0.219168i
\(411\) −16.0000 + 16.0000i −0.789222 + 0.789222i
\(412\) 9.56218 + 2.56218i 0.471095 + 0.126229i
\(413\) 5.12436 + 19.1244i 0.252153 + 0.941048i
\(414\) 4.09808 1.09808i 0.201409 0.0539675i
\(415\) 12.0000 6.00000i 0.589057 0.294528i
\(416\) 0 0
\(417\) −14.0000 + 14.0000i −0.685583 + 0.685583i
\(418\) 8.66025 + 5.00000i 0.423587 + 0.244558i
\(419\) −32.9090 19.0000i −1.60771 0.928211i −0.989882 0.141896i \(-0.954680\pi\)
−0.617827 0.786314i \(-0.711987\pi\)
\(420\) 1.26795 + 6.19615i 0.0618696 + 0.302341i
\(421\) −11.0000 11.0000i −0.536107 0.536107i 0.386276 0.922383i \(-0.373761\pi\)
−0.922383 + 0.386276i \(0.873761\pi\)
\(422\) −2.00000 3.46410i −0.0973585 0.168630i
\(423\) 3.00000 + 5.19615i 0.145865 + 0.252646i
\(424\) −15.0000 15.0000i −0.728464 0.728464i
\(425\) 4.36603 + 5.56218i 0.211783 + 0.269805i
\(426\) −1.73205 1.00000i −0.0839181 0.0484502i
\(427\) 24.2487 + 14.0000i 1.17348 + 0.677507i
\(428\) −7.00000 + 7.00000i −0.338358 + 0.338358i
\(429\) 0 0
\(430\) 3.00000 + 1.00000i 0.144673 + 0.0482243i
\(431\) −17.7583 + 4.75833i −0.855389 + 0.229201i −0.659759 0.751477i \(-0.729342\pi\)
−0.195630 + 0.980678i \(0.562675\pi\)
\(432\) −1.46410 5.46410i −0.0704416 0.262892i
\(433\) −23.2224 6.22243i −1.11600 0.299031i −0.346736 0.937963i \(-0.612710\pi\)
−0.769263 + 0.638932i \(0.779377\pi\)
\(434\) −10.0000 + 10.0000i −0.480015 + 0.480015i
\(435\) 0 0
\(436\) 12.2942 + 3.29423i 0.588787 + 0.157765i
\(437\) 30.0000i 1.43509i
\(438\) −3.66025 + 13.6603i −0.174894 + 0.652712i
\(439\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(440\) 7.09808 6.29423i 0.338388 0.300066i
\(441\) 3.00000i 0.142857i
\(442\) 0 0
\(443\) 25.0000 + 25.0000i 1.18779 + 1.18779i 0.977678 + 0.210108i \(0.0673814\pi\)
0.210108 + 0.977678i \(0.432619\pi\)
\(444\) 0 0
\(445\) 10.4904 + 11.8301i 0.497292 + 0.560802i
\(446\) 1.73205 1.00000i 0.0820150 0.0473514i
\(447\) −6.00000 −0.283790
\(448\) 12.1244 7.00000i 0.572822 0.330719i
\(449\) −1.09808 + 4.09808i −0.0518214 + 0.193400i −0.986984 0.160819i \(-0.948587\pi\)
0.935163 + 0.354219i \(0.115253\pi\)
\(450\) 4.00000 + 3.00000i 0.188562 + 0.141421i
\(451\) −7.00000 12.1244i −0.329617 0.570914i
\(452\) 6.83013 1.83013i 0.321262 0.0860819i
\(453\) −7.00000 + 12.1244i −0.328889 + 0.569652i
\(454\) −12.0000 −0.563188
\(455\) 0 0
\(456\) 30.0000 1.40488
\(457\) −1.00000 + 1.73205i −0.0467780 + 0.0810219i −0.888466 0.458942i \(-0.848229\pi\)
0.841688 + 0.539964i \(0.181562\pi\)
\(458\) 4.09808 1.09808i 0.191491 0.0513097i
\(459\) −4.00000 6.92820i −0.186704 0.323381i
\(460\) 9.00000 + 3.00000i 0.419627 + 0.139876i
\(461\) 6.22243 23.2224i 0.289808 1.08158i −0.655447 0.755241i \(-0.727520\pi\)
0.945254 0.326335i \(-0.105814\pi\)
\(462\) −3.46410 + 2.00000i −0.161165 + 0.0930484i
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) 0 0
\(465\) −1.33975 + 22.3205i −0.0621292 + 1.03509i
\(466\) 0.366025 + 1.36603i 0.0169558 + 0.0632799i
\(467\) 9.00000 + 9.00000i 0.416470 + 0.416470i 0.883985 0.467515i \(-0.154851\pi\)
−0.467515 + 0.883985i \(0.654851\pi\)
\(468\) 0 0
\(469\) 8.00000i 0.369406i
\(470\) 0.803848 13.3923i 0.0370787 0.617741i
\(471\) −13.0000 + 22.5167i −0.599008 + 1.03751i
\(472\) 7.68653 28.6865i 0.353801 1.32040i
\(473\) 2.00000i 0.0919601i
\(474\) 2.73205 + 0.732051i 0.125487 + 0.0336242i
\(475\) −27.8109 + 21.8301i −1.27605 + 1.00163i
\(476\) 2.00000 2.00000i 0.0916698 0.0916698i
\(477\) −6.83013 1.83013i −0.312730 0.0837958i
\(478\) 1.09808 + 4.09808i 0.0502248 + 0.187442i
\(479\) 9.56218 2.56218i 0.436907 0.117069i −0.0336596 0.999433i \(-0.510716\pi\)
0.470567 + 0.882364i \(0.344050\pi\)
\(480\) 5.00000 15.0000i 0.228218 0.684653i
\(481\) 0 0
\(482\) 17.0000 17.0000i 0.774329 0.774329i
\(483\) −10.3923 6.00000i −0.472866 0.273009i
\(484\) 7.79423 + 4.50000i 0.354283 + 0.204545i
\(485\) −2.46410 + 3.73205i −0.111889 + 0.169464i
\(486\) −7.00000 7.00000i −0.317526 0.317526i
\(487\) −8.00000 13.8564i −0.362515 0.627894i 0.625859 0.779936i \(-0.284748\pi\)
−0.988374 + 0.152042i \(0.951415\pi\)
\(488\) −21.0000 36.3731i −0.950625 1.64653i
\(489\) 4.00000 + 4.00000i 0.180886 + 0.180886i
\(490\) −3.69615 + 5.59808i −0.166975 + 0.252895i
\(491\) −19.0526 11.0000i −0.859830 0.496423i 0.00412539 0.999991i \(-0.498687\pi\)
−0.863955 + 0.503568i \(0.832020\pi\)
\(492\) −12.1244 7.00000i −0.546608 0.315584i
\(493\) 0 0
\(494\) 0 0
\(495\) 1.00000 3.00000i 0.0449467 0.134840i
\(496\) 6.83013 1.83013i 0.306682 0.0821751i
\(497\) −0.732051 2.73205i −0.0328370 0.122549i
\(498\) 8.19615 + 2.19615i 0.367278 + 0.0984119i
\(499\) 3.00000 3.00000i 0.134298 0.134298i −0.636762 0.771060i \(-0.719727\pi\)
0.771060 + 0.636762i \(0.219727\pi\)
\(500\) 3.76795 + 10.5263i 0.168508 + 0.470750i
\(501\) 24.5885 + 6.58846i 1.09853 + 0.294351i
\(502\) 2.00000i 0.0892644i
\(503\) −1.09808 + 4.09808i −0.0489608 + 0.182724i −0.986076 0.166297i \(-0.946819\pi\)
0.937115 + 0.349021i \(0.113486\pi\)
\(504\) 3.00000 5.19615i 0.133631 0.231455i
\(505\) 1.60770 26.7846i 0.0715415 1.19190i
\(506\) 6.00000i 0.266733i
\(507\) 0 0
\(508\) −9.00000 9.00000i −0.399310 0.399310i
\(509\) 4.75833 + 17.7583i 0.210909 + 0.787124i 0.987567 + 0.157201i \(0.0502470\pi\)
−0.776657 + 0.629923i \(0.783086\pi\)
\(510\) −0.267949 + 4.46410i −0.0118650 + 0.197674i
\(511\) −17.3205 + 10.0000i −0.766214 + 0.442374i
\(512\) −11.0000 −0.486136
\(513\) 34.6410 20.0000i 1.52944 0.883022i
\(514\) −4.02628 + 15.0263i −0.177592 + 0.662781i
\(515\) −21.0000 7.00000i −0.925371 0.308457i
\(516\) −1.00000 1.73205i −0.0440225 0.0762493i
\(517\) −8.19615 + 2.19615i −0.360466 + 0.0965867i
\(518\) 0 0
\(519\) −22.0000 −0.965693
\(520\) 0 0
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 0 0
\(523\) −12.2942 + 3.29423i −0.537589 + 0.144047i −0.517390 0.855749i \(-0.673097\pi\)
−0.0201986 + 0.999796i \(0.506430\pi\)
\(524\) −10.0000 17.3205i −0.436852 0.756650i
\(525\) −2.00000 14.0000i −0.0872872 0.611010i
\(526\) 0.366025 1.36603i 0.0159595 0.0595615i
\(527\) 8.66025 5.00000i 0.377247 0.217803i
\(528\) 2.00000 0.0870388
\(529\) 4.33013 2.50000i 0.188266 0.108696i
\(530\) 10.4904 + 11.8301i 0.455673 + 0.513868i
\(531\) −2.56218 9.56218i −0.111189 0.414963i
\(532\) 10.0000 + 10.0000i 0.433555 + 0.433555i
\(533\) 0 0
\(534\) 10.0000i 0.432742i
\(535\) 16.5622 14.6865i 0.716045 0.634954i
\(536\) −6.00000 + 10.3923i −0.259161 + 0.448879i
\(537\) −7.32051 + 27.3205i −0.315903 + 1.17897i
\(538\) 12.0000i 0.517357i
\(539\) 4.09808 + 1.09808i 0.176517 + 0.0472975i
\(540\) −2.53590 12.3923i −0.109128 0.533280i
\(541\) 9.00000 9.00000i 0.386940 0.386940i −0.486654 0.873595i \(-0.661783\pi\)
0.873595 + 0.486654i \(0.161783\pi\)
\(542\) 12.2942 + 3.29423i 0.528082 + 0.141499i
\(543\) −2.92820 10.9282i −0.125661 0.468974i
\(544\) −6.83013 + 1.83013i −0.292839 + 0.0784660i
\(545\) −27.0000 9.00000i −1.15655 0.385518i
\(546\) 0 0
\(547\) −9.00000 + 9.00000i −0.384812 + 0.384812i −0.872832 0.488020i \(-0.837719\pi\)
0.488020 + 0.872832i \(0.337719\pi\)
\(548\) 13.8564 + 8.00000i 0.591916 + 0.341743i
\(549\) −12.1244 7.00000i −0.517455 0.298753i
\(550\) −5.56218 + 4.36603i −0.237172 + 0.186168i
\(551\) 0 0
\(552\) 9.00000 + 15.5885i 0.383065 + 0.663489i
\(553\) 2.00000 + 3.46410i 0.0850487 + 0.147309i
\(554\) −15.0000 15.0000i −0.637289 0.637289i
\(555\) 0 0
\(556\) 12.1244 + 7.00000i 0.514187 + 0.296866i
\(557\) 20.7846 + 12.0000i 0.880672 + 0.508456i 0.870880 0.491496i \(-0.163550\pi\)
0.00979220 + 0.999952i \(0.496883\pi\)
\(558\) 5.00000 5.00000i 0.211667 0.211667i
\(559\) 0 0
\(560\) −4.00000 + 2.00000i −0.169031 + 0.0845154i
\(561\) 2.73205 0.732051i 0.115347 0.0309072i
\(562\) 0.366025 + 1.36603i 0.0154398 + 0.0576223i
\(563\) −20.4904 5.49038i −0.863567 0.231392i −0.200263 0.979742i \(-0.564180\pi\)
−0.663304 + 0.748350i \(0.730846\pi\)
\(564\) −6.00000 + 6.00000i −0.252646 + 0.252646i
\(565\) −15.4904 + 3.16987i −0.651685 + 0.133358i
\(566\) 12.2942 + 3.29423i 0.516765 + 0.138467i
\(567\) 10.0000i 0.419961i
\(568\) −1.09808 + 4.09808i −0.0460743 + 0.171951i
\(569\) −3.00000 + 5.19615i −0.125767 + 0.217834i −0.922032 0.387113i \(-0.873472\pi\)
0.796266 + 0.604947i \(0.206806\pi\)
\(570\) −22.3205 1.33975i −0.934903 0.0561158i
\(571\) 6.00000i 0.251092i 0.992088 + 0.125546i \(0.0400683\pi\)
−0.992088 + 0.125546i \(0.959932\pi\)
\(572\) 0 0
\(573\) 8.00000 + 8.00000i 0.334205 + 0.334205i
\(574\) 5.12436 + 19.1244i 0.213886 + 0.798235i
\(575\) −19.6865 7.90192i −0.820985 0.329533i
\(576\) −6.06218 + 3.50000i −0.252591 + 0.145833i
\(577\) 46.0000 1.91501 0.957503 0.288425i \(-0.0931316\pi\)
0.957503 + 0.288425i \(0.0931316\pi\)
\(578\) −12.9904 + 7.50000i −0.540329 + 0.311959i
\(579\) 6.58846 24.5885i 0.273807 1.02186i
\(580\) 0 0
\(581\) 6.00000 + 10.3923i 0.248922 + 0.431145i
\(582\) −2.73205 + 0.732051i −0.113247 + 0.0303445i
\(583\) 5.00000 8.66025i 0.207079 0.358671i
\(584\) 30.0000 1.24141
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) 2.00000 3.46410i 0.0825488 0.142979i −0.821795 0.569783i \(-0.807027\pi\)
0.904344 + 0.426804i \(0.140361\pi\)
\(588\) 4.09808 1.09808i 0.169002 0.0452839i
\(589\) 25.0000 + 43.3013i 1.03011 + 1.78420i
\(590\) −7.00000 + 21.0000i −0.288185 + 0.864556i
\(591\) 2.19615 8.19615i 0.0903376 0.337145i
\(592\) 0 0
\(593\) 10.0000 0.410651 0.205325 0.978694i \(-0.434175\pi\)
0.205325 + 0.978694i \(0.434175\pi\)
\(594\) 6.92820 4.00000i 0.284268 0.164122i
\(595\) −4.73205 + 4.19615i −0.193995 + 0.172025i
\(596\) 1.09808 + 4.09808i 0.0449790 + 0.167864i
\(597\) −8.00000 8.00000i −0.327418 0.327418i
\(598\) 0 0
\(599\) 30.0000i 1.22577i −0.790173 0.612883i \(-0.790010\pi\)
0.790173 0.612883i \(-0.209990\pi\)
\(600\) −7.90192 + 19.6865i −0.322595 + 0.803699i
\(601\) 19.0000 32.9090i 0.775026 1.34238i −0.159754 0.987157i \(-0.551070\pi\)
0.934780 0.355228i \(-0.115597\pi\)
\(602\) −0.732051 + 2.73205i −0.0298362 + 0.111350i
\(603\) 4.00000i 0.162893i
\(604\) 9.56218 + 2.56218i 0.389079 + 0.104254i
\(605\) −16.7942 11.0885i −0.682782 0.450810i
\(606\) 12.0000 12.0000i 0.487467 0.487467i
\(607\) 17.7583 + 4.75833i 0.720788 + 0.193135i 0.600523 0.799607i \(-0.294959\pi\)
0.120265 + 0.992742i \(0.461626\pi\)
\(608\) −9.15064 34.1506i −0.371107 1.38499i
\(609\) 0 0
\(610\) 14.0000 + 28.0000i 0.566843 + 1.13369i
\(611\) 0 0
\(612\) −1.00000 + 1.00000i −0.0404226 + 0.0404226i
\(613\) 17.3205 + 10.0000i 0.699569 + 0.403896i 0.807187 0.590296i \(-0.200989\pi\)
−0.107618 + 0.994192i \(0.534322\pi\)
\(614\) 15.5885 + 9.00000i 0.629099 + 0.363210i
\(615\) 26.1244 + 17.2487i 1.05344 + 0.695535i
\(616\) 6.00000 + 6.00000i 0.241747 + 0.241747i
\(617\) 11.0000 + 19.0526i 0.442843 + 0.767027i 0.997899 0.0647859i \(-0.0206365\pi\)
−0.555056 + 0.831813i \(0.687303\pi\)
\(618\) −7.00000 12.1244i −0.281581 0.487713i
\(619\) 25.0000 + 25.0000i 1.00483 + 1.00483i 0.999988 + 0.00484658i \(0.00154272\pi\)
0.00484658 + 0.999988i \(0.498457\pi\)
\(620\) 15.4904 3.16987i 0.622109 0.127305i
\(621\) 20.7846 + 12.0000i 0.834058 + 0.481543i
\(622\) 5.19615 + 3.00000i 0.208347 + 0.120289i
\(623\) −10.0000 + 10.0000i −0.400642 + 0.400642i
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) −12.2942 + 3.29423i −0.491376 + 0.131664i
\(627\) 3.66025 + 13.6603i 0.146176 + 0.545538i
\(628\) 17.7583 + 4.75833i 0.708635 + 0.189878i
\(629\) 0 0
\(630\) −2.46410 + 3.73205i −0.0981722 + 0.148688i
\(631\) −15.0263 4.02628i −0.598187 0.160284i −0.0529946 0.998595i \(-0.516877\pi\)
−0.545192 + 0.838311i \(0.683543\pi\)
\(632\) 6.00000i 0.238667i
\(633\) 1.46410 5.46410i 0.0581928 0.217179i
\(634\) 7.00000 12.1244i 0.278006 0.481520i
\(635\) 18.8827 + 21.2942i 0.749337 + 0.845036i
\(636\) 10.0000i 0.396526i
\(637\) 0 0
\(638\) 0 0
\(639\) 0.366025 + 1.36603i 0.0144797 + 0.0540391i
\(640\) −6.69615 0.401924i −0.264689 0.0158874i
\(641\) 20.7846 12.0000i 0.820943 0.473972i −0.0297987 0.999556i \(-0.509487\pi\)
0.850741 + 0.525584i \(0.176153\pi\)
\(642\) 14.0000 0.552536
\(643\) −29.4449 + 17.0000i −1.16119 + 0.670415i −0.951589 0.307372i \(-0.900550\pi\)
−0.209603 + 0.977787i \(0.567217\pi\)
\(644\) −2.19615 + 8.19615i −0.0865405 + 0.322974i
\(645\) 2.00000 + 4.00000i 0.0787499 + 0.157500i
\(646\) 5.00000 + 8.66025i 0.196722 + 0.340733i
\(647\) −1.36603 + 0.366025i −0.0537040 + 0.0143899i −0.285571 0.958358i \(-0.592183\pi\)
0.231867 + 0.972747i \(0.425517\pi\)
\(648\) 7.50000 12.9904i 0.294628 0.510310i
\(649\) 14.0000 0.549548
\(650\) 0 0
\(651\) −20.0000 −0.783862
\(652\) 2.00000 3.46410i 0.0783260 0.135665i
\(653\) −17.7583 + 4.75833i −0.694937 + 0.186208i −0.588962 0.808161i \(-0.700463\pi\)
−0.105975 + 0.994369i \(0.533796\pi\)
\(654\) −9.00000 15.5885i −0.351928 0.609557i
\(655\) 20.0000 + 40.0000i 0.781465 + 1.56293i
\(656\) 2.56218 9.56218i 0.100036 0.373340i
\(657\) 8.66025 5.00000i 0.337869 0.195069i
\(658\) 12.0000 0.467809
\(659\) −22.5167 + 13.0000i −0.877125 + 0.506408i −0.869709 0.493564i \(-0.835694\pi\)
−0.00741531 + 0.999973i \(0.502360\pi\)
\(660\) 4.46410 + 0.267949i 0.173765 + 0.0104299i
\(661\) 6.22243 + 23.2224i 0.242025 + 0.903248i 0.974856 + 0.222837i \(0.0715319\pi\)
−0.732831 + 0.680411i \(0.761801\pi\)
\(662\) −3.00000 3.00000i −0.116598 0.116598i
\(663\) 0 0
\(664\) 18.0000i 0.698535i
\(665\) −20.9808 23.6603i −0.813599 0.917505i
\(666\) 0 0
\(667\) 0 0
\(668\) 18.0000i 0.696441i
\(669\) 2.73205 + 0.732051i 0.105627 + 0.0283027i
\(670\) 4.92820 7.46410i 0.190393 0.288363i
\(671\) 14.0000 14.0000i 0.540464 0.540464i
\(672\) 13.6603 + 3.66025i 0.526956 + 0.141197i
\(673\) −5.49038 20.4904i −0.211639 0.789846i −0.987323 0.158725i \(-0.949262\pi\)
0.775684 0.631121i \(-0.217405\pi\)
\(674\) −17.7583 + 4.75833i −0.684025 + 0.183284i
\(675\) 4.00000 + 28.0000i 0.153960 + 1.07772i
\(676\) 0 0
\(677\) −23.0000 + 23.0000i −0.883962 + 0.883962i −0.993935 0.109973i \(-0.964924\pi\)
0.109973 + 0.993935i \(0.464924\pi\)
\(678\) −8.66025 5.00000i −0.332595 0.192024i
\(679\) −3.46410 2.00000i −0.132940 0.0767530i
\(680\) 9.29423 1.90192i 0.356417 0.0729354i
\(681\) −12.0000 12.0000i −0.459841 0.459841i
\(682\) 5.00000 + 8.66025i 0.191460 + 0.331618i
\(683\) 6.00000 + 10.3923i 0.229584 + 0.397650i 0.957685 0.287819i \(-0.0929302\pi\)
−0.728101 + 0.685470i \(0.759597\pi\)
\(684\) −5.00000 5.00000i −0.191180 0.191180i
\(685\) −29.8564 19.7128i −1.14075 0.753188i
\(686\) −17.3205 10.0000i −0.661300 0.381802i
\(687\) 5.19615 + 3.00000i 0.198246 + 0.114457i
\(688\) 1.00000 1.00000i 0.0381246 0.0381246i
\(689\) 0 0
\(690\) −6.00000 12.0000i −0.228416 0.456832i
\(691\) 4.09808 1.09808i 0.155898 0.0417728i −0.180026 0.983662i \(-0.557618\pi\)
0.335924 + 0.941889i \(0.390951\pi\)
\(692\) 4.02628 + 15.0263i 0.153056 + 0.571213i
\(693\) 2.73205 + 0.732051i 0.103782 + 0.0278083i
\(694\) 3.00000 3.00000i 0.113878 0.113878i
\(695\) −26.1244 17.2487i −0.990953 0.654281i
\(696\) 0 0
\(697\) 14.0000i 0.530288i
\(698\) 3.29423 12.2942i 0.124688 0.465343i
\(699\) −1.00000 + 1.73205i −0.0378235 + 0.0655122i
\(700\) −9.19615 + 3.92820i −0.347582 + 0.148472i
\(701\) 12.0000i 0.453234i −0.973984 0.226617i \(-0.927233\pi\)
0.973984 0.226617i \(-0.0727665\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −2.56218 9.56218i −0.0965657 0.360388i
\(705\) 14.1962 12.5885i 0.534658 0.474109i
\(706\) −10.3923 + 6.00000i −0.391120 + 0.225813i
\(707\) 24.0000 0.902613
\(708\) 12.1244 7.00000i 0.455661 0.263076i
\(709\) 10.6147 39.6147i 0.398645 1.48776i −0.416838 0.908981i \(-0.636862\pi\)
0.815482 0.578782i \(-0.196472\pi\)
\(710\) 1.00000 3.00000i 0.0375293 0.112588i
\(711\) −1.00000 1.73205i −0.0375029 0.0649570i
\(712\) 20.4904 5.49038i 0.767909 0.205761i
\(713\) −15.0000 + 25.9808i −0.561754 + 0.972987i
\(714\) −4.00000 −0.149696
\(715\) 0 0
\(716\) 20.0000 0.747435
\(717\) −3.00000 + 5.19615i −0.112037 + 0.194054i
\(718\) −1.36603 + 0.366025i −0.0509796 + 0.0136599i
\(719\) 4.00000 + 6.92820i 0.149175 + 0.258378i 0.930923 0.365216i \(-0.119005\pi\)
−0.781748 + 0.623595i \(0.785672\pi\)
\(720\) 2.00000 1.00000i 0.0745356 0.0372678i
\(721\) 5.12436 19.1244i 0.190841 0.712228i
\(722\) −26.8468 + 15.5000i −0.999134 + 0.576850i
\(723\) 34.0000 1.26447
\(724\) −6.92820 + 4.00000i −0.257485 + 0.148659i
\(725\) 0 0
\(726\) −3.29423 12.2942i −0.122260 0.456282i
\(727\) −35.0000 35.0000i −1.29808 1.29808i −0.929660 0.368418i \(-0.879900\pi\)
−0.368418 0.929660i \(-0.620100\pi\)
\(728\) 0 0
\(729\) 29.0000i 1.07407i
\(730\) −22.3205 1.33975i −0.826119 0.0495862i
\(731\) 1.00000 1.73205i 0.0369863 0.0640622i
\(732\) 5.12436 19.1244i 0.189402 0.706857i
\(733\) 4.00000i 0.147743i −0.997268 0.0738717i \(-0.976464\pi\)
0.997268 0.0738717i \(-0.0235355\pi\)
\(734\) 1.36603 + 0.366025i 0.0504209 + 0.0135102i
\(735\) −9.29423 + 1.90192i −0.342823 + 0.0701535i
\(736\) 15.0000 15.0000i 0.552907 0.552907i
\(737\) −5.46410 1.46410i −0.201273 0.0539309i
\(738\) −2.56218 9.56218i −0.0943151 0.351989i
\(739\) 4.09808 1.09808i 0.150750 0.0403934i −0.182655 0.983177i \(-0.558469\pi\)
0.333405 + 0.942784i \(0.391802\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −10.0000 + 10.0000i −0.367112 + 0.367112i
\(743\) −29.4449 17.0000i −1.08023 0.623670i −0.149270 0.988797i \(-0.547692\pi\)
−0.930958 + 0.365127i \(0.881026\pi\)
\(744\) 25.9808 + 15.0000i 0.952501 + 0.549927i
\(745\) −1.90192 9.29423i −0.0696811 0.340514i
\(746\) −15.0000 15.0000i −0.549189 0.549189i
\(747\) −3.00000 5.19615i −0.109764 0.190117i
\(748\) −1.00000 1.73205i −0.0365636 0.0633300i
\(749\) 14.0000 + 14.0000i 0.511549 + 0.511549i
\(750\) 6.75833 14.2942i 0.246779 0.521951i
\(751\) −43.3013 25.0000i −1.58009 0.912263i −0.994845 0.101403i \(-0.967667\pi\)
−0.585240 0.810860i \(-0.699000\pi\)
\(752\) −5.19615 3.00000i −0.189484 0.109399i
\(753\) 2.00000 2.00000i 0.0728841 0.0728841i
\(754\) 0 0
\(755\) −21.0000 7.00000i −0.764268 0.254756i
\(756\) 10.9282 2.92820i 0.397455 0.106498i
\(757\) −12.8109 47.8109i −0.465620 1.73772i −0.654827 0.755779i \(-0.727258\pi\)
0.189207 0.981937i \(-0.439408\pi\)
\(758\) 1.36603 + 0.366025i 0.0496163 + 0.0132946i
\(759\) −6.00000 + 6.00000i −0.217786 + 0.217786i
\(760\) 9.50962 + 46.4711i 0.344950 + 1.68569i
\(761\) 9.56218 + 2.56218i 0.346629 + 0.0928789i 0.427933 0.903810i \(-0.359242\pi\)
−0.0813044 + 0.996689i \(0.525909\pi\)
\(762\) 18.0000i 0.652071i
\(763\) 6.58846 24.5885i 0.238518 0.890162i
\(764\) 4.00000 6.92820i 0.144715 0.250654i
\(765\) 2.36603 2.09808i 0.0855438 0.0758561i
\(766\) 30.0000i 1.08394i
\(767\) 0 0
\(768\) −17.0000 17.0000i −0.613435 0.613435i
\(769\) −5.49038 20.4904i −0.197988 0.738902i −0.991473 0.130312i \(-0.958402\pi\)
0.793485 0.608590i \(-0.208265\pi\)
\(770\) −4.19615 4.73205i −0.151219 0.170531i
\(771\) −19.0526 + 11.0000i −0.686161 + 0.396155i
\(772\) −18.0000 −0.647834
\(773\) −27.7128 + 16.0000i −0.996761 + 0.575480i −0.907288 0.420509i \(-0.861851\pi\)
−0.0894724 + 0.995989i \(0.528518\pi\)
\(774\) 0.366025 1.36603i 0.0131565 0.0491008i
\(775\) −35.0000 + 5.00000i −1.25724 + 0.179605i
\(776\) 3.00000 + 5.19615i 0.107694 + 0.186531i
\(777\) 0 0
\(778\) 9.00000 15.5885i 0.322666 0.558873i
\(779\) 70.0000 2.50801
\(780\) 0 0
\(781\) −2.00000 −0.0715656
\(782\) −3.00000 + 5.19615i −0.107280 + 0.185814i
\(783\) 0 0
\(784\) 1.50000 + 2.59808i 0.0535714 + 0.0927884i
\(785\) −39.0000 13.0000i −1.39197 0.463990i
\(786\) −7.32051 + 27.3205i −0.261114 + 0.974490i
\(787\) 19.0526 11.0000i 0.679150 0.392108i −0.120384 0.992727i \(-0.538413\pi\)
0.799535 + 0.600620i \(0.205079\pi\)
\(788\) −6.00000 −0.213741
\(789\) 1.73205 1.00000i 0.0616626 0.0356009i
\(790\) −0.267949 + 4.46410i −0.00953320 + 0.158826i
\(791\) −3.66025 13.6603i −0.130144 0.485703i
\(792\) −3.00000 3.00000i −0.106600 0.106600i
\(793\) 0 0
\(794\) 16.0000i 0.567819i
\(795\) −1.33975 + 22.3205i −0.0475159 + 0.791627i
\(796\) −4.00000 + 6.92820i −0.141776 + 0.245564i
\(797\) 6.22243 23.2224i 0.220410 0.822581i −0.763782 0.645474i \(-0.776660\pi\)
0.984192 0.177106i \(-0.0566736\pi\)
\(798\) 20.0000i 0.707992i
\(799\) −8.19615 2.19615i −0.289959 0.0776943i
\(800\) 24.8205 + 2.99038i 0.877537 + 0.105726i
\(801\) 5.00000 5.00000i 0.176666 0.176666i
\(802\) 15.0263 + 4.02628i 0.530596 + 0.142173i
\(803\) 3.66025 + 13.6603i 0.129168 + 0.482060i
\(804\) −5.46410 + 1.46410i −0.192704 + 0.0516349i
\(805\) 6.00000 18.0000i 0.211472 0.634417i
\(806\) 0 0
\(807\) 12.0000 12.0000i 0.422420 0.422420i
\(808\) −31.1769 18.0000i −1.09680 0.633238i
\(809\) 24.2487 + 14.0000i 0.852539 + 0.492214i 0.861507 0.507746i \(-0.169521\pi\)
−0.00896753 + 0.999960i \(0.502854\pi\)
\(810\) −6.16025 + 9.33013i −0.216449 + 0.327827i
\(811\) −27.0000 27.0000i −0.948098 0.948098i 0.0506198 0.998718i \(-0.483880\pi\)
−0.998718 + 0.0506198i \(0.983880\pi\)
\(812\) 0 0
\(813\) 9.00000 + 15.5885i 0.315644 + 0.546711i
\(814\) 0 0
\(815\) −4.92820 + 7.46410i −0.172627 + 0.261456i
\(816\) 1.73205 + 1.00000i 0.0606339 + 0.0350070i
\(817\) 8.66025 + 5.00000i 0.302984 + 0.174928i
\(818\) −7.00000 + 7.00000i −0.244749 + 0.244749i
\(819\) 0 0
\(820\) 7.00000 21.0000i 0.244451 0.733352i
\(821\) −12.2942 + 3.29423i −0.429072 + 0.114969i −0.466890 0.884315i \(-0.654626\pi\)
0.0378188 + 0.999285i \(0.487959\pi\)
\(822\) −5.85641 21.8564i −0.204266 0.762330i
\(823\) 12.2942 + 3.29423i 0.428550 + 0.114830i 0.466645 0.884445i \(-0.345462\pi\)
−0.0380955 + 0.999274i \(0.512129\pi\)
\(824\) −21.0000 + 21.0000i −0.731570 + 0.731570i
\(825\) −9.92820 1.19615i −0.345656 0.0416447i
\(826\) −19.1244 5.12436i −0.665421 0.178299i
\(827\) 46.0000i 1.59958i 0.600282 + 0.799788i \(0.295055\pi\)
−0.600282 + 0.799788i \(0.704945\pi\)
\(828\) 1.09808 4.09808i 0.0381608 0.142418i
\(829\) −17.0000 + 29.4449i −0.590434 + 1.02266i 0.403739 + 0.914874i \(0.367710\pi\)
−0.994174 + 0.107788i \(0.965623\pi\)
\(830\) −0.803848 + 13.3923i −0.0279020 + 0.464854i
\(831\) 30.0000i 1.04069i
\(832\) 0 0
\(833\) 3.00000 + 3.00000i 0.103944 + 0.103944i
\(834\) −5.12436 19.1244i −0.177442 0.662222i
\(835\) −2.41154 + 40.1769i −0.0834549 + 1.39038i
\(836\) 8.66025 5.00000i 0.299521 0.172929i
\(837\) 40.0000 1.38260
\(838\) 32.9090 19.0000i 1.13682 0.656344i
\(839\) −12.8109 + 47.8109i −0.442281 + 1.65062i 0.280736 + 0.959785i \(0.409421\pi\)
−0.723017 + 0.690830i \(0.757245\pi\)
\(840\) −18.0000 6.00000i −0.621059 0.207020i
\(841\) −14.5000 25.1147i −0.500000 0.866025i
\(842\) 15.0263 4.02628i 0.517840 0.138755i
\(843\) −1.00000 + 1.73205i −0.0344418 + 0.0596550i
\(844\) −4.00000 −0.137686
\(845\) 0 0
\(846\) −6.00000 −0.206284
\(847\) 9.00000 15.5885i 0.309244 0.535626i
\(848\) 6.83013 1.83013i 0.234548 0.0628468i
\(849\) 9.00000 + 15.5885i 0.308879 + 0.534994i
\(850\) −7.00000 + 1.00000i −0.240098 + 0.0342997i
\(851\) 0 0
\(852\) −1.73205 + 1.00000i −0.0593391 + 0.0342594i
\(853\) 26.0000 0.890223 0.445112 0.895475i \(-0.353164\pi\)
0.445112 + 0.895475i \(0.353164\pi\)
\(854\) −24.2487 + 14.0000i −0.829774 + 0.479070i
\(855\) 10.4904 + 11.8301i 0.358763 + 0.404582i
\(856\) −7.68653 28.6865i −0.262720 0.980486i
\(857\) −3.00000 3.00000i −0.102478 0.102478i 0.654009 0.756487i \(-0.273086\pi\)
−0.756487 + 0.654009i \(0.773086\pi\)
\(858\) 0 0
\(859\) 30.0000i 1.02359i 0.859109 + 0.511793i \(0.171019\pi\)
−0.859109 + 0.511793i \(0.828981\pi\)
\(860\) 2.36603 2.09808i 0.0806808 0.0715438i
\(861\) −14.0000 + 24.2487i −0.477119 + 0.826394i
\(862\) 4.75833 17.7583i 0.162069 0.604851i
\(863\) 30.0000i 1.02121i −0.859815 0.510606i \(-0.829421\pi\)
0.859815 0.510606i \(-0.170579\pi\)
\(864\) −27.3205 7.32051i −0.929463 0.249049i
\(865\) −6.97372 34.0788i −0.237114 1.15872i
\(866\) 17.0000 17.0000i 0.577684 0.577684i
\(867\) −20.4904 5.49038i −0.695890 0.186463i
\(868\) 3.66025 + 13.6603i 0.124237 + 0.463659i
\(869\) 2.73205 0.732051i 0.0926785 0.0248331i
\(870\) 0 0
\(871\) 0 0
\(872\) −27.0000 + 27.0000i −0.914335 + 0.914335i
\(873\) 1.73205 + 1.00000i 0.0586210 + 0.0338449i
\(874\) −25.9808 15.0000i −0.878812 0.507383i
\(875\) 21.0526 7.53590i 0.711706 0.254760i
\(876\) 10.0000 + 10.0000i 0.337869 + 0.337869i
\(877\) −19.0000 32.9090i −0.641584 1.11126i −0.985079 0.172102i \(-0.944944\pi\)
0.343495 0.939155i \(-0.388389\pi\)
\(878\) 0 0
\(879\) −6.00000 6.00000i −0.202375 0.202375i
\(880\) 0.633975 + 3.09808i 0.0213713 + 0.104436i
\(881\) −45.0333 26.0000i −1.51721 0.875962i −0.999795 0.0202281i \(-0.993561\pi\)
−0.517416 0.855734i \(-0.673106\pi\)
\(882\) 2.59808 + 1.50000i 0.0874818 + 0.0505076i
\(883\) 39.0000 39.0000i 1.31245 1.31245i 0.392853 0.919601i \(-0.371488\pi\)
0.919601 0.392853i \(-0.128512\pi\)
\(884\) 0 0
\(885\) −28.0000 + 14.0000i −0.941210 + 0.470605i
\(886\) −34.1506 + 9.15064i −1.14731 + 0.307422i
\(887\) −0.366025 1.36603i −0.0122899 0.0458666i 0.959509 0.281679i \(-0.0908915\pi\)
−0.971799 + 0.235813i \(0.924225\pi\)
\(888\) 0 0
\(889\) −18.0000 + 18.0000i −0.603701 + 0.603701i
\(890\) −15.4904 + 3.16987i −0.519239 + 0.106254i
\(891\) 6.83013 + 1.83013i 0.228818 + 0.0613116i
\(892\) 2.00000i 0.0669650i
\(893\) 10.9808 40.9808i 0.367457 1.37137i
\(894\) 3.00000 5.19615i 0.100335 0.173785i
\(895\) −44.6410 2.67949i −1.49218 0.0895655i
\(896\) 6.00000i 0.200446i
\(897\) 0 0
\(898\) −3.00000 3.00000i −0.100111 0.100111i
\(899\) 0 0
\(900\) 4.59808 1.96410i 0.153269 0.0654701i
\(901\) 8.66025 5.00000i 0.288515 0.166574i
\(902\) 14.0000 0.466149
\(903\) −3.46410 + 2.00000i −0.115278 + 0.0665558i
\(904\) −5.49038 + 20.4904i −0.182607 + 0.681500i
\(905\) 16.0000 8.00000i 0.531858 0.265929i
\(906\) −7.00000 12.1244i −0.232559 0.402805i
\(907\) 53.2750 14.2750i 1.76897 0.473993i 0.780465 0.625200i \(-0.214982\pi\)
0.988502 + 0.151206i \(0.0483158\pi\)
\(908\) −6.00000 + 10.3923i −0.199117 + 0.344881i
\(909\) −12.0000 −0.398015
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) −5.00000 + 8.66025i −0.165567 + 0.286770i
\(913\) 8.19615 2.19615i 0.271253 0.0726820i
\(914\) −1.00000 1.73205i −0.0330771 0.0572911i
\(915\) −14.0000 + 42.0000i −0.462826 + 1.38848i
\(916\) 1.09808 4.09808i 0.0362815 0.135404i
\(917\) −34.6410 + 20.0000i −1.14395 + 0.660458i
\(918\) 8.00000 0.264039
\(919\) 8.66025 5.00000i 0.285675 0.164935i −0.350315 0.936632i \(-0.613925\pi\)
0.635990 + 0.771697i \(0.280592\pi\)
\(920\) −21.2942 + 18.8827i −0.702050 + 0.622544i
\(921\) 6.58846 + 24.5885i 0.217097 + 0.810217i
\(922\) 17.0000 + 17.0000i 0.559865 + 0.559865i
\(923\) 0 0
\(924\) 4.00000i 0.131590i
\(925\) 0 0
\(926\) 12.0000 20.7846i 0.394344 0.683025i
\(927\) −2.56218 + 9.56218i −0.0841530 + 0.314063i
\(928\) 0 0
\(929\) 25.9545 + 6.95448i 0.851539 + 0.228169i 0.658088 0.752941i \(-0.271365\pi\)
0.193451 + 0.981110i \(0.438032\pi\)
\(930\) −18.6603 12.3205i −0.611894 0.404005i
\(931\) −15.0000 + 15.0000i −0.491605 + 0.491605i
\(932\) 1.36603 + 0.366025i 0.0447456 + 0.0119896i
\(933\) 2.19615 + 8.19615i 0.0718988 + 0.268330i
\(934\) −12.2942 + 3.29423i −0.402279 + 0.107790i
\(935\) 2.00000 + 4.00000i 0.0654070 + 0.130814i
\(936\) 0 0
\(937\) −7.00000 + 7.00000i −0.228680 + 0.228680i −0.812141 0.583461i \(-0.801698\pi\)
0.583461 + 0.812141i \(0.301698\pi\)
\(938\) 6.92820 + 4.00000i 0.226214 + 0.130605i
\(939\) −15.5885 9.00000i −0.508710 0.293704i
\(940\) −11.1962 7.39230i −0.365178 0.241110i
\(941\) 21.0000 + 21.0000i 0.684580 + 0.684580i 0.961029 0.276448i \(-0.0891575\pi\)
−0.276448 + 0.961029i \(0.589157\pi\)
\(942\) −13.0000 22.5167i −0.423563 0.733632i
\(943\) 21.0000 + 36.3731i 0.683854 + 1.18447i
\(944\) 7.00000 + 7.00000i 0.227831 + 0.227831i
\(945\) −24.7846 + 5.07180i −0.806243 + 0.164986i
\(946\) 1.73205 + 1.00000i 0.0563138 + 0.0325128i
\(947\) 15.5885 + 9.00000i 0.506557 + 0.292461i 0.731417 0.681930i \(-0.238859\pi\)
−0.224860 + 0.974391i \(0.572193\pi\)
\(948\) 2.00000 2.00000i 0.0649570 0.0649570i
\(949\) 0 0
\(950\) −5.00000 35.0000i −0.162221 1.13555i
\(951\) 19.1244 5.12436i 0.620150 0.166169i
\(952\) 2.19615 + 8.19615i 0.0711777 + 0.265639i
\(953\) −17.7583 4.75833i −0.575249 0.154137i −0.0405460 0.999178i \(-0.512910\pi\)
−0.534703 + 0.845040i \(0.679576\pi\)
\(954\) 5.00000 5.00000i 0.161881 0.161881i
\(955\) −9.85641 + 14.9282i −0.318946 + 0.483065i
\(956\) 4.09808 + 1.09808i 0.132541 + 0.0355143i
\(957\) 0 0
\(958\) −2.56218 + 9.56218i −0.0827802 + 0.308940i
\(959\) 16.0000 27.7128i 0.516667 0.894893i
\(960\) 14.6865 + 16.5622i 0.474006 + 0.534542i
\(961\) 19.0000i 0.612903i
\(962\) 0 0
\(963\) −7.00000 7.00000i −0.225572 0.225572i
\(964\) −6.22243 23.2224i −0.200411 0.747944i
\(965\) 40.1769 + 2.41154i 1.29334 + 0.0776303i
\(966\) 10.3923 6.00000i 0.334367 0.193047i
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) −23.3827 + 13.5000i −0.751548 + 0.433906i
\(969\) −3.66025 + 13.6603i −0.117584 + 0.438831i
\(970\) −2.00000 4.00000i −0.0642161 0.128432i
\(971\) 30.0000 + 51.9615i 0.962746 + 1.66752i 0.715553 + 0.698558i \(0.246175\pi\)
0.247193 + 0.968966i \(0.420492\pi\)
\(972\) −9.56218 + 2.56218i −0.306707 + 0.0821819i
\(973\) 14.0000 24.2487i 0.448819 0.777378i
\(974\) 16.0000 0.512673
\(975\) 0 0
\(976\) 14.0000 0.448129
\(977\) −31.0000 + 53.6936i −0.991778 + 1.71781i −0.385063 + 0.922890i \(0.625820\pi\)
−0.606715 + 0.794919i \(0.707513\pi\)
\(978\) −5.46410 + 1.46410i −0.174723 + 0.0468168i
\(979\) 5.00000 + 8.66025i 0.159801 + 0.276783i
\(980\) 3.00000 + 6.00000i 0.0958315 + 0.191663i
\(981\) −3.29423 + 12.2942i −0.105177 + 0.392525i
\(982\) 19.0526 11.0000i 0.607992 0.351024i
\(983\) −24.0000 −0.765481 −0.382741 0.923856i \(-0.625020\pi\)
−0.382741 + 0.923856i \(0.625020\pi\)
\(984\) 36.3731 21.0000i 1.15953 0.669456i
\(985\) 13.3923 + 0.803848i 0.426714 + 0.0256127i
\(986\) 0 0
\(987\) 12.0000 + 12.0000i 0.381964 + 0.381964i
\(988\) 0 0
\(989\) 6.00000i 0.190789i
\(990\) 2.09808 + 2.36603i 0.0666812 + 0.0751972i
\(991\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(992\) 9.15064 34.1506i 0.290533 1.08428i
\(993\) 6.00000i 0.190404i
\(994\) 2.73205 + 0.732051i 0.0866554 + 0.0232192i
\(995\) 9.85641 14.9282i 0.312469 0.473256i
\(996\) 6.00000 6.00000i 0.190117 0.190117i
\(997\) −12.2942 3.29423i −0.389362 0.104329i 0.0588266 0.998268i \(-0.481264\pi\)
−0.448189 + 0.893939i \(0.647931\pi\)
\(998\) 1.09808 + 4.09808i 0.0347590 + 0.129722i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.o.a.488.1 4
5.2 odd 4 845.2.t.a.657.1 4
13.2 odd 12 845.2.t.a.418.1 4
13.3 even 3 inner 845.2.o.a.258.1 4
13.4 even 6 845.2.k.a.268.1 2
13.5 odd 4 845.2.t.a.188.1 4
13.6 odd 12 65.2.f.a.18.1 2
13.7 odd 12 845.2.f.a.408.1 2
13.8 odd 4 845.2.t.b.188.1 4
13.9 even 3 65.2.k.a.8.1 yes 2
13.10 even 6 845.2.o.b.258.1 4
13.11 odd 12 845.2.t.b.418.1 4
13.12 even 2 845.2.o.b.488.1 4
39.32 even 12 585.2.n.c.343.1 2
39.35 odd 6 585.2.w.b.73.1 2
52.19 even 12 1040.2.cd.b.993.1 2
52.35 odd 6 1040.2.bg.a.593.1 2
65.2 even 12 inner 845.2.o.a.587.1 4
65.7 even 12 845.2.k.a.577.1 2
65.9 even 6 325.2.k.a.268.1 2
65.12 odd 4 845.2.t.b.657.1 4
65.17 odd 12 845.2.f.a.437.1 2
65.19 odd 12 325.2.f.a.18.1 2
65.22 odd 12 65.2.f.a.47.1 yes 2
65.32 even 12 65.2.k.a.57.1 yes 2
65.37 even 12 845.2.o.b.587.1 4
65.42 odd 12 845.2.t.a.427.1 4
65.47 even 4 845.2.o.b.357.1 4
65.48 odd 12 325.2.f.a.307.1 2
65.57 even 4 inner 845.2.o.a.357.1 4
65.58 even 12 325.2.k.a.57.1 2
65.62 odd 12 845.2.t.b.427.1 4
195.32 odd 12 585.2.w.b.577.1 2
195.152 even 12 585.2.n.c.307.1 2
260.87 even 12 1040.2.cd.b.177.1 2
260.227 odd 12 1040.2.bg.a.577.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.f.a.18.1 2 13.6 odd 12
65.2.f.a.47.1 yes 2 65.22 odd 12
65.2.k.a.8.1 yes 2 13.9 even 3
65.2.k.a.57.1 yes 2 65.32 even 12
325.2.f.a.18.1 2 65.19 odd 12
325.2.f.a.307.1 2 65.48 odd 12
325.2.k.a.57.1 2 65.58 even 12
325.2.k.a.268.1 2 65.9 even 6
585.2.n.c.307.1 2 195.152 even 12
585.2.n.c.343.1 2 39.32 even 12
585.2.w.b.73.1 2 39.35 odd 6
585.2.w.b.577.1 2 195.32 odd 12
845.2.f.a.408.1 2 13.7 odd 12
845.2.f.a.437.1 2 65.17 odd 12
845.2.k.a.268.1 2 13.4 even 6
845.2.k.a.577.1 2 65.7 even 12
845.2.o.a.258.1 4 13.3 even 3 inner
845.2.o.a.357.1 4 65.57 even 4 inner
845.2.o.a.488.1 4 1.1 even 1 trivial
845.2.o.a.587.1 4 65.2 even 12 inner
845.2.o.b.258.1 4 13.10 even 6
845.2.o.b.357.1 4 65.47 even 4
845.2.o.b.488.1 4 13.12 even 2
845.2.o.b.587.1 4 65.37 even 12
845.2.t.a.188.1 4 13.5 odd 4
845.2.t.a.418.1 4 13.2 odd 12
845.2.t.a.427.1 4 65.42 odd 12
845.2.t.a.657.1 4 5.2 odd 4
845.2.t.b.188.1 4 13.8 odd 4
845.2.t.b.418.1 4 13.11 odd 12
845.2.t.b.427.1 4 65.62 odd 12
845.2.t.b.657.1 4 65.12 odd 4
1040.2.bg.a.577.1 2 260.227 odd 12
1040.2.bg.a.593.1 2 52.35 odd 6
1040.2.cd.b.177.1 2 260.87 even 12
1040.2.cd.b.993.1 2 52.19 even 12