Properties

Label 1040.2.cd.b.177.1
Level $1040$
Weight $2$
Character 1040.177
Analytic conductor $8.304$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1040,2,Mod(177,1040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1040, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1040.177"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1040.cd (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2,0,-4,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.30444181021\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 177.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1040.177
Dual form 1040.2.cd.b.993.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.00000i) q^{3} +(-2.00000 - 1.00000i) q^{5} +2.00000 q^{7} +1.00000i q^{9} +(1.00000 - 1.00000i) q^{11} +(-2.00000 - 3.00000i) q^{13} +(3.00000 - 1.00000i) q^{15} +(-1.00000 + 1.00000i) q^{17} +(-5.00000 + 5.00000i) q^{19} +(-2.00000 + 2.00000i) q^{21} +(3.00000 + 3.00000i) q^{23} +(3.00000 + 4.00000i) q^{25} +(-4.00000 - 4.00000i) q^{27} +(-5.00000 - 5.00000i) q^{31} +2.00000i q^{33} +(-4.00000 - 2.00000i) q^{35} +(5.00000 + 1.00000i) q^{39} +(-7.00000 - 7.00000i) q^{41} +(-1.00000 - 1.00000i) q^{43} +(1.00000 - 2.00000i) q^{45} -6.00000 q^{47} -3.00000 q^{49} -2.00000i q^{51} +(5.00000 - 5.00000i) q^{53} +(-3.00000 + 1.00000i) q^{55} -10.0000i q^{57} +(-7.00000 - 7.00000i) q^{59} -14.0000 q^{61} +2.00000i q^{63} +(1.00000 + 8.00000i) q^{65} +4.00000i q^{67} -6.00000 q^{69} +(-1.00000 - 1.00000i) q^{71} +10.0000i q^{73} +(-7.00000 - 1.00000i) q^{75} +(2.00000 - 2.00000i) q^{77} +2.00000i q^{79} +5.00000 q^{81} -6.00000 q^{83} +(3.00000 - 1.00000i) q^{85} +(-5.00000 - 5.00000i) q^{89} +(-4.00000 - 6.00000i) q^{91} +10.0000 q^{93} +(15.0000 - 5.00000i) q^{95} +2.00000i q^{97} +(1.00000 + 1.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 4 q^{5} + 4 q^{7} + 2 q^{11} - 4 q^{13} + 6 q^{15} - 2 q^{17} - 10 q^{19} - 4 q^{21} + 6 q^{23} + 6 q^{25} - 8 q^{27} - 10 q^{31} - 8 q^{35} + 10 q^{39} - 14 q^{41} - 2 q^{43} + 2 q^{45}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1040\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(417\) \(561\) \(911\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 + 1.00000i −0.577350 + 0.577350i −0.934172 0.356822i \(-0.883860\pi\)
0.356822 + 0.934172i \(0.383860\pi\)
\(4\) 0 0
\(5\) −2.00000 1.00000i −0.894427 0.447214i
\(6\) 0 0
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 1.00000 1.00000i 0.301511 0.301511i −0.540094 0.841605i \(-0.681611\pi\)
0.841605 + 0.540094i \(0.181611\pi\)
\(12\) 0 0
\(13\) −2.00000 3.00000i −0.554700 0.832050i
\(14\) 0 0
\(15\) 3.00000 1.00000i 0.774597 0.258199i
\(16\) 0 0
\(17\) −1.00000 + 1.00000i −0.242536 + 0.242536i −0.817898 0.575363i \(-0.804861\pi\)
0.575363 + 0.817898i \(0.304861\pi\)
\(18\) 0 0
\(19\) −5.00000 + 5.00000i −1.14708 + 1.14708i −0.159954 + 0.987124i \(0.551135\pi\)
−0.987124 + 0.159954i \(0.948865\pi\)
\(20\) 0 0
\(21\) −2.00000 + 2.00000i −0.436436 + 0.436436i
\(22\) 0 0
\(23\) 3.00000 + 3.00000i 0.625543 + 0.625543i 0.946943 0.321400i \(-0.104153\pi\)
−0.321400 + 0.946943i \(0.604153\pi\)
\(24\) 0 0
\(25\) 3.00000 + 4.00000i 0.600000 + 0.800000i
\(26\) 0 0
\(27\) −4.00000 4.00000i −0.769800 0.769800i
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) −5.00000 5.00000i −0.898027 0.898027i 0.0972349 0.995261i \(-0.469000\pi\)
−0.995261 + 0.0972349i \(0.969000\pi\)
\(32\) 0 0
\(33\) 2.00000i 0.348155i
\(34\) 0 0
\(35\) −4.00000 2.00000i −0.676123 0.338062i
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 5.00000 + 1.00000i 0.800641 + 0.160128i
\(40\) 0 0
\(41\) −7.00000 7.00000i −1.09322 1.09322i −0.995183 0.0980332i \(-0.968745\pi\)
−0.0980332 0.995183i \(-0.531255\pi\)
\(42\) 0 0
\(43\) −1.00000 1.00000i −0.152499 0.152499i 0.626734 0.779233i \(-0.284391\pi\)
−0.779233 + 0.626734i \(0.784391\pi\)
\(44\) 0 0
\(45\) 1.00000 2.00000i 0.149071 0.298142i
\(46\) 0 0
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 2.00000i 0.280056i
\(52\) 0 0
\(53\) 5.00000 5.00000i 0.686803 0.686803i −0.274721 0.961524i \(-0.588586\pi\)
0.961524 + 0.274721i \(0.0885855\pi\)
\(54\) 0 0
\(55\) −3.00000 + 1.00000i −0.404520 + 0.134840i
\(56\) 0 0
\(57\) 10.0000i 1.32453i
\(58\) 0 0
\(59\) −7.00000 7.00000i −0.911322 0.911322i 0.0850540 0.996376i \(-0.472894\pi\)
−0.996376 + 0.0850540i \(0.972894\pi\)
\(60\) 0 0
\(61\) −14.0000 −1.79252 −0.896258 0.443533i \(-0.853725\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) 0 0
\(63\) 2.00000i 0.251976i
\(64\) 0 0
\(65\) 1.00000 + 8.00000i 0.124035 + 0.992278i
\(66\) 0 0
\(67\) 4.00000i 0.488678i 0.969690 + 0.244339i \(0.0785709\pi\)
−0.969690 + 0.244339i \(0.921429\pi\)
\(68\) 0 0
\(69\) −6.00000 −0.722315
\(70\) 0 0
\(71\) −1.00000 1.00000i −0.118678 0.118678i 0.645273 0.763952i \(-0.276743\pi\)
−0.763952 + 0.645273i \(0.776743\pi\)
\(72\) 0 0
\(73\) 10.0000i 1.17041i 0.810885 + 0.585206i \(0.198986\pi\)
−0.810885 + 0.585206i \(0.801014\pi\)
\(74\) 0 0
\(75\) −7.00000 1.00000i −0.808290 0.115470i
\(76\) 0 0
\(77\) 2.00000 2.00000i 0.227921 0.227921i
\(78\) 0 0
\(79\) 2.00000i 0.225018i 0.993651 + 0.112509i \(0.0358886\pi\)
−0.993651 + 0.112509i \(0.964111\pi\)
\(80\) 0 0
\(81\) 5.00000 0.555556
\(82\) 0 0
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 0 0
\(85\) 3.00000 1.00000i 0.325396 0.108465i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5.00000 5.00000i −0.529999 0.529999i 0.390573 0.920572i \(-0.372277\pi\)
−0.920572 + 0.390573i \(0.872277\pi\)
\(90\) 0 0
\(91\) −4.00000 6.00000i −0.419314 0.628971i
\(92\) 0 0
\(93\) 10.0000 1.03695
\(94\) 0 0
\(95\) 15.0000 5.00000i 1.53897 0.512989i
\(96\) 0 0
\(97\) 2.00000i 0.203069i 0.994832 + 0.101535i \(0.0323753\pi\)
−0.994832 + 0.101535i \(0.967625\pi\)
\(98\) 0 0
\(99\) 1.00000 + 1.00000i 0.100504 + 0.100504i
\(100\) 0 0
\(101\) 12.0000i 1.19404i −0.802225 0.597022i \(-0.796350\pi\)
0.802225 0.597022i \(-0.203650\pi\)
\(102\) 0 0
\(103\) 7.00000 + 7.00000i 0.689730 + 0.689730i 0.962172 0.272442i \(-0.0878312\pi\)
−0.272442 + 0.962172i \(0.587831\pi\)
\(104\) 0 0
\(105\) 6.00000 2.00000i 0.585540 0.195180i
\(106\) 0 0
\(107\) −7.00000 7.00000i −0.676716 0.676716i 0.282540 0.959256i \(-0.408823\pi\)
−0.959256 + 0.282540i \(0.908823\pi\)
\(108\) 0 0
\(109\) −9.00000 + 9.00000i −0.862044 + 0.862044i −0.991575 0.129532i \(-0.958653\pi\)
0.129532 + 0.991575i \(0.458653\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 5.00000 5.00000i 0.470360 0.470360i −0.431671 0.902031i \(-0.642076\pi\)
0.902031 + 0.431671i \(0.142076\pi\)
\(114\) 0 0
\(115\) −3.00000 9.00000i −0.279751 0.839254i
\(116\) 0 0
\(117\) 3.00000 2.00000i 0.277350 0.184900i
\(118\) 0 0
\(119\) −2.00000 + 2.00000i −0.183340 + 0.183340i
\(120\) 0 0
\(121\) 9.00000i 0.818182i
\(122\) 0 0
\(123\) 14.0000 1.26234
\(124\) 0 0
\(125\) −2.00000 11.0000i −0.178885 0.983870i
\(126\) 0 0
\(127\) 9.00000 9.00000i 0.798621 0.798621i −0.184257 0.982878i \(-0.558988\pi\)
0.982878 + 0.184257i \(0.0589879\pi\)
\(128\) 0 0
\(129\) 2.00000 0.176090
\(130\) 0 0
\(131\) 20.0000 1.74741 0.873704 0.486458i \(-0.161711\pi\)
0.873704 + 0.486458i \(0.161711\pi\)
\(132\) 0 0
\(133\) −10.0000 + 10.0000i −0.867110 + 0.867110i
\(134\) 0 0
\(135\) 4.00000 + 12.0000i 0.344265 + 1.03280i
\(136\) 0 0
\(137\) −16.0000 −1.36697 −0.683486 0.729964i \(-0.739537\pi\)
−0.683486 + 0.729964i \(0.739537\pi\)
\(138\) 0 0
\(139\) 14.0000i 1.18746i 0.804663 + 0.593732i \(0.202346\pi\)
−0.804663 + 0.593732i \(0.797654\pi\)
\(140\) 0 0
\(141\) 6.00000 6.00000i 0.505291 0.505291i
\(142\) 0 0
\(143\) −5.00000 1.00000i −0.418121 0.0836242i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 3.00000 3.00000i 0.247436 0.247436i
\(148\) 0 0
\(149\) 3.00000 3.00000i 0.245770 0.245770i −0.573462 0.819232i \(-0.694400\pi\)
0.819232 + 0.573462i \(0.194400\pi\)
\(150\) 0 0
\(151\) −7.00000 + 7.00000i −0.569652 + 0.569652i −0.932031 0.362379i \(-0.881965\pi\)
0.362379 + 0.932031i \(0.381965\pi\)
\(152\) 0 0
\(153\) −1.00000 1.00000i −0.0808452 0.0808452i
\(154\) 0 0
\(155\) 5.00000 + 15.0000i 0.401610 + 1.20483i
\(156\) 0 0
\(157\) 13.0000 + 13.0000i 1.03751 + 1.03751i 0.999268 + 0.0382445i \(0.0121766\pi\)
0.0382445 + 0.999268i \(0.487823\pi\)
\(158\) 0 0
\(159\) 10.0000i 0.793052i
\(160\) 0 0
\(161\) 6.00000 + 6.00000i 0.472866 + 0.472866i
\(162\) 0 0
\(163\) 4.00000i 0.313304i 0.987654 + 0.156652i \(0.0500701\pi\)
−0.987654 + 0.156652i \(0.949930\pi\)
\(164\) 0 0
\(165\) 2.00000 4.00000i 0.155700 0.311400i
\(166\) 0 0
\(167\) 18.0000 1.39288 0.696441 0.717614i \(-0.254766\pi\)
0.696441 + 0.717614i \(0.254766\pi\)
\(168\) 0 0
\(169\) −5.00000 + 12.0000i −0.384615 + 0.923077i
\(170\) 0 0
\(171\) −5.00000 5.00000i −0.382360 0.382360i
\(172\) 0 0
\(173\) 11.0000 + 11.0000i 0.836315 + 0.836315i 0.988372 0.152057i \(-0.0485898\pi\)
−0.152057 + 0.988372i \(0.548590\pi\)
\(174\) 0 0
\(175\) 6.00000 + 8.00000i 0.453557 + 0.604743i
\(176\) 0 0
\(177\) 14.0000 1.05230
\(178\) 0 0
\(179\) −20.0000 −1.49487 −0.747435 0.664335i \(-0.768715\pi\)
−0.747435 + 0.664335i \(0.768715\pi\)
\(180\) 0 0
\(181\) 8.00000i 0.594635i 0.954779 + 0.297318i \(0.0960920\pi\)
−0.954779 + 0.297318i \(0.903908\pi\)
\(182\) 0 0
\(183\) 14.0000 14.0000i 1.03491 1.03491i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2.00000i 0.146254i
\(188\) 0 0
\(189\) −8.00000 8.00000i −0.581914 0.581914i
\(190\) 0 0
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 0 0
\(193\) 18.0000i 1.29567i −0.761781 0.647834i \(-0.775675\pi\)
0.761781 0.647834i \(-0.224325\pi\)
\(194\) 0 0
\(195\) −9.00000 7.00000i −0.644503 0.501280i
\(196\) 0 0
\(197\) 6.00000i 0.427482i 0.976890 + 0.213741i \(0.0685649\pi\)
−0.976890 + 0.213741i \(0.931435\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) −4.00000 4.00000i −0.282138 0.282138i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 7.00000 + 21.0000i 0.488901 + 1.46670i
\(206\) 0 0
\(207\) −3.00000 + 3.00000i −0.208514 + 0.208514i
\(208\) 0 0
\(209\) 10.0000i 0.691714i
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 0 0
\(213\) 2.00000 0.137038
\(214\) 0 0
\(215\) 1.00000 + 3.00000i 0.0681994 + 0.204598i
\(216\) 0 0
\(217\) −10.0000 10.0000i −0.678844 0.678844i
\(218\) 0 0
\(219\) −10.0000 10.0000i −0.675737 0.675737i
\(220\) 0 0
\(221\) 5.00000 + 1.00000i 0.336336 + 0.0672673i
\(222\) 0 0
\(223\) −2.00000 −0.133930 −0.0669650 0.997755i \(-0.521332\pi\)
−0.0669650 + 0.997755i \(0.521332\pi\)
\(224\) 0 0
\(225\) −4.00000 + 3.00000i −0.266667 + 0.200000i
\(226\) 0 0
\(227\) 12.0000i 0.796468i 0.917284 + 0.398234i \(0.130377\pi\)
−0.917284 + 0.398234i \(0.869623\pi\)
\(228\) 0 0
\(229\) 3.00000 + 3.00000i 0.198246 + 0.198246i 0.799248 0.601002i \(-0.205232\pi\)
−0.601002 + 0.799248i \(0.705232\pi\)
\(230\) 0 0
\(231\) 4.00000i 0.263181i
\(232\) 0 0
\(233\) −1.00000 1.00000i −0.0655122 0.0655122i 0.673592 0.739104i \(-0.264751\pi\)
−0.739104 + 0.673592i \(0.764751\pi\)
\(234\) 0 0
\(235\) 12.0000 + 6.00000i 0.782794 + 0.391397i
\(236\) 0 0
\(237\) −2.00000 2.00000i −0.129914 0.129914i
\(238\) 0 0
\(239\) 3.00000 3.00000i 0.194054 0.194054i −0.603391 0.797445i \(-0.706184\pi\)
0.797445 + 0.603391i \(0.206184\pi\)
\(240\) 0 0
\(241\) 17.0000 17.0000i 1.09507 1.09507i 0.100088 0.994979i \(-0.468088\pi\)
0.994979 0.100088i \(-0.0319123\pi\)
\(242\) 0 0
\(243\) 7.00000 7.00000i 0.449050 0.449050i
\(244\) 0 0
\(245\) 6.00000 + 3.00000i 0.383326 + 0.191663i
\(246\) 0 0
\(247\) 25.0000 + 5.00000i 1.59071 + 0.318142i
\(248\) 0 0
\(249\) 6.00000 6.00000i 0.380235 0.380235i
\(250\) 0 0
\(251\) 2.00000i 0.126239i 0.998006 + 0.0631194i \(0.0201049\pi\)
−0.998006 + 0.0631194i \(0.979895\pi\)
\(252\) 0 0
\(253\) 6.00000 0.377217
\(254\) 0 0
\(255\) −2.00000 + 4.00000i −0.125245 + 0.250490i
\(256\) 0 0
\(257\) 11.0000 11.0000i 0.686161 0.686161i −0.275220 0.961381i \(-0.588751\pi\)
0.961381 + 0.275220i \(0.0887507\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.00000 + 1.00000i −0.0616626 + 0.0616626i −0.737266 0.675603i \(-0.763883\pi\)
0.675603 + 0.737266i \(0.263883\pi\)
\(264\) 0 0
\(265\) −15.0000 + 5.00000i −0.921443 + 0.307148i
\(266\) 0 0
\(267\) 10.0000 0.611990
\(268\) 0 0
\(269\) 12.0000i 0.731653i 0.930683 + 0.365826i \(0.119214\pi\)
−0.930683 + 0.365826i \(0.880786\pi\)
\(270\) 0 0
\(271\) 9.00000 9.00000i 0.546711 0.546711i −0.378777 0.925488i \(-0.623655\pi\)
0.925488 + 0.378777i \(0.123655\pi\)
\(272\) 0 0
\(273\) 10.0000 + 2.00000i 0.605228 + 0.121046i
\(274\) 0 0
\(275\) 7.00000 + 1.00000i 0.422116 + 0.0603023i
\(276\) 0 0
\(277\) 15.0000 15.0000i 0.901263 0.901263i −0.0942828 0.995545i \(-0.530056\pi\)
0.995545 + 0.0942828i \(0.0300558\pi\)
\(278\) 0 0
\(279\) 5.00000 5.00000i 0.299342 0.299342i
\(280\) 0 0
\(281\) 1.00000 1.00000i 0.0596550 0.0596550i −0.676650 0.736305i \(-0.736569\pi\)
0.736305 + 0.676650i \(0.236569\pi\)
\(282\) 0 0
\(283\) −9.00000 9.00000i −0.534994 0.534994i 0.387060 0.922055i \(-0.373491\pi\)
−0.922055 + 0.387060i \(0.873491\pi\)
\(284\) 0 0
\(285\) −10.0000 + 20.0000i −0.592349 + 1.18470i
\(286\) 0 0
\(287\) −14.0000 14.0000i −0.826394 0.826394i
\(288\) 0 0
\(289\) 15.0000i 0.882353i
\(290\) 0 0
\(291\) −2.00000 2.00000i −0.117242 0.117242i
\(292\) 0 0
\(293\) 6.00000i 0.350524i 0.984522 + 0.175262i \(0.0560772\pi\)
−0.984522 + 0.175262i \(0.943923\pi\)
\(294\) 0 0
\(295\) 7.00000 + 21.0000i 0.407556 + 1.22267i
\(296\) 0 0
\(297\) −8.00000 −0.464207
\(298\) 0 0
\(299\) 3.00000 15.0000i 0.173494 0.867472i
\(300\) 0 0
\(301\) −2.00000 2.00000i −0.115278 0.115278i
\(302\) 0 0
\(303\) 12.0000 + 12.0000i 0.689382 + 0.689382i
\(304\) 0 0
\(305\) 28.0000 + 14.0000i 1.60328 + 0.801638i
\(306\) 0 0
\(307\) −18.0000 −1.02731 −0.513657 0.857996i \(-0.671710\pi\)
−0.513657 + 0.857996i \(0.671710\pi\)
\(308\) 0 0
\(309\) −14.0000 −0.796432
\(310\) 0 0
\(311\) 6.00000i 0.340229i 0.985424 + 0.170114i \(0.0544137\pi\)
−0.985424 + 0.170114i \(0.945586\pi\)
\(312\) 0 0
\(313\) 9.00000 9.00000i 0.508710 0.508710i −0.405420 0.914130i \(-0.632875\pi\)
0.914130 + 0.405420i \(0.132875\pi\)
\(314\) 0 0
\(315\) 2.00000 4.00000i 0.112687 0.225374i
\(316\) 0 0
\(317\) 14.0000i 0.786318i −0.919470 0.393159i \(-0.871382\pi\)
0.919470 0.393159i \(-0.128618\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 14.0000 0.781404
\(322\) 0 0
\(323\) 10.0000i 0.556415i
\(324\) 0 0
\(325\) 6.00000 17.0000i 0.332820 0.942990i
\(326\) 0 0
\(327\) 18.0000i 0.995402i
\(328\) 0 0
\(329\) −12.0000 −0.661581
\(330\) 0 0
\(331\) 3.00000 + 3.00000i 0.164895 + 0.164895i 0.784731 0.619836i \(-0.212801\pi\)
−0.619836 + 0.784731i \(0.712801\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.00000 8.00000i 0.218543 0.437087i
\(336\) 0 0
\(337\) −13.0000 + 13.0000i −0.708155 + 0.708155i −0.966147 0.257992i \(-0.916939\pi\)
0.257992 + 0.966147i \(0.416939\pi\)
\(338\) 0 0
\(339\) 10.0000i 0.543125i
\(340\) 0 0
\(341\) −10.0000 −0.541530
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) 12.0000 + 6.00000i 0.646058 + 0.323029i
\(346\) 0 0
\(347\) −3.00000 3.00000i −0.161048 0.161048i 0.621983 0.783031i \(-0.286327\pi\)
−0.783031 + 0.621983i \(0.786327\pi\)
\(348\) 0 0
\(349\) −9.00000 9.00000i −0.481759 0.481759i 0.423934 0.905693i \(-0.360649\pi\)
−0.905693 + 0.423934i \(0.860649\pi\)
\(350\) 0 0
\(351\) −4.00000 + 20.0000i −0.213504 + 1.06752i
\(352\) 0 0
\(353\) −12.0000 −0.638696 −0.319348 0.947638i \(-0.603464\pi\)
−0.319348 + 0.947638i \(0.603464\pi\)
\(354\) 0 0
\(355\) 1.00000 + 3.00000i 0.0530745 + 0.159223i
\(356\) 0 0
\(357\) 4.00000i 0.211702i
\(358\) 0 0
\(359\) 1.00000 + 1.00000i 0.0527780 + 0.0527780i 0.733003 0.680225i \(-0.238118\pi\)
−0.680225 + 0.733003i \(0.738118\pi\)
\(360\) 0 0
\(361\) 31.0000i 1.63158i
\(362\) 0 0
\(363\) −9.00000 9.00000i −0.472377 0.472377i
\(364\) 0 0
\(365\) 10.0000 20.0000i 0.523424 1.04685i
\(366\) 0 0
\(367\) 1.00000 + 1.00000i 0.0521996 + 0.0521996i 0.732725 0.680525i \(-0.238248\pi\)
−0.680525 + 0.732725i \(0.738248\pi\)
\(368\) 0 0
\(369\) 7.00000 7.00000i 0.364405 0.364405i
\(370\) 0 0
\(371\) 10.0000 10.0000i 0.519174 0.519174i
\(372\) 0 0
\(373\) −15.0000 + 15.0000i −0.776671 + 0.776671i −0.979263 0.202593i \(-0.935063\pi\)
0.202593 + 0.979263i \(0.435063\pi\)
\(374\) 0 0
\(375\) 13.0000 + 9.00000i 0.671317 + 0.464758i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −1.00000 + 1.00000i −0.0513665 + 0.0513665i −0.732323 0.680957i \(-0.761564\pi\)
0.680957 + 0.732323i \(0.261564\pi\)
\(380\) 0 0
\(381\) 18.0000i 0.922168i
\(382\) 0 0
\(383\) 30.0000 1.53293 0.766464 0.642287i \(-0.222014\pi\)
0.766464 + 0.642287i \(0.222014\pi\)
\(384\) 0 0
\(385\) −6.00000 + 2.00000i −0.305788 + 0.101929i
\(386\) 0 0
\(387\) 1.00000 1.00000i 0.0508329 0.0508329i
\(388\) 0 0
\(389\) 18.0000 0.912636 0.456318 0.889817i \(-0.349168\pi\)
0.456318 + 0.889817i \(0.349168\pi\)
\(390\) 0 0
\(391\) −6.00000 −0.303433
\(392\) 0 0
\(393\) −20.0000 + 20.0000i −1.00887 + 1.00887i
\(394\) 0 0
\(395\) 2.00000 4.00000i 0.100631 0.201262i
\(396\) 0 0
\(397\) 16.0000 0.803017 0.401508 0.915855i \(-0.368486\pi\)
0.401508 + 0.915855i \(0.368486\pi\)
\(398\) 0 0
\(399\) 20.0000i 1.00125i
\(400\) 0 0
\(401\) −11.0000 + 11.0000i −0.549314 + 0.549314i −0.926242 0.376929i \(-0.876980\pi\)
0.376929 + 0.926242i \(0.376980\pi\)
\(402\) 0 0
\(403\) −5.00000 + 25.0000i −0.249068 + 1.24534i
\(404\) 0 0
\(405\) −10.0000 5.00000i −0.496904 0.248452i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 7.00000 7.00000i 0.346128 0.346128i −0.512537 0.858665i \(-0.671294\pi\)
0.858665 + 0.512537i \(0.171294\pi\)
\(410\) 0 0
\(411\) 16.0000 16.0000i 0.789222 0.789222i
\(412\) 0 0
\(413\) −14.0000 14.0000i −0.688895 0.688895i
\(414\) 0 0
\(415\) 12.0000 + 6.00000i 0.589057 + 0.294528i
\(416\) 0 0
\(417\) −14.0000 14.0000i −0.685583 0.685583i
\(418\) 0 0
\(419\) 38.0000i 1.85642i 0.372055 + 0.928211i \(0.378653\pi\)
−0.372055 + 0.928211i \(0.621347\pi\)
\(420\) 0 0
\(421\) −11.0000 11.0000i −0.536107 0.536107i 0.386276 0.922383i \(-0.373761\pi\)
−0.922383 + 0.386276i \(0.873761\pi\)
\(422\) 0 0
\(423\) 6.00000i 0.291730i
\(424\) 0 0
\(425\) −7.00000 1.00000i −0.339550 0.0485071i
\(426\) 0 0
\(427\) −28.0000 −1.35501
\(428\) 0 0
\(429\) 6.00000 4.00000i 0.289683 0.193122i
\(430\) 0 0
\(431\) −13.0000 13.0000i −0.626188 0.626188i 0.320919 0.947107i \(-0.396008\pi\)
−0.947107 + 0.320919i \(0.896008\pi\)
\(432\) 0 0
\(433\) −17.0000 17.0000i −0.816968 0.816968i 0.168700 0.985668i \(-0.446043\pi\)
−0.985668 + 0.168700i \(0.946043\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −30.0000 −1.43509
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 3.00000i 0.142857i
\(442\) 0 0
\(443\) −25.0000 + 25.0000i −1.18779 + 1.18779i −0.210108 + 0.977678i \(0.567381\pi\)
−0.977678 + 0.210108i \(0.932619\pi\)
\(444\) 0 0
\(445\) 5.00000 + 15.0000i 0.237023 + 0.711068i
\(446\) 0 0
\(447\) 6.00000i 0.283790i
\(448\) 0 0
\(449\) 3.00000 + 3.00000i 0.141579 + 0.141579i 0.774344 0.632765i \(-0.218080\pi\)
−0.632765 + 0.774344i \(0.718080\pi\)
\(450\) 0 0
\(451\) −14.0000 −0.659234
\(452\) 0 0
\(453\) 14.0000i 0.657777i
\(454\) 0 0
\(455\) 2.00000 + 16.0000i 0.0937614 + 0.750092i
\(456\) 0 0
\(457\) 2.00000i 0.0935561i 0.998905 + 0.0467780i \(0.0148953\pi\)
−0.998905 + 0.0467780i \(0.985105\pi\)
\(458\) 0 0
\(459\) 8.00000 0.373408
\(460\) 0 0
\(461\) 17.0000 + 17.0000i 0.791769 + 0.791769i 0.981782 0.190013i \(-0.0608529\pi\)
−0.190013 + 0.981782i \(0.560853\pi\)
\(462\) 0 0
\(463\) 24.0000i 1.11537i −0.830051 0.557687i \(-0.811689\pi\)
0.830051 0.557687i \(-0.188311\pi\)
\(464\) 0 0
\(465\) −20.0000 10.0000i −0.927478 0.463739i
\(466\) 0 0
\(467\) 9.00000 9.00000i 0.416470 0.416470i −0.467515 0.883985i \(-0.654851\pi\)
0.883985 + 0.467515i \(0.154851\pi\)
\(468\) 0 0
\(469\) 8.00000i 0.369406i
\(470\) 0 0
\(471\) −26.0000 −1.19802
\(472\) 0 0
\(473\) −2.00000 −0.0919601
\(474\) 0 0
\(475\) −35.0000 5.00000i −1.60591 0.229416i
\(476\) 0 0
\(477\) 5.00000 + 5.00000i 0.228934 + 0.228934i
\(478\) 0 0
\(479\) −7.00000 7.00000i −0.319838 0.319838i 0.528867 0.848705i \(-0.322617\pi\)
−0.848705 + 0.528867i \(0.822617\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −12.0000 −0.546019
\(484\) 0 0
\(485\) 2.00000 4.00000i 0.0908153 0.181631i
\(486\) 0 0
\(487\) 16.0000i 0.725029i −0.931978 0.362515i \(-0.881918\pi\)
0.931978 0.362515i \(-0.118082\pi\)
\(488\) 0 0
\(489\) −4.00000 4.00000i −0.180886 0.180886i
\(490\) 0 0
\(491\) 22.0000i 0.992846i −0.868081 0.496423i \(-0.834646\pi\)
0.868081 0.496423i \(-0.165354\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −1.00000 3.00000i −0.0449467 0.134840i
\(496\) 0 0
\(497\) −2.00000 2.00000i −0.0897123 0.0897123i
\(498\) 0 0
\(499\) 3.00000 3.00000i 0.134298 0.134298i −0.636762 0.771060i \(-0.719727\pi\)
0.771060 + 0.636762i \(0.219727\pi\)
\(500\) 0 0
\(501\) −18.0000 + 18.0000i −0.804181 + 0.804181i
\(502\) 0 0
\(503\) 3.00000 3.00000i 0.133763 0.133763i −0.637055 0.770818i \(-0.719848\pi\)
0.770818 + 0.637055i \(0.219848\pi\)
\(504\) 0 0
\(505\) −12.0000 + 24.0000i −0.533993 + 1.06799i
\(506\) 0 0
\(507\) −7.00000 17.0000i −0.310881 0.754997i
\(508\) 0 0
\(509\) −13.0000 + 13.0000i −0.576215 + 0.576215i −0.933858 0.357643i \(-0.883580\pi\)
0.357643 + 0.933858i \(0.383580\pi\)
\(510\) 0 0
\(511\) 20.0000i 0.884748i
\(512\) 0 0
\(513\) 40.0000 1.76604
\(514\) 0 0
\(515\) −7.00000 21.0000i −0.308457 0.925371i
\(516\) 0 0
\(517\) −6.00000 + 6.00000i −0.263880 + 0.263880i
\(518\) 0 0
\(519\) −22.0000 −0.965693
\(520\) 0 0
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 0 0
\(523\) −9.00000 + 9.00000i −0.393543 + 0.393543i −0.875948 0.482405i \(-0.839763\pi\)
0.482405 + 0.875948i \(0.339763\pi\)
\(524\) 0 0
\(525\) −14.0000 2.00000i −0.611010 0.0872872i
\(526\) 0 0
\(527\) 10.0000 0.435607
\(528\) 0 0
\(529\) 5.00000i 0.217391i
\(530\) 0 0
\(531\) 7.00000 7.00000i 0.303774 0.303774i
\(532\) 0 0
\(533\) −7.00000 + 35.0000i −0.303204 + 1.51602i
\(534\) 0 0
\(535\) 7.00000 + 21.0000i 0.302636 + 0.907909i
\(536\) 0 0
\(537\) 20.0000 20.0000i 0.863064 0.863064i
\(538\) 0 0
\(539\) −3.00000 + 3.00000i −0.129219 + 0.129219i
\(540\) 0 0
\(541\) 9.00000 9.00000i 0.386940 0.386940i −0.486654 0.873595i \(-0.661783\pi\)
0.873595 + 0.486654i \(0.161783\pi\)
\(542\) 0 0
\(543\) −8.00000 8.00000i −0.343313 0.343313i
\(544\) 0 0
\(545\) 27.0000 9.00000i 1.15655 0.385518i
\(546\) 0 0
\(547\) 9.00000 + 9.00000i 0.384812 + 0.384812i 0.872832 0.488020i \(-0.162281\pi\)
−0.488020 + 0.872832i \(0.662281\pi\)
\(548\) 0 0
\(549\) 14.0000i 0.597505i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 4.00000i 0.170097i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 24.0000 1.01691 0.508456 0.861088i \(-0.330216\pi\)
0.508456 + 0.861088i \(0.330216\pi\)
\(558\) 0 0
\(559\) −1.00000 + 5.00000i −0.0422955 + 0.211477i
\(560\) 0 0
\(561\) −2.00000 2.00000i −0.0844401 0.0844401i
\(562\) 0 0
\(563\) 15.0000 + 15.0000i 0.632175 + 0.632175i 0.948613 0.316438i \(-0.102487\pi\)
−0.316438 + 0.948613i \(0.602487\pi\)
\(564\) 0 0
\(565\) −15.0000 + 5.00000i −0.631055 + 0.210352i
\(566\) 0 0
\(567\) 10.0000 0.419961
\(568\) 0 0
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) 6.00000i 0.251092i −0.992088 0.125546i \(-0.959932\pi\)
0.992088 0.125546i \(-0.0400683\pi\)
\(572\) 0 0
\(573\) 8.00000 8.00000i 0.334205 0.334205i
\(574\) 0 0
\(575\) −3.00000 + 21.0000i −0.125109 + 0.875761i
\(576\) 0 0
\(577\) 46.0000i 1.91501i 0.288425 + 0.957503i \(0.406868\pi\)
−0.288425 + 0.957503i \(0.593132\pi\)
\(578\) 0 0
\(579\) 18.0000 + 18.0000i 0.748054 + 0.748054i
\(580\) 0 0
\(581\) −12.0000 −0.497844
\(582\) 0 0
\(583\) 10.0000i 0.414158i
\(584\) 0 0
\(585\) −8.00000 + 1.00000i −0.330759 + 0.0413449i
\(586\) 0 0
\(587\) 4.00000i 0.165098i 0.996587 + 0.0825488i \(0.0263060\pi\)
−0.996587 + 0.0825488i \(0.973694\pi\)
\(588\) 0 0
\(589\) 50.0000 2.06021
\(590\) 0 0
\(591\) −6.00000 6.00000i −0.246807 0.246807i
\(592\) 0 0
\(593\) 10.0000i 0.410651i −0.978694 0.205325i \(-0.934175\pi\)
0.978694 0.205325i \(-0.0658253\pi\)
\(594\) 0 0
\(595\) 6.00000 2.00000i 0.245976 0.0819920i
\(596\) 0 0
\(597\) 8.00000 8.00000i 0.327418 0.327418i
\(598\) 0 0
\(599\) 30.0000i 1.22577i −0.790173 0.612883i \(-0.790010\pi\)
0.790173 0.612883i \(-0.209990\pi\)
\(600\) 0 0
\(601\) −38.0000 −1.55005 −0.775026 0.631929i \(-0.782263\pi\)
−0.775026 + 0.631929i \(0.782263\pi\)
\(602\) 0 0
\(603\) −4.00000 −0.162893
\(604\) 0 0
\(605\) 9.00000 18.0000i 0.365902 0.731804i
\(606\) 0 0
\(607\) 13.0000 + 13.0000i 0.527654 + 0.527654i 0.919872 0.392218i \(-0.128292\pi\)
−0.392218 + 0.919872i \(0.628292\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12.0000 + 18.0000i 0.485468 + 0.728202i
\(612\) 0 0
\(613\) −20.0000 −0.807792 −0.403896 0.914805i \(-0.632344\pi\)
−0.403896 + 0.914805i \(0.632344\pi\)
\(614\) 0 0
\(615\) −28.0000 14.0000i −1.12907 0.564534i
\(616\) 0 0
\(617\) 22.0000i 0.885687i −0.896599 0.442843i \(-0.853970\pi\)
0.896599 0.442843i \(-0.146030\pi\)
\(618\) 0 0
\(619\) 25.0000 + 25.0000i 1.00483 + 1.00483i 0.999988 + 0.00484658i \(0.00154272\pi\)
0.00484658 + 0.999988i \(0.498457\pi\)
\(620\) 0 0
\(621\) 24.0000i 0.963087i
\(622\) 0 0
\(623\) −10.0000 10.0000i −0.400642 0.400642i
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 0 0
\(627\) −10.0000 10.0000i −0.399362 0.399362i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −11.0000 + 11.0000i −0.437903 + 0.437903i −0.891306 0.453403i \(-0.850210\pi\)
0.453403 + 0.891306i \(0.350210\pi\)
\(632\) 0 0
\(633\) 4.00000 4.00000i 0.158986 0.158986i
\(634\) 0 0
\(635\) −27.0000 + 9.00000i −1.07146 + 0.357154i
\(636\) 0 0
\(637\) 6.00000 + 9.00000i 0.237729 + 0.356593i
\(638\) 0 0
\(639\) 1.00000 1.00000i 0.0395594 0.0395594i
\(640\) 0 0
\(641\) 24.0000i 0.947943i 0.880540 + 0.473972i \(0.157180\pi\)
−0.880540 + 0.473972i \(0.842820\pi\)
\(642\) 0 0
\(643\) 34.0000 1.34083 0.670415 0.741987i \(-0.266116\pi\)
0.670415 + 0.741987i \(0.266116\pi\)
\(644\) 0 0
\(645\) −4.00000 2.00000i −0.157500 0.0787499i
\(646\) 0 0
\(647\) 1.00000 1.00000i 0.0393141 0.0393141i −0.687176 0.726491i \(-0.741150\pi\)
0.726491 + 0.687176i \(0.241150\pi\)
\(648\) 0 0
\(649\) −14.0000 −0.549548
\(650\) 0 0
\(651\) 20.0000 0.783862
\(652\) 0 0
\(653\) 13.0000 13.0000i 0.508729 0.508729i −0.405407 0.914136i \(-0.632870\pi\)
0.914136 + 0.405407i \(0.132870\pi\)
\(654\) 0 0
\(655\) −40.0000 20.0000i −1.56293 0.781465i
\(656\) 0 0
\(657\) −10.0000 −0.390137
\(658\) 0 0
\(659\) 26.0000i 1.01282i −0.862294 0.506408i \(-0.830973\pi\)
0.862294 0.506408i \(-0.169027\pi\)
\(660\) 0 0
\(661\) 17.0000 17.0000i 0.661223 0.661223i −0.294445 0.955668i \(-0.595135\pi\)
0.955668 + 0.294445i \(0.0951348\pi\)
\(662\) 0 0
\(663\) −6.00000 + 4.00000i −0.233021 + 0.155347i
\(664\) 0 0
\(665\) 30.0000 10.0000i 1.16335 0.387783i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 2.00000 2.00000i 0.0773245 0.0773245i
\(670\) 0 0
\(671\) −14.0000 + 14.0000i −0.540464 + 0.540464i
\(672\) 0 0
\(673\) 15.0000 + 15.0000i 0.578208 + 0.578208i 0.934409 0.356202i \(-0.115928\pi\)
−0.356202 + 0.934409i \(0.615928\pi\)
\(674\) 0 0
\(675\) 4.00000 28.0000i 0.153960 1.07772i
\(676\) 0 0
\(677\) −23.0000 23.0000i −0.883962 0.883962i 0.109973 0.993935i \(-0.464924\pi\)
−0.993935 + 0.109973i \(0.964924\pi\)
\(678\) 0 0
\(679\) 4.00000i 0.153506i
\(680\) 0 0
\(681\) −12.0000 12.0000i −0.459841 0.459841i
\(682\) 0 0
\(683\) 12.0000i 0.459167i −0.973289 0.229584i \(-0.926264\pi\)
0.973289 0.229584i \(-0.0737364\pi\)
\(684\) 0 0
\(685\) 32.0000 + 16.0000i 1.22266 + 0.611329i
\(686\) 0 0
\(687\) −6.00000 −0.228914
\(688\) 0 0
\(689\) −25.0000 5.00000i −0.952424 0.190485i
\(690\) 0 0
\(691\) 3.00000 + 3.00000i 0.114125 + 0.114125i 0.761863 0.647738i \(-0.224285\pi\)
−0.647738 + 0.761863i \(0.724285\pi\)
\(692\) 0 0
\(693\) 2.00000 + 2.00000i 0.0759737 + 0.0759737i
\(694\) 0 0
\(695\) 14.0000 28.0000i 0.531050 1.06210i
\(696\) 0 0
\(697\) 14.0000 0.530288
\(698\) 0 0
\(699\) 2.00000 0.0756469
\(700\) 0 0
\(701\) 12.0000i 0.453234i −0.973984 0.226617i \(-0.927233\pi\)
0.973984 0.226617i \(-0.0727665\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −18.0000 + 6.00000i −0.677919 + 0.225973i
\(706\) 0 0
\(707\) 24.0000i 0.902613i
\(708\) 0 0
\(709\) −29.0000 29.0000i −1.08912 1.08912i −0.995619 0.0934984i \(-0.970195\pi\)
−0.0934984 0.995619i \(-0.529805\pi\)
\(710\) 0 0
\(711\) −2.00000 −0.0750059
\(712\) 0 0
\(713\) 30.0000i 1.12351i
\(714\) 0 0
\(715\) 9.00000 + 7.00000i 0.336581 + 0.261785i
\(716\) 0 0
\(717\) 6.00000i 0.224074i
\(718\) 0 0
\(719\) −8.00000 −0.298350 −0.149175 0.988811i \(-0.547662\pi\)
−0.149175 + 0.988811i \(0.547662\pi\)
\(720\) 0 0
\(721\) 14.0000 + 14.0000i 0.521387 + 0.521387i
\(722\) 0 0
\(723\) 34.0000i 1.26447i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −35.0000 + 35.0000i −1.29808 + 1.29808i −0.368418 + 0.929660i \(0.620100\pi\)
−0.929660 + 0.368418i \(0.879900\pi\)
\(728\) 0 0
\(729\) 29.0000i 1.07407i
\(730\) 0 0
\(731\) 2.00000 0.0739727
\(732\) 0 0
\(733\) −4.00000 −0.147743 −0.0738717 0.997268i \(-0.523536\pi\)
−0.0738717 + 0.997268i \(0.523536\pi\)
\(734\) 0 0
\(735\) −9.00000 + 3.00000i −0.331970 + 0.110657i
\(736\) 0 0
\(737\) 4.00000 + 4.00000i 0.147342 + 0.147342i
\(738\) 0 0
\(739\) −3.00000 3.00000i −0.110357 0.110357i 0.649772 0.760129i \(-0.274864\pi\)
−0.760129 + 0.649772i \(0.774864\pi\)
\(740\) 0 0
\(741\) −30.0000 + 20.0000i −1.10208 + 0.734718i
\(742\) 0 0
\(743\) −34.0000 −1.24734 −0.623670 0.781688i \(-0.714359\pi\)
−0.623670 + 0.781688i \(0.714359\pi\)
\(744\) 0 0
\(745\) −9.00000 + 3.00000i −0.329734 + 0.109911i
\(746\) 0 0
\(747\) 6.00000i 0.219529i
\(748\) 0 0
\(749\) −14.0000 14.0000i −0.511549 0.511549i
\(750\) 0 0
\(751\) 50.0000i 1.82453i −0.409605 0.912263i \(-0.634333\pi\)
0.409605 0.912263i \(-0.365667\pi\)
\(752\) 0 0
\(753\) −2.00000 2.00000i −0.0728841 0.0728841i
\(754\) 0 0
\(755\) 21.0000 7.00000i 0.764268 0.254756i
\(756\) 0 0
\(757\) −35.0000 35.0000i −1.27210 1.27210i −0.944986 0.327111i \(-0.893925\pi\)
−0.327111 0.944986i \(-0.606075\pi\)
\(758\) 0 0
\(759\) −6.00000 + 6.00000i −0.217786 + 0.217786i
\(760\) 0 0
\(761\) −7.00000 + 7.00000i −0.253750 + 0.253750i −0.822506 0.568756i \(-0.807425\pi\)
0.568756 + 0.822506i \(0.307425\pi\)
\(762\) 0 0
\(763\) −18.0000 + 18.0000i −0.651644 + 0.651644i
\(764\) 0 0
\(765\) 1.00000 + 3.00000i 0.0361551 + 0.108465i
\(766\) 0 0
\(767\) −7.00000 + 35.0000i −0.252755 + 1.26378i
\(768\) 0 0
\(769\) 15.0000 15.0000i 0.540914 0.540914i −0.382883 0.923797i \(-0.625069\pi\)
0.923797 + 0.382883i \(0.125069\pi\)
\(770\) 0 0
\(771\) 22.0000i 0.792311i
\(772\) 0 0
\(773\) −32.0000 −1.15096 −0.575480 0.817816i \(-0.695185\pi\)
−0.575480 + 0.817816i \(0.695185\pi\)
\(774\) 0 0
\(775\) 5.00000 35.0000i 0.179605 1.25724i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 70.0000 2.50801
\(780\) 0 0
\(781\) −2.00000 −0.0715656
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −13.0000 39.0000i −0.463990 1.39197i
\(786\) 0 0
\(787\) 22.0000 0.784215 0.392108 0.919919i \(-0.371746\pi\)
0.392108 + 0.919919i \(0.371746\pi\)
\(788\) 0 0
\(789\) 2.00000i 0.0712019i
\(790\) 0 0
\(791\) 10.0000 10.0000i 0.355559 0.355559i
\(792\) 0 0
\(793\) 28.0000 + 42.0000i 0.994309 + 1.49146i
\(794\) 0 0
\(795\) 10.0000 20.0000i 0.354663 0.709327i
\(796\) 0 0
\(797\) −17.0000 + 17.0000i −0.602171 + 0.602171i −0.940888 0.338717i \(-0.890007\pi\)
0.338717 + 0.940888i \(0.390007\pi\)
\(798\) 0 0
\(799\) 6.00000 6.00000i 0.212265 0.212265i
\(800\) 0 0
\(801\) 5.00000 5.00000i 0.176666 0.176666i
\(802\) 0 0
\(803\) 10.0000 + 10.0000i 0.352892 + 0.352892i
\(804\) 0 0
\(805\) −6.00000 18.0000i −0.211472 0.634417i
\(806\) 0 0
\(807\) −12.0000 12.0000i −0.422420 0.422420i
\(808\) 0 0
\(809\) 28.0000i 0.984428i 0.870474 + 0.492214i \(0.163812\pi\)
−0.870474 + 0.492214i \(0.836188\pi\)
\(810\) 0 0
\(811\) 27.0000 + 27.0000i 0.948098 + 0.948098i 0.998718 0.0506198i \(-0.0161197\pi\)
−0.0506198 + 0.998718i \(0.516120\pi\)
\(812\) 0 0
\(813\) 18.0000i 0.631288i
\(814\) 0 0
\(815\) 4.00000 8.00000i 0.140114 0.280228i
\(816\) 0 0
\(817\) 10.0000 0.349856
\(818\) 0 0
\(819\) 6.00000 4.00000i 0.209657 0.139771i
\(820\) 0 0
\(821\) 9.00000 + 9.00000i 0.314102 + 0.314102i 0.846496 0.532394i \(-0.178708\pi\)
−0.532394 + 0.846496i \(0.678708\pi\)
\(822\) 0 0
\(823\) −9.00000 9.00000i −0.313720 0.313720i 0.532629 0.846349i \(-0.321204\pi\)
−0.846349 + 0.532629i \(0.821204\pi\)
\(824\) 0 0
\(825\) −8.00000 + 6.00000i −0.278524 + 0.208893i
\(826\) 0 0
\(827\) 46.0000 1.59958 0.799788 0.600282i \(-0.204945\pi\)
0.799788 + 0.600282i \(0.204945\pi\)
\(828\) 0 0
\(829\) −34.0000 −1.18087 −0.590434 0.807086i \(-0.701044\pi\)
−0.590434 + 0.807086i \(0.701044\pi\)
\(830\) 0 0
\(831\) 30.0000i 1.04069i
\(832\) 0 0
\(833\) 3.00000 3.00000i 0.103944 0.103944i
\(834\) 0 0
\(835\) −36.0000 18.0000i −1.24583 0.622916i
\(836\) 0 0
\(837\) 40.0000i 1.38260i
\(838\) 0 0
\(839\) −35.0000 35.0000i −1.20833 1.20833i −0.971566 0.236768i \(-0.923912\pi\)
−0.236768 0.971566i \(-0.576088\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) 2.00000i 0.0688837i
\(844\) 0 0
\(845\) 22.0000 19.0000i 0.756823 0.653620i
\(846\) 0 0
\(847\) 18.0000i 0.618487i
\(848\) 0 0
\(849\) 18.0000 0.617758
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 26.0000i 0.890223i −0.895475 0.445112i \(-0.853164\pi\)
0.895475 0.445112i \(-0.146836\pi\)
\(854\) 0 0
\(855\) 5.00000 + 15.0000i 0.170996 + 0.512989i
\(856\) 0 0
\(857\) 3.00000 3.00000i 0.102478 0.102478i −0.654009 0.756487i \(-0.726914\pi\)
0.756487 + 0.654009i \(0.226914\pi\)
\(858\) 0 0
\(859\) 30.0000i 1.02359i 0.859109 + 0.511793i \(0.171019\pi\)
−0.859109 + 0.511793i \(0.828981\pi\)
\(860\) 0 0
\(861\) 28.0000 0.954237
\(862\) 0 0
\(863\) 30.0000 1.02121 0.510606 0.859815i \(-0.329421\pi\)
0.510606 + 0.859815i \(0.329421\pi\)
\(864\) 0 0
\(865\) −11.0000 33.0000i −0.374011 1.12203i
\(866\) 0 0
\(867\) −15.0000 15.0000i −0.509427 0.509427i
\(868\) 0 0
\(869\) 2.00000 + 2.00000i 0.0678454 + 0.0678454i
\(870\) 0 0
\(871\) 12.0000 8.00000i 0.406604 0.271070i
\(872\) 0 0
\(873\) −2.00000 −0.0676897
\(874\) 0 0
\(875\) −4.00000 22.0000i −0.135225 0.743736i
\(876\) 0 0
\(877\) 38.0000i 1.28317i 0.767052 + 0.641584i \(0.221723\pi\)
−0.767052 + 0.641584i \(0.778277\pi\)
\(878\) 0 0
\(879\) −6.00000 6.00000i −0.202375 0.202375i
\(880\) 0 0
\(881\) 52.0000i 1.75192i 0.482380 + 0.875962i \(0.339773\pi\)
−0.482380 + 0.875962i \(0.660227\pi\)
\(882\) 0 0
\(883\) 39.0000 + 39.0000i 1.31245 + 1.31245i 0.919601 + 0.392853i \(0.128512\pi\)
0.392853 + 0.919601i \(0.371488\pi\)
\(884\) 0 0
\(885\) −28.0000 14.0000i −0.941210 0.470605i
\(886\) 0 0
\(887\) 1.00000 + 1.00000i 0.0335767 + 0.0335767i 0.723696 0.690119i \(-0.242442\pi\)
−0.690119 + 0.723696i \(0.742442\pi\)
\(888\) 0 0
\(889\) 18.0000 18.0000i 0.603701 0.603701i
\(890\) 0 0
\(891\) 5.00000 5.00000i 0.167506 0.167506i
\(892\) 0 0
\(893\) 30.0000 30.0000i 1.00391 1.00391i
\(894\) 0 0
\(895\) 40.0000 + 20.0000i 1.33705 + 0.668526i
\(896\) 0 0
\(897\) 12.0000 + 18.0000i 0.400668 + 0.601003i
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 10.0000i 0.333148i
\(902\) 0 0
\(903\) 4.00000 0.133112
\(904\) 0 0
\(905\) 8.00000 16.0000i 0.265929 0.531858i
\(906\) 0 0
\(907\) −39.0000 + 39.0000i −1.29497 + 1.29497i −0.363303 + 0.931671i \(0.618351\pi\)
−0.931671 + 0.363303i \(0.881649\pi\)
\(908\) 0 0
\(909\) 12.0000 0.398015
\(910\) 0 0
\(911\) −24.0000 −0.795155 −0.397578 0.917568i \(-0.630149\pi\)
−0.397578 + 0.917568i \(0.630149\pi\)
\(912\) 0 0
\(913\) −6.00000 + 6.00000i −0.198571 + 0.198571i
\(914\) 0 0
\(915\) −42.0000 + 14.0000i −1.38848 + 0.462826i
\(916\) 0 0
\(917\) 40.0000 1.32092
\(918\) 0 0
\(919\) 10.0000i 0.329870i 0.986304 + 0.164935i \(0.0527414\pi\)
−0.986304 + 0.164935i \(0.947259\pi\)
\(920\) 0 0
\(921\) 18.0000 18.0000i 0.593120 0.593120i
\(922\) 0 0
\(923\) −1.00000 + 5.00000i −0.0329154 + 0.164577i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −7.00000 + 7.00000i −0.229910 + 0.229910i
\(928\) 0 0
\(929\) 19.0000 19.0000i 0.623370 0.623370i −0.323022 0.946392i \(-0.604699\pi\)
0.946392 + 0.323022i \(0.104699\pi\)
\(930\) 0 0
\(931\) 15.0000 15.0000i 0.491605 0.491605i
\(932\) 0 0
\(933\) −6.00000 6.00000i −0.196431 0.196431i
\(934\) 0 0
\(935\) 2.00000 4.00000i 0.0654070 0.130814i
\(936\) 0 0
\(937\) −7.00000 7.00000i −0.228680 0.228680i 0.583461 0.812141i \(-0.301698\pi\)
−0.812141 + 0.583461i \(0.801698\pi\)
\(938\) 0 0
\(939\) 18.0000i 0.587408i
\(940\) 0 0
\(941\) 21.0000 + 21.0000i 0.684580 + 0.684580i 0.961029 0.276448i \(-0.0891575\pi\)
−0.276448 + 0.961029i \(0.589157\pi\)
\(942\) 0 0
\(943\) 42.0000i 1.36771i
\(944\) 0 0
\(945\) 8.00000 + 24.0000i 0.260240 + 0.780720i
\(946\) 0 0
\(947\) −18.0000 −0.584921 −0.292461 0.956278i \(-0.594474\pi\)
−0.292461 + 0.956278i \(0.594474\pi\)
\(948\) 0 0
\(949\) 30.0000 20.0000i 0.973841 0.649227i
\(950\) 0 0
\(951\) 14.0000 + 14.0000i 0.453981 + 0.453981i
\(952\) 0 0
\(953\) −13.0000 13.0000i −0.421111 0.421111i 0.464475 0.885586i \(-0.346243\pi\)
−0.885586 + 0.464475i \(0.846243\pi\)
\(954\) 0 0
\(955\) 16.0000 + 8.00000i 0.517748 + 0.258874i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −32.0000 −1.03333
\(960\) 0 0
\(961\) 19.0000i 0.612903i
\(962\) 0 0
\(963\) 7.00000 7.00000i 0.225572 0.225572i
\(964\) 0 0
\(965\) −18.0000 + 36.0000i −0.579441 + 1.15888i
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 10.0000 + 10.0000i 0.321246 + 0.321246i
\(970\) 0 0
\(971\) 60.0000 1.92549 0.962746 0.270408i \(-0.0871586\pi\)
0.962746 + 0.270408i \(0.0871586\pi\)
\(972\) 0 0
\(973\) 28.0000i 0.897639i
\(974\) 0 0
\(975\) 11.0000 + 23.0000i 0.352282 + 0.736590i
\(976\) 0 0
\(977\) 62.0000i 1.98356i 0.127971 + 0.991778i \(0.459153\pi\)
−0.127971 + 0.991778i \(0.540847\pi\)
\(978\) 0 0
\(979\) −10.0000 −0.319601
\(980\) 0 0
\(981\) −9.00000 9.00000i −0.287348 0.287348i
\(982\) 0 0
\(983\) 24.0000i 0.765481i −0.923856 0.382741i \(-0.874980\pi\)
0.923856 0.382741i \(-0.125020\pi\)
\(984\) 0 0
\(985\) 6.00000 12.0000i 0.191176 0.382352i
\(986\) 0 0
\(987\) 12.0000 12.0000i 0.381964 0.381964i
\(988\) 0 0
\(989\) 6.00000i 0.190789i
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) −6.00000 −0.190404
\(994\) 0 0
\(995\) 16.0000 + 8.00000i 0.507234 + 0.253617i
\(996\) 0 0
\(997\) 9.00000 + 9.00000i 0.285033 + 0.285033i 0.835112 0.550079i \(-0.185403\pi\)
−0.550079 + 0.835112i \(0.685403\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.2.cd.b.177.1 2
4.3 odd 2 65.2.f.a.47.1 yes 2
5.3 odd 4 1040.2.bg.a.593.1 2
12.11 even 2 585.2.n.c.307.1 2
13.5 odd 4 1040.2.bg.a.577.1 2
20.3 even 4 65.2.k.a.8.1 yes 2
20.7 even 4 325.2.k.a.268.1 2
20.19 odd 2 325.2.f.a.307.1 2
52.3 odd 6 845.2.t.a.657.1 4
52.7 even 12 845.2.o.b.587.1 4
52.11 even 12 845.2.o.b.357.1 4
52.15 even 12 845.2.o.a.357.1 4
52.19 even 12 845.2.o.a.587.1 4
52.23 odd 6 845.2.t.b.657.1 4
52.31 even 4 65.2.k.a.57.1 yes 2
52.35 odd 6 845.2.t.a.427.1 4
52.43 odd 6 845.2.t.b.427.1 4
52.47 even 4 845.2.k.a.577.1 2
52.51 odd 2 845.2.f.a.437.1 2
60.23 odd 4 585.2.w.b.73.1 2
65.18 even 4 inner 1040.2.cd.b.993.1 2
156.83 odd 4 585.2.w.b.577.1 2
260.3 even 12 845.2.o.a.488.1 4
260.23 even 12 845.2.o.b.488.1 4
260.43 even 12 845.2.o.b.258.1 4
260.63 odd 12 845.2.t.b.188.1 4
260.83 odd 4 65.2.f.a.18.1 2
260.103 even 4 845.2.k.a.268.1 2
260.123 odd 12 845.2.t.a.418.1 4
260.163 odd 12 845.2.t.b.418.1 4
260.187 odd 4 325.2.f.a.18.1 2
260.203 odd 4 845.2.f.a.408.1 2
260.223 odd 12 845.2.t.a.188.1 4
260.239 even 4 325.2.k.a.57.1 2
260.243 even 12 845.2.o.a.258.1 4
780.83 even 4 585.2.n.c.343.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.f.a.18.1 2 260.83 odd 4
65.2.f.a.47.1 yes 2 4.3 odd 2
65.2.k.a.8.1 yes 2 20.3 even 4
65.2.k.a.57.1 yes 2 52.31 even 4
325.2.f.a.18.1 2 260.187 odd 4
325.2.f.a.307.1 2 20.19 odd 2
325.2.k.a.57.1 2 260.239 even 4
325.2.k.a.268.1 2 20.7 even 4
585.2.n.c.307.1 2 12.11 even 2
585.2.n.c.343.1 2 780.83 even 4
585.2.w.b.73.1 2 60.23 odd 4
585.2.w.b.577.1 2 156.83 odd 4
845.2.f.a.408.1 2 260.203 odd 4
845.2.f.a.437.1 2 52.51 odd 2
845.2.k.a.268.1 2 260.103 even 4
845.2.k.a.577.1 2 52.47 even 4
845.2.o.a.258.1 4 260.243 even 12
845.2.o.a.357.1 4 52.15 even 12
845.2.o.a.488.1 4 260.3 even 12
845.2.o.a.587.1 4 52.19 even 12
845.2.o.b.258.1 4 260.43 even 12
845.2.o.b.357.1 4 52.11 even 12
845.2.o.b.488.1 4 260.23 even 12
845.2.o.b.587.1 4 52.7 even 12
845.2.t.a.188.1 4 260.223 odd 12
845.2.t.a.418.1 4 260.123 odd 12
845.2.t.a.427.1 4 52.35 odd 6
845.2.t.a.657.1 4 52.3 odd 6
845.2.t.b.188.1 4 260.63 odd 12
845.2.t.b.418.1 4 260.163 odd 12
845.2.t.b.427.1 4 52.43 odd 6
845.2.t.b.657.1 4 52.23 odd 6
1040.2.bg.a.577.1 2 13.5 odd 4
1040.2.bg.a.593.1 2 5.3 odd 4
1040.2.cd.b.177.1 2 1.1 even 1 trivial
1040.2.cd.b.993.1 2 65.18 even 4 inner