Properties

Label 845.2.o.b.258.1
Level $845$
Weight $2$
Character 845.258
Analytic conductor $6.747$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(258,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.258"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.o (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,-2,2,4,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 258.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 845.258
Dual form 845.2.o.b.357.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(0.366025 - 1.36603i) q^{3} +(0.500000 - 0.866025i) q^{4} +(1.00000 + 2.00000i) q^{5} +(1.36603 - 0.366025i) q^{6} +(1.73205 + 1.00000i) q^{7} +3.00000 q^{8} +(0.866025 + 0.500000i) q^{9} +(-1.23205 + 1.86603i) q^{10} +(-1.36603 - 0.366025i) q^{11} +(-1.00000 - 1.00000i) q^{12} +2.00000i q^{14} +(3.09808 - 0.633975i) q^{15} +(0.500000 + 0.866025i) q^{16} +(-1.36603 + 0.366025i) q^{17} +1.00000i q^{18} +(1.83013 + 6.83013i) q^{19} +(2.23205 + 0.133975i) q^{20} +(2.00000 - 2.00000i) q^{21} +(-0.366025 - 1.36603i) q^{22} +(-4.09808 - 1.09808i) q^{23} +(1.09808 - 4.09808i) q^{24} +(-3.00000 + 4.00000i) q^{25} +(4.00000 - 4.00000i) q^{27} +(1.73205 - 1.00000i) q^{28} +(2.09808 + 2.36603i) q^{30} +(-5.00000 - 5.00000i) q^{31} +(2.50000 - 4.33013i) q^{32} +(-1.00000 + 1.73205i) q^{33} +(-1.00000 - 1.00000i) q^{34} +(-0.267949 + 4.46410i) q^{35} +(0.866025 - 0.500000i) q^{36} +(-5.00000 + 5.00000i) q^{38} +(3.00000 + 6.00000i) q^{40} +(2.56218 - 9.56218i) q^{41} +(2.73205 + 0.732051i) q^{42} +(-0.366025 - 1.36603i) q^{43} +(-1.00000 + 1.00000i) q^{44} +(-0.133975 + 2.23205i) q^{45} +(-1.09808 - 4.09808i) q^{46} +6.00000i q^{47} +(1.36603 - 0.366025i) q^{48} +(-1.50000 - 2.59808i) q^{49} +(-4.96410 - 0.598076i) q^{50} +2.00000i q^{51} +(5.00000 + 5.00000i) q^{53} +(5.46410 + 1.46410i) q^{54} +(-0.633975 - 3.09808i) q^{55} +(5.19615 + 3.00000i) q^{56} +10.0000 q^{57} +(-9.56218 + 2.56218i) q^{59} +(1.00000 - 3.00000i) q^{60} +(7.00000 - 12.1244i) q^{61} +(1.83013 - 6.83013i) q^{62} +(1.00000 + 1.73205i) q^{63} +7.00000 q^{64} -2.00000 q^{66} +(-2.00000 - 3.46410i) q^{67} +(-0.366025 + 1.36603i) q^{68} +(-3.00000 + 5.19615i) q^{69} +(-4.00000 + 2.00000i) q^{70} +(1.36603 - 0.366025i) q^{71} +(2.59808 + 1.50000i) q^{72} +10.0000 q^{73} +(4.36603 + 5.56218i) q^{75} +(6.83013 + 1.83013i) q^{76} +(-2.00000 - 2.00000i) q^{77} +2.00000i q^{79} +(-1.23205 + 1.86603i) q^{80} +(-2.50000 - 4.33013i) q^{81} +(9.56218 - 2.56218i) q^{82} -6.00000i q^{83} +(-0.732051 - 2.73205i) q^{84} +(-2.09808 - 2.36603i) q^{85} +(1.00000 - 1.00000i) q^{86} +(-4.09808 - 1.09808i) q^{88} +(-1.83013 + 6.83013i) q^{89} +(-2.00000 + 1.00000i) q^{90} +(-3.00000 + 3.00000i) q^{92} +(-8.66025 + 5.00000i) q^{93} +(-5.19615 + 3.00000i) q^{94} +(-11.8301 + 10.4904i) q^{95} +(-5.00000 - 5.00000i) q^{96} +(1.00000 - 1.73205i) q^{97} +(1.50000 - 2.59808i) q^{98} +(-1.00000 - 1.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{3} + 2 q^{4} + 4 q^{5} + 2 q^{6} + 12 q^{8} + 2 q^{10} - 2 q^{11} - 4 q^{12} + 2 q^{15} + 2 q^{16} - 2 q^{17} - 10 q^{19} + 2 q^{20} + 8 q^{21} + 2 q^{22} - 6 q^{23} - 6 q^{24} - 12 q^{25}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i 0.986869 0.161521i \(-0.0516399\pi\)
−0.633316 + 0.773893i \(0.718307\pi\)
\(3\) 0.366025 1.36603i 0.211325 0.788675i −0.776103 0.630606i \(-0.782806\pi\)
0.987428 0.158069i \(-0.0505269\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 1.00000 + 2.00000i 0.447214 + 0.894427i
\(6\) 1.36603 0.366025i 0.557678 0.149429i
\(7\) 1.73205 + 1.00000i 0.654654 + 0.377964i 0.790237 0.612801i \(-0.209957\pi\)
−0.135583 + 0.990766i \(0.543291\pi\)
\(8\) 3.00000 1.06066
\(9\) 0.866025 + 0.500000i 0.288675 + 0.166667i
\(10\) −1.23205 + 1.86603i −0.389609 + 0.590089i
\(11\) −1.36603 0.366025i −0.411872 0.110361i 0.0469323 0.998898i \(-0.485055\pi\)
−0.458804 + 0.888537i \(0.651722\pi\)
\(12\) −1.00000 1.00000i −0.288675 0.288675i
\(13\) 0 0
\(14\) 2.00000i 0.534522i
\(15\) 3.09808 0.633975i 0.799920 0.163692i
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) −1.36603 + 0.366025i −0.331310 + 0.0887742i −0.420639 0.907228i \(-0.638194\pi\)
0.0893296 + 0.996002i \(0.471528\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 1.83013 + 6.83013i 0.419860 + 1.56694i 0.774898 + 0.632087i \(0.217801\pi\)
−0.355038 + 0.934852i \(0.615532\pi\)
\(20\) 2.23205 + 0.133975i 0.499102 + 0.0299576i
\(21\) 2.00000 2.00000i 0.436436 0.436436i
\(22\) −0.366025 1.36603i −0.0780369 0.291238i
\(23\) −4.09808 1.09808i −0.854508 0.228965i −0.195131 0.980777i \(-0.562513\pi\)
−0.659377 + 0.751812i \(0.729180\pi\)
\(24\) 1.09808 4.09808i 0.224144 0.836516i
\(25\) −3.00000 + 4.00000i −0.600000 + 0.800000i
\(26\) 0 0
\(27\) 4.00000 4.00000i 0.769800 0.769800i
\(28\) 1.73205 1.00000i 0.327327 0.188982i
\(29\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(30\) 2.09808 + 2.36603i 0.383055 + 0.431975i
\(31\) −5.00000 5.00000i −0.898027 0.898027i 0.0972349 0.995261i \(-0.469000\pi\)
−0.995261 + 0.0972349i \(0.969000\pi\)
\(32\) 2.50000 4.33013i 0.441942 0.765466i
\(33\) −1.00000 + 1.73205i −0.174078 + 0.301511i
\(34\) −1.00000 1.00000i −0.171499 0.171499i
\(35\) −0.267949 + 4.46410i −0.0452917 + 0.754571i
\(36\) 0.866025 0.500000i 0.144338 0.0833333i
\(37\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(38\) −5.00000 + 5.00000i −0.811107 + 0.811107i
\(39\) 0 0
\(40\) 3.00000 + 6.00000i 0.474342 + 0.948683i
\(41\) 2.56218 9.56218i 0.400145 1.49336i −0.412692 0.910870i \(-0.635412\pi\)
0.812837 0.582491i \(-0.197922\pi\)
\(42\) 2.73205 + 0.732051i 0.421565 + 0.112958i
\(43\) −0.366025 1.36603i −0.0558184 0.208317i 0.932384 0.361468i \(-0.117724\pi\)
−0.988203 + 0.153151i \(0.951058\pi\)
\(44\) −1.00000 + 1.00000i −0.150756 + 0.150756i
\(45\) −0.133975 + 2.23205i −0.0199718 + 0.332734i
\(46\) −1.09808 4.09808i −0.161903 0.604228i
\(47\) 6.00000i 0.875190i 0.899172 + 0.437595i \(0.144170\pi\)
−0.899172 + 0.437595i \(0.855830\pi\)
\(48\) 1.36603 0.366025i 0.197169 0.0528312i
\(49\) −1.50000 2.59808i −0.214286 0.371154i
\(50\) −4.96410 0.598076i −0.702030 0.0845807i
\(51\) 2.00000i 0.280056i
\(52\) 0 0
\(53\) 5.00000 + 5.00000i 0.686803 + 0.686803i 0.961524 0.274721i \(-0.0885855\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) 5.46410 + 1.46410i 0.743570 + 0.199239i
\(55\) −0.633975 3.09808i −0.0854851 0.417745i
\(56\) 5.19615 + 3.00000i 0.694365 + 0.400892i
\(57\) 10.0000 1.32453
\(58\) 0 0
\(59\) −9.56218 + 2.56218i −1.24489 + 0.333567i −0.820360 0.571847i \(-0.806227\pi\)
−0.424529 + 0.905414i \(0.639560\pi\)
\(60\) 1.00000 3.00000i 0.129099 0.387298i
\(61\) 7.00000 12.1244i 0.896258 1.55236i 0.0640184 0.997949i \(-0.479608\pi\)
0.832240 0.554416i \(-0.187058\pi\)
\(62\) 1.83013 6.83013i 0.232426 0.867427i
\(63\) 1.00000 + 1.73205i 0.125988 + 0.218218i
\(64\) 7.00000 0.875000
\(65\) 0 0
\(66\) −2.00000 −0.246183
\(67\) −2.00000 3.46410i −0.244339 0.423207i 0.717607 0.696449i \(-0.245238\pi\)
−0.961946 + 0.273241i \(0.911904\pi\)
\(68\) −0.366025 + 1.36603i −0.0443871 + 0.165655i
\(69\) −3.00000 + 5.19615i −0.361158 + 0.625543i
\(70\) −4.00000 + 2.00000i −0.478091 + 0.239046i
\(71\) 1.36603 0.366025i 0.162117 0.0434392i −0.176847 0.984238i \(-0.556590\pi\)
0.338965 + 0.940799i \(0.389923\pi\)
\(72\) 2.59808 + 1.50000i 0.306186 + 0.176777i
\(73\) 10.0000 1.17041 0.585206 0.810885i \(-0.301014\pi\)
0.585206 + 0.810885i \(0.301014\pi\)
\(74\) 0 0
\(75\) 4.36603 + 5.56218i 0.504145 + 0.642265i
\(76\) 6.83013 + 1.83013i 0.783469 + 0.209930i
\(77\) −2.00000 2.00000i −0.227921 0.227921i
\(78\) 0 0
\(79\) 2.00000i 0.225018i 0.993651 + 0.112509i \(0.0358886\pi\)
−0.993651 + 0.112509i \(0.964111\pi\)
\(80\) −1.23205 + 1.86603i −0.137747 + 0.208628i
\(81\) −2.50000 4.33013i −0.277778 0.481125i
\(82\) 9.56218 2.56218i 1.05597 0.282945i
\(83\) 6.00000i 0.658586i −0.944228 0.329293i \(-0.893190\pi\)
0.944228 0.329293i \(-0.106810\pi\)
\(84\) −0.732051 2.73205i −0.0798733 0.298091i
\(85\) −2.09808 2.36603i −0.227568 0.256631i
\(86\) 1.00000 1.00000i 0.107833 0.107833i
\(87\) 0 0
\(88\) −4.09808 1.09808i −0.436856 0.117055i
\(89\) −1.83013 + 6.83013i −0.193993 + 0.723992i 0.798532 + 0.601952i \(0.205610\pi\)
−0.992525 + 0.122040i \(0.961056\pi\)
\(90\) −2.00000 + 1.00000i −0.210819 + 0.105409i
\(91\) 0 0
\(92\) −3.00000 + 3.00000i −0.312772 + 0.312772i
\(93\) −8.66025 + 5.00000i −0.898027 + 0.518476i
\(94\) −5.19615 + 3.00000i −0.535942 + 0.309426i
\(95\) −11.8301 + 10.4904i −1.21375 + 1.07629i
\(96\) −5.00000 5.00000i −0.510310 0.510310i
\(97\) 1.00000 1.73205i 0.101535 0.175863i −0.810782 0.585348i \(-0.800958\pi\)
0.912317 + 0.409484i \(0.134291\pi\)
\(98\) 1.50000 2.59808i 0.151523 0.262445i
\(99\) −1.00000 1.00000i −0.100504 0.100504i
\(100\) 1.96410 + 4.59808i 0.196410 + 0.459808i
\(101\) −10.3923 + 6.00000i −1.03407 + 0.597022i −0.918149 0.396236i \(-0.870316\pi\)
−0.115924 + 0.993258i \(0.536983\pi\)
\(102\) −1.73205 + 1.00000i −0.171499 + 0.0990148i
\(103\) 7.00000 7.00000i 0.689730 0.689730i −0.272442 0.962172i \(-0.587831\pi\)
0.962172 + 0.272442i \(0.0878312\pi\)
\(104\) 0 0
\(105\) 6.00000 + 2.00000i 0.585540 + 0.195180i
\(106\) −1.83013 + 6.83013i −0.177758 + 0.663401i
\(107\) −9.56218 2.56218i −0.924411 0.247695i −0.234941 0.972010i \(-0.575490\pi\)
−0.689470 + 0.724315i \(0.742156\pi\)
\(108\) −1.46410 5.46410i −0.140883 0.525783i
\(109\) −9.00000 + 9.00000i −0.862044 + 0.862044i −0.991575 0.129532i \(-0.958653\pi\)
0.129532 + 0.991575i \(0.458653\pi\)
\(110\) 2.36603 2.09808i 0.225592 0.200044i
\(111\) 0 0
\(112\) 2.00000i 0.188982i
\(113\) −6.83013 + 1.83013i −0.642524 + 0.172164i −0.565347 0.824853i \(-0.691258\pi\)
−0.0771777 + 0.997017i \(0.524591\pi\)
\(114\) 5.00000 + 8.66025i 0.468293 + 0.811107i
\(115\) −1.90192 9.29423i −0.177355 0.866691i
\(116\) 0 0
\(117\) 0 0
\(118\) −7.00000 7.00000i −0.644402 0.644402i
\(119\) −2.73205 0.732051i −0.250447 0.0671070i
\(120\) 9.29423 1.90192i 0.848443 0.173621i
\(121\) −7.79423 4.50000i −0.708566 0.409091i
\(122\) 14.0000 1.26750
\(123\) −12.1244 7.00000i −1.09322 0.631169i
\(124\) −6.83013 + 1.83013i −0.613364 + 0.164350i
\(125\) −11.0000 2.00000i −0.983870 0.178885i
\(126\) −1.00000 + 1.73205i −0.0890871 + 0.154303i
\(127\) 3.29423 12.2942i 0.292316 1.09094i −0.651010 0.759069i \(-0.725655\pi\)
0.943326 0.331868i \(-0.107679\pi\)
\(128\) −1.50000 2.59808i −0.132583 0.229640i
\(129\) −2.00000 −0.176090
\(130\) 0 0
\(131\) −20.0000 −1.74741 −0.873704 0.486458i \(-0.838289\pi\)
−0.873704 + 0.486458i \(0.838289\pi\)
\(132\) 1.00000 + 1.73205i 0.0870388 + 0.150756i
\(133\) −3.66025 + 13.6603i −0.317384 + 1.18449i
\(134\) 2.00000 3.46410i 0.172774 0.299253i
\(135\) 12.0000 + 4.00000i 1.03280 + 0.344265i
\(136\) −4.09808 + 1.09808i −0.351407 + 0.0941593i
\(137\) 13.8564 + 8.00000i 1.18383 + 0.683486i 0.956898 0.290424i \(-0.0937963\pi\)
0.226935 + 0.973910i \(0.427130\pi\)
\(138\) −6.00000 −0.510754
\(139\) −12.1244 7.00000i −1.02837 0.593732i −0.111856 0.993724i \(-0.535679\pi\)
−0.916519 + 0.399992i \(0.869013\pi\)
\(140\) 3.73205 + 2.46410i 0.315416 + 0.208255i
\(141\) 8.19615 + 2.19615i 0.690241 + 0.184949i
\(142\) 1.00000 + 1.00000i 0.0839181 + 0.0839181i
\(143\) 0 0
\(144\) 1.00000i 0.0833333i
\(145\) 0 0
\(146\) 5.00000 + 8.66025i 0.413803 + 0.716728i
\(147\) −4.09808 + 1.09808i −0.338004 + 0.0905678i
\(148\) 0 0
\(149\) 1.09808 + 4.09808i 0.0899579 + 0.335727i 0.996207 0.0870170i \(-0.0277334\pi\)
−0.906249 + 0.422744i \(0.861067\pi\)
\(150\) −2.63397 + 6.56218i −0.215063 + 0.535800i
\(151\) −7.00000 + 7.00000i −0.569652 + 0.569652i −0.932031 0.362379i \(-0.881965\pi\)
0.362379 + 0.932031i \(0.381965\pi\)
\(152\) 5.49038 + 20.4904i 0.445329 + 1.66199i
\(153\) −1.36603 0.366025i −0.110437 0.0295914i
\(154\) 0.732051 2.73205i 0.0589903 0.220155i
\(155\) 5.00000 15.0000i 0.401610 1.20483i
\(156\) 0 0
\(157\) 13.0000 13.0000i 1.03751 1.03751i 0.0382445 0.999268i \(-0.487823\pi\)
0.999268 0.0382445i \(-0.0121766\pi\)
\(158\) −1.73205 + 1.00000i −0.137795 + 0.0795557i
\(159\) 8.66025 5.00000i 0.686803 0.396526i
\(160\) 11.1603 + 0.669873i 0.882296 + 0.0529581i
\(161\) −6.00000 6.00000i −0.472866 0.472866i
\(162\) 2.50000 4.33013i 0.196419 0.340207i
\(163\) 2.00000 3.46410i 0.156652 0.271329i −0.777007 0.629492i \(-0.783263\pi\)
0.933659 + 0.358162i \(0.116597\pi\)
\(164\) −7.00000 7.00000i −0.546608 0.546608i
\(165\) −4.46410 0.267949i −0.347530 0.0208598i
\(166\) 5.19615 3.00000i 0.403300 0.232845i
\(167\) −15.5885 + 9.00000i −1.20627 + 0.696441i −0.961943 0.273252i \(-0.911901\pi\)
−0.244328 + 0.969693i \(0.578568\pi\)
\(168\) 6.00000 6.00000i 0.462910 0.462910i
\(169\) 0 0
\(170\) 1.00000 3.00000i 0.0766965 0.230089i
\(171\) −1.83013 + 6.83013i −0.139953 + 0.522313i
\(172\) −1.36603 0.366025i −0.104158 0.0279092i
\(173\) −4.02628 15.0263i −0.306112 1.14243i −0.931984 0.362500i \(-0.881923\pi\)
0.625871 0.779926i \(-0.284744\pi\)
\(174\) 0 0
\(175\) −9.19615 + 3.92820i −0.695164 + 0.296944i
\(176\) −0.366025 1.36603i −0.0275902 0.102968i
\(177\) 14.0000i 1.05230i
\(178\) −6.83013 + 1.83013i −0.511940 + 0.137174i
\(179\) 10.0000 + 17.3205i 0.747435 + 1.29460i 0.949048 + 0.315130i \(0.102048\pi\)
−0.201613 + 0.979465i \(0.564618\pi\)
\(180\) 1.86603 + 1.23205i 0.139085 + 0.0918316i
\(181\) 8.00000i 0.594635i 0.954779 + 0.297318i \(0.0960920\pi\)
−0.954779 + 0.297318i \(0.903908\pi\)
\(182\) 0 0
\(183\) −14.0000 14.0000i −1.03491 1.03491i
\(184\) −12.2942 3.29423i −0.906343 0.242854i
\(185\) 0 0
\(186\) −8.66025 5.00000i −0.635001 0.366618i
\(187\) 2.00000 0.146254
\(188\) 5.19615 + 3.00000i 0.378968 + 0.218797i
\(189\) 10.9282 2.92820i 0.794910 0.212995i
\(190\) −15.0000 5.00000i −1.08821 0.362738i
\(191\) −4.00000 + 6.92820i −0.289430 + 0.501307i −0.973674 0.227946i \(-0.926799\pi\)
0.684244 + 0.729253i \(0.260132\pi\)
\(192\) 2.56218 9.56218i 0.184909 0.690091i
\(193\) 9.00000 + 15.5885i 0.647834 + 1.12208i 0.983639 + 0.180150i \(0.0576584\pi\)
−0.335805 + 0.941932i \(0.609008\pi\)
\(194\) 2.00000 0.143592
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 3.00000 + 5.19615i 0.213741 + 0.370211i 0.952882 0.303340i \(-0.0981018\pi\)
−0.739141 + 0.673550i \(0.764768\pi\)
\(198\) 0.366025 1.36603i 0.0260123 0.0970792i
\(199\) 4.00000 6.92820i 0.283552 0.491127i −0.688705 0.725042i \(-0.741820\pi\)
0.972257 + 0.233915i \(0.0751537\pi\)
\(200\) −9.00000 + 12.0000i −0.636396 + 0.848528i
\(201\) −5.46410 + 1.46410i −0.385408 + 0.103270i
\(202\) −10.3923 6.00000i −0.731200 0.422159i
\(203\) 0 0
\(204\) 1.73205 + 1.00000i 0.121268 + 0.0700140i
\(205\) 21.6865 4.43782i 1.51465 0.309951i
\(206\) 9.56218 + 2.56218i 0.666228 + 0.178515i
\(207\) −3.00000 3.00000i −0.208514 0.208514i
\(208\) 0 0
\(209\) 10.0000i 0.691714i
\(210\) 1.26795 + 6.19615i 0.0874968 + 0.427575i
\(211\) −2.00000 3.46410i −0.137686 0.238479i 0.788935 0.614477i \(-0.210633\pi\)
−0.926620 + 0.375999i \(0.877300\pi\)
\(212\) 6.83013 1.83013i 0.469095 0.125694i
\(213\) 2.00000i 0.137038i
\(214\) −2.56218 9.56218i −0.175147 0.653657i
\(215\) 2.36603 2.09808i 0.161362 0.143088i
\(216\) 12.0000 12.0000i 0.816497 0.816497i
\(217\) −3.66025 13.6603i −0.248474 0.927318i
\(218\) −12.2942 3.29423i −0.832670 0.223113i
\(219\) 3.66025 13.6603i 0.247337 0.923074i
\(220\) −3.00000 1.00000i −0.202260 0.0674200i
\(221\) 0 0
\(222\) 0 0
\(223\) −1.73205 + 1.00000i −0.115987 + 0.0669650i −0.556871 0.830599i \(-0.687998\pi\)
0.440884 + 0.897564i \(0.354665\pi\)
\(224\) 8.66025 5.00000i 0.578638 0.334077i
\(225\) −4.59808 + 1.96410i −0.306538 + 0.130940i
\(226\) −5.00000 5.00000i −0.332595 0.332595i
\(227\) −6.00000 + 10.3923i −0.398234 + 0.689761i −0.993508 0.113761i \(-0.963710\pi\)
0.595274 + 0.803523i \(0.297043\pi\)
\(228\) 5.00000 8.66025i 0.331133 0.573539i
\(229\) 3.00000 + 3.00000i 0.198246 + 0.198246i 0.799248 0.601002i \(-0.205232\pi\)
−0.601002 + 0.799248i \(0.705232\pi\)
\(230\) 7.09808 6.29423i 0.468033 0.415029i
\(231\) −3.46410 + 2.00000i −0.227921 + 0.131590i
\(232\) 0 0
\(233\) 1.00000 1.00000i 0.0655122 0.0655122i −0.673592 0.739104i \(-0.735249\pi\)
0.739104 + 0.673592i \(0.235249\pi\)
\(234\) 0 0
\(235\) −12.0000 + 6.00000i −0.782794 + 0.391397i
\(236\) −2.56218 + 9.56218i −0.166784 + 0.622445i
\(237\) 2.73205 + 0.732051i 0.177466 + 0.0475518i
\(238\) −0.732051 2.73205i −0.0474518 0.177093i
\(239\) −3.00000 + 3.00000i −0.194054 + 0.194054i −0.797445 0.603391i \(-0.793816\pi\)
0.603391 + 0.797445i \(0.293816\pi\)
\(240\) 2.09808 + 2.36603i 0.135430 + 0.152726i
\(241\) −6.22243 23.2224i −0.400822 1.49589i −0.811633 0.584168i \(-0.801421\pi\)
0.410811 0.911721i \(-0.365246\pi\)
\(242\) 9.00000i 0.578542i
\(243\) 9.56218 2.56218i 0.613414 0.164364i
\(244\) −7.00000 12.1244i −0.448129 0.776182i
\(245\) 3.69615 5.59808i 0.236139 0.357648i
\(246\) 14.0000i 0.892607i
\(247\) 0 0
\(248\) −15.0000 15.0000i −0.952501 0.952501i
\(249\) −8.19615 2.19615i −0.519410 0.139176i
\(250\) −3.76795 10.5263i −0.238306 0.665740i
\(251\) 1.73205 + 1.00000i 0.109326 + 0.0631194i 0.553666 0.832739i \(-0.313228\pi\)
−0.444340 + 0.895858i \(0.646562\pi\)
\(252\) 2.00000 0.125988
\(253\) 5.19615 + 3.00000i 0.326679 + 0.188608i
\(254\) 12.2942 3.29423i 0.771409 0.206698i
\(255\) −4.00000 + 2.00000i −0.250490 + 0.125245i
\(256\) 8.50000 14.7224i 0.531250 0.920152i
\(257\) −4.02628 + 15.0263i −0.251152 + 0.937314i 0.719038 + 0.694971i \(0.244583\pi\)
−0.970191 + 0.242343i \(0.922084\pi\)
\(258\) −1.00000 1.73205i −0.0622573 0.107833i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −10.0000 17.3205i −0.617802 1.07006i
\(263\) 0.366025 1.36603i 0.0225701 0.0842327i −0.953722 0.300689i \(-0.902783\pi\)
0.976292 + 0.216457i \(0.0694500\pi\)
\(264\) −3.00000 + 5.19615i −0.184637 + 0.319801i
\(265\) −5.00000 + 15.0000i −0.307148 + 0.921443i
\(266\) −13.6603 + 3.66025i −0.837564 + 0.224425i
\(267\) 8.66025 + 5.00000i 0.529999 + 0.305995i
\(268\) −4.00000 −0.244339
\(269\) 10.3923 + 6.00000i 0.633630 + 0.365826i 0.782157 0.623082i \(-0.214120\pi\)
−0.148527 + 0.988908i \(0.547453\pi\)
\(270\) 2.53590 + 12.3923i 0.154330 + 0.754172i
\(271\) −12.2942 3.29423i −0.746821 0.200110i −0.134714 0.990885i \(-0.543011\pi\)
−0.612108 + 0.790774i \(0.709678\pi\)
\(272\) −1.00000 1.00000i −0.0606339 0.0606339i
\(273\) 0 0
\(274\) 16.0000i 0.966595i
\(275\) 5.56218 4.36603i 0.335412 0.263281i
\(276\) 3.00000 + 5.19615i 0.180579 + 0.312772i
\(277\) 20.4904 5.49038i 1.23115 0.329885i 0.416121 0.909309i \(-0.363389\pi\)
0.815026 + 0.579424i \(0.196722\pi\)
\(278\) 14.0000i 0.839664i
\(279\) −1.83013 6.83013i −0.109567 0.408909i
\(280\) −0.803848 + 13.3923i −0.0480391 + 0.800343i
\(281\) −1.00000 + 1.00000i −0.0596550 + 0.0596550i −0.736305 0.676650i \(-0.763431\pi\)
0.676650 + 0.736305i \(0.263431\pi\)
\(282\) 2.19615 + 8.19615i 0.130779 + 0.488074i
\(283\) 12.2942 + 3.29423i 0.730816 + 0.195822i 0.604993 0.796231i \(-0.293176\pi\)
0.125823 + 0.992053i \(0.459843\pi\)
\(284\) 0.366025 1.36603i 0.0217196 0.0810587i
\(285\) 10.0000 + 20.0000i 0.592349 + 1.18470i
\(286\) 0 0
\(287\) 14.0000 14.0000i 0.826394 0.826394i
\(288\) 4.33013 2.50000i 0.255155 0.147314i
\(289\) −12.9904 + 7.50000i −0.764140 + 0.441176i
\(290\) 0 0
\(291\) −2.00000 2.00000i −0.117242 0.117242i
\(292\) 5.00000 8.66025i 0.292603 0.506803i
\(293\) −3.00000 + 5.19615i −0.175262 + 0.303562i −0.940252 0.340480i \(-0.889411\pi\)
0.764990 + 0.644042i \(0.222744\pi\)
\(294\) −3.00000 3.00000i −0.174964 0.174964i
\(295\) −14.6865 16.5622i −0.855083 0.964287i
\(296\) 0 0
\(297\) −6.92820 + 4.00000i −0.402015 + 0.232104i
\(298\) −3.00000 + 3.00000i −0.173785 + 0.173785i
\(299\) 0 0
\(300\) 7.00000 1.00000i 0.404145 0.0577350i
\(301\) 0.732051 2.73205i 0.0421947 0.157473i
\(302\) −9.56218 2.56218i −0.550242 0.147437i
\(303\) 4.39230 + 16.3923i 0.252331 + 0.941713i
\(304\) −5.00000 + 5.00000i −0.286770 + 0.286770i
\(305\) 31.2487 + 1.87564i 1.78930 + 0.107399i
\(306\) −0.366025 1.36603i −0.0209243 0.0780905i
\(307\) 18.0000i 1.02731i 0.857996 + 0.513657i \(0.171710\pi\)
−0.857996 + 0.513657i \(0.828290\pi\)
\(308\) −2.73205 + 0.732051i −0.155673 + 0.0417125i
\(309\) −7.00000 12.1244i −0.398216 0.689730i
\(310\) 15.4904 3.16987i 0.879795 0.180037i
\(311\) 6.00000i 0.340229i −0.985424 0.170114i \(-0.945586\pi\)
0.985424 0.170114i \(-0.0544137\pi\)
\(312\) 0 0
\(313\) 9.00000 + 9.00000i 0.508710 + 0.508710i 0.914130 0.405420i \(-0.132875\pi\)
−0.405420 + 0.914130i \(0.632875\pi\)
\(314\) 17.7583 + 4.75833i 1.00216 + 0.268528i
\(315\) −2.46410 + 3.73205i −0.138836 + 0.210277i
\(316\) 1.73205 + 1.00000i 0.0974355 + 0.0562544i
\(317\) 14.0000 0.786318 0.393159 0.919470i \(-0.371382\pi\)
0.393159 + 0.919470i \(0.371382\pi\)
\(318\) 8.66025 + 5.00000i 0.485643 + 0.280386i
\(319\) 0 0
\(320\) 7.00000 + 14.0000i 0.391312 + 0.782624i
\(321\) −7.00000 + 12.1244i −0.390702 + 0.676716i
\(322\) 2.19615 8.19615i 0.122387 0.456754i
\(323\) −5.00000 8.66025i −0.278207 0.481869i
\(324\) −5.00000 −0.277778
\(325\) 0 0
\(326\) 4.00000 0.221540
\(327\) 9.00000 + 15.5885i 0.497701 + 0.862044i
\(328\) 7.68653 28.6865i 0.424418 1.58395i
\(329\) −6.00000 + 10.3923i −0.330791 + 0.572946i
\(330\) −2.00000 4.00000i −0.110096 0.220193i
\(331\) −4.09808 + 1.09808i −0.225251 + 0.0603557i −0.369679 0.929160i \(-0.620532\pi\)
0.144428 + 0.989515i \(0.453866\pi\)
\(332\) −5.19615 3.00000i −0.285176 0.164646i
\(333\) 0 0
\(334\) −15.5885 9.00000i −0.852962 0.492458i
\(335\) 4.92820 7.46410i 0.269257 0.407807i
\(336\) 2.73205 + 0.732051i 0.149046 + 0.0399366i
\(337\) 13.0000 + 13.0000i 0.708155 + 0.708155i 0.966147 0.257992i \(-0.0830608\pi\)
−0.257992 + 0.966147i \(0.583061\pi\)
\(338\) 0 0
\(339\) 10.0000i 0.543125i
\(340\) −3.09808 + 0.633975i −0.168017 + 0.0343821i
\(341\) 5.00000 + 8.66025i 0.270765 + 0.468979i
\(342\) −6.83013 + 1.83013i −0.369331 + 0.0989619i
\(343\) 20.0000i 1.07990i
\(344\) −1.09808 4.09808i −0.0592043 0.220953i
\(345\) −13.3923 0.803848i −0.721017 0.0432777i
\(346\) 11.0000 11.0000i 0.591364 0.591364i
\(347\) 1.09808 + 4.09808i 0.0589478 + 0.219996i 0.989116 0.147137i \(-0.0470059\pi\)
−0.930168 + 0.367133i \(0.880339\pi\)
\(348\) 0 0
\(349\) −3.29423 + 12.2942i −0.176336 + 0.658095i 0.819984 + 0.572386i \(0.193982\pi\)
−0.996320 + 0.0857088i \(0.972685\pi\)
\(350\) −8.00000 6.00000i −0.427618 0.320713i
\(351\) 0 0
\(352\) −5.00000 + 5.00000i −0.266501 + 0.266501i
\(353\) 10.3923 6.00000i 0.553127 0.319348i −0.197256 0.980352i \(-0.563203\pi\)
0.750382 + 0.661004i \(0.229870\pi\)
\(354\) −12.1244 + 7.00000i −0.644402 + 0.372046i
\(355\) 2.09808 + 2.36603i 0.111354 + 0.125576i
\(356\) 5.00000 + 5.00000i 0.264999 + 0.264999i
\(357\) −2.00000 + 3.46410i −0.105851 + 0.183340i
\(358\) −10.0000 + 17.3205i −0.528516 + 0.915417i
\(359\) −1.00000 1.00000i −0.0527780 0.0527780i 0.680225 0.733003i \(-0.261882\pi\)
−0.733003 + 0.680225i \(0.761882\pi\)
\(360\) −0.401924 + 6.69615i −0.0211832 + 0.352918i
\(361\) −26.8468 + 15.5000i −1.41299 + 0.815789i
\(362\) −6.92820 + 4.00000i −0.364138 + 0.210235i
\(363\) −9.00000 + 9.00000i −0.472377 + 0.472377i
\(364\) 0 0
\(365\) 10.0000 + 20.0000i 0.523424 + 1.04685i
\(366\) 5.12436 19.1244i 0.267854 0.999646i
\(367\) 1.36603 + 0.366025i 0.0713059 + 0.0191064i 0.294296 0.955714i \(-0.404915\pi\)
−0.222990 + 0.974821i \(0.571582\pi\)
\(368\) −1.09808 4.09808i −0.0572412 0.213627i
\(369\) 7.00000 7.00000i 0.364405 0.364405i
\(370\) 0 0
\(371\) 3.66025 + 13.6603i 0.190031 + 0.709205i
\(372\) 10.0000i 0.518476i
\(373\) 20.4904 5.49038i 1.06095 0.284281i 0.314181 0.949363i \(-0.398270\pi\)
0.746770 + 0.665082i \(0.231603\pi\)
\(374\) 1.00000 + 1.73205i 0.0517088 + 0.0895622i
\(375\) −6.75833 + 14.2942i −0.348999 + 0.738151i
\(376\) 18.0000i 0.928279i
\(377\) 0 0
\(378\) 8.00000 + 8.00000i 0.411476 + 0.411476i
\(379\) −1.36603 0.366025i −0.0701680 0.0188015i 0.223564 0.974689i \(-0.428231\pi\)
−0.293732 + 0.955888i \(0.594897\pi\)
\(380\) 3.16987 + 15.4904i 0.162611 + 0.794640i
\(381\) −15.5885 9.00000i −0.798621 0.461084i
\(382\) −8.00000 −0.409316
\(383\) −25.9808 15.0000i −1.32755 0.766464i −0.342634 0.939469i \(-0.611319\pi\)
−0.984921 + 0.173005i \(0.944652\pi\)
\(384\) −4.09808 + 1.09808i −0.209129 + 0.0560360i
\(385\) 2.00000 6.00000i 0.101929 0.305788i
\(386\) −9.00000 + 15.5885i −0.458088 + 0.793432i
\(387\) 0.366025 1.36603i 0.0186061 0.0694390i
\(388\) −1.00000 1.73205i −0.0507673 0.0879316i
\(389\) −18.0000 −0.912636 −0.456318 0.889817i \(-0.650832\pi\)
−0.456318 + 0.889817i \(0.650832\pi\)
\(390\) 0 0
\(391\) 6.00000 0.303433
\(392\) −4.50000 7.79423i −0.227284 0.393668i
\(393\) −7.32051 + 27.3205i −0.369271 + 1.37814i
\(394\) −3.00000 + 5.19615i −0.151138 + 0.261778i
\(395\) −4.00000 + 2.00000i −0.201262 + 0.100631i
\(396\) −1.36603 + 0.366025i −0.0686454 + 0.0183935i
\(397\) −13.8564 8.00000i −0.695433 0.401508i 0.110211 0.993908i \(-0.464847\pi\)
−0.805644 + 0.592400i \(0.798181\pi\)
\(398\) 8.00000 0.401004
\(399\) 17.3205 + 10.0000i 0.867110 + 0.500626i
\(400\) −4.96410 0.598076i −0.248205 0.0299038i
\(401\) −15.0263 4.02628i −0.750377 0.201063i −0.136691 0.990614i \(-0.543647\pi\)
−0.613685 + 0.789551i \(0.710314\pi\)
\(402\) −4.00000 4.00000i −0.199502 0.199502i
\(403\) 0 0
\(404\) 12.0000i 0.597022i
\(405\) 6.16025 9.33013i 0.306105 0.463618i
\(406\) 0 0
\(407\) 0 0
\(408\) 6.00000i 0.297044i
\(409\) 2.56218 + 9.56218i 0.126692 + 0.472819i 0.999894 0.0145378i \(-0.00462769\pi\)
−0.873203 + 0.487357i \(0.837961\pi\)
\(410\) 14.6865 + 16.5622i 0.725316 + 0.817948i
\(411\) 16.0000 16.0000i 0.789222 0.789222i
\(412\) −2.56218 9.56218i −0.126229 0.471095i
\(413\) −19.1244 5.12436i −0.941048 0.252153i
\(414\) 1.09808 4.09808i 0.0539675 0.201409i
\(415\) 12.0000 6.00000i 0.589057 0.294528i
\(416\) 0 0
\(417\) −14.0000 + 14.0000i −0.685583 + 0.685583i
\(418\) 8.66025 5.00000i 0.423587 0.244558i
\(419\) 32.9090 19.0000i 1.60771 0.928211i 0.617827 0.786314i \(-0.288013\pi\)
0.989882 0.141896i \(-0.0453200\pi\)
\(420\) 4.73205 4.19615i 0.230900 0.204751i
\(421\) 11.0000 + 11.0000i 0.536107 + 0.536107i 0.922383 0.386276i \(-0.126239\pi\)
−0.386276 + 0.922383i \(0.626239\pi\)
\(422\) 2.00000 3.46410i 0.0973585 0.168630i
\(423\) −3.00000 + 5.19615i −0.145865 + 0.252646i
\(424\) 15.0000 + 15.0000i 0.728464 + 0.728464i
\(425\) 2.63397 6.56218i 0.127767 0.318312i
\(426\) 1.73205 1.00000i 0.0839181 0.0484502i
\(427\) 24.2487 14.0000i 1.17348 0.677507i
\(428\) −7.00000 + 7.00000i −0.338358 + 0.338358i
\(429\) 0 0
\(430\) 3.00000 + 1.00000i 0.144673 + 0.0482243i
\(431\) −4.75833 + 17.7583i −0.229201 + 0.855389i 0.751477 + 0.659759i \(0.229342\pi\)
−0.980678 + 0.195630i \(0.937325\pi\)
\(432\) 5.46410 + 1.46410i 0.262892 + 0.0704416i
\(433\) 6.22243 + 23.2224i 0.299031 + 1.11600i 0.937963 + 0.346736i \(0.112710\pi\)
−0.638932 + 0.769263i \(0.720623\pi\)
\(434\) 10.0000 10.0000i 0.480015 0.480015i
\(435\) 0 0
\(436\) 3.29423 + 12.2942i 0.157765 + 0.588787i
\(437\) 30.0000i 1.43509i
\(438\) 13.6603 3.66025i 0.652712 0.174894i
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) −1.90192 9.29423i −0.0906707 0.443085i
\(441\) 3.00000i 0.142857i
\(442\) 0 0
\(443\) 25.0000 + 25.0000i 1.18779 + 1.18779i 0.977678 + 0.210108i \(0.0673814\pi\)
0.210108 + 0.977678i \(0.432619\pi\)
\(444\) 0 0
\(445\) −15.4904 + 3.16987i −0.734314 + 0.150266i
\(446\) −1.73205 1.00000i −0.0820150 0.0473514i
\(447\) 6.00000 0.283790
\(448\) 12.1244 + 7.00000i 0.572822 + 0.330719i
\(449\) −4.09808 + 1.09808i −0.193400 + 0.0518214i −0.354219 0.935163i \(-0.615253\pi\)
0.160819 + 0.986984i \(0.448587\pi\)
\(450\) −4.00000 3.00000i −0.188562 0.141421i
\(451\) −7.00000 + 12.1244i −0.329617 + 0.570914i
\(452\) −1.83013 + 6.83013i −0.0860819 + 0.321262i
\(453\) 7.00000 + 12.1244i 0.328889 + 0.569652i
\(454\) −12.0000 −0.563188
\(455\) 0 0
\(456\) 30.0000 1.40488
\(457\) 1.00000 + 1.73205i 0.0467780 + 0.0810219i 0.888466 0.458942i \(-0.151771\pi\)
−0.841688 + 0.539964i \(0.818438\pi\)
\(458\) −1.09808 + 4.09808i −0.0513097 + 0.191491i
\(459\) −4.00000 + 6.92820i −0.186704 + 0.323381i
\(460\) −9.00000 3.00000i −0.419627 0.139876i
\(461\) 23.2224 6.22243i 1.08158 0.289808i 0.326335 0.945254i \(-0.394186\pi\)
0.755241 + 0.655447i \(0.227520\pi\)
\(462\) −3.46410 2.00000i −0.161165 0.0930484i
\(463\) 24.0000 1.11537 0.557687 0.830051i \(-0.311689\pi\)
0.557687 + 0.830051i \(0.311689\pi\)
\(464\) 0 0
\(465\) −18.6603 12.3205i −0.865349 0.571350i
\(466\) 1.36603 + 0.366025i 0.0632799 + 0.0169558i
\(467\) 9.00000 + 9.00000i 0.416470 + 0.416470i 0.883985 0.467515i \(-0.154851\pi\)
−0.467515 + 0.883985i \(0.654851\pi\)
\(468\) 0 0
\(469\) 8.00000i 0.369406i
\(470\) −11.1962 7.39230i −0.516440 0.340982i
\(471\) −13.0000 22.5167i −0.599008 1.03751i
\(472\) −28.6865 + 7.68653i −1.32040 + 0.353801i
\(473\) 2.00000i 0.0919601i
\(474\) 0.732051 + 2.73205i 0.0336242 + 0.125487i
\(475\) −32.8109 13.1699i −1.50547 0.604275i
\(476\) −2.00000 + 2.00000i −0.0916698 + 0.0916698i
\(477\) 1.83013 + 6.83013i 0.0837958 + 0.312730i
\(478\) −4.09808 1.09808i −0.187442 0.0502248i
\(479\) 2.56218 9.56218i 0.117069 0.436907i −0.882364 0.470567i \(-0.844050\pi\)
0.999433 + 0.0336596i \(0.0107162\pi\)
\(480\) 5.00000 15.0000i 0.228218 0.684653i
\(481\) 0 0
\(482\) 17.0000 17.0000i 0.774329 0.774329i
\(483\) −10.3923 + 6.00000i −0.472866 + 0.273009i
\(484\) −7.79423 + 4.50000i −0.354283 + 0.204545i
\(485\) 4.46410 + 0.267949i 0.202704 + 0.0121669i
\(486\) 7.00000 + 7.00000i 0.317526 + 0.317526i
\(487\) 8.00000 13.8564i 0.362515 0.627894i −0.625859 0.779936i \(-0.715252\pi\)
0.988374 + 0.152042i \(0.0485850\pi\)
\(488\) 21.0000 36.3731i 0.950625 1.64653i
\(489\) −4.00000 4.00000i −0.180886 0.180886i
\(490\) 6.69615 + 0.401924i 0.302501 + 0.0181571i
\(491\) 19.0526 11.0000i 0.859830 0.496423i −0.00412539 0.999991i \(-0.501313\pi\)
0.863955 + 0.503568i \(0.167980\pi\)
\(492\) −12.1244 + 7.00000i −0.546608 + 0.315584i
\(493\) 0 0
\(494\) 0 0
\(495\) 1.00000 3.00000i 0.0449467 0.134840i
\(496\) 1.83013 6.83013i 0.0821751 0.306682i
\(497\) 2.73205 + 0.732051i 0.122549 + 0.0328370i
\(498\) −2.19615 8.19615i −0.0984119 0.367278i
\(499\) −3.00000 + 3.00000i −0.134298 + 0.134298i −0.771060 0.636762i \(-0.780273\pi\)
0.636762 + 0.771060i \(0.280273\pi\)
\(500\) −7.23205 + 8.52628i −0.323427 + 0.381307i
\(501\) 6.58846 + 24.5885i 0.294351 + 1.09853i
\(502\) 2.00000i 0.0892644i
\(503\) 4.09808 1.09808i 0.182724 0.0489608i −0.166297 0.986076i \(-0.553181\pi\)
0.349021 + 0.937115i \(0.386514\pi\)
\(504\) 3.00000 + 5.19615i 0.133631 + 0.231455i
\(505\) −22.3923 14.7846i −0.996444 0.657906i
\(506\) 6.00000i 0.266733i
\(507\) 0 0
\(508\) −9.00000 9.00000i −0.399310 0.399310i
\(509\) 17.7583 + 4.75833i 0.787124 + 0.210909i 0.629923 0.776657i \(-0.283086\pi\)
0.157201 + 0.987567i \(0.449753\pi\)
\(510\) −3.73205 2.46410i −0.165258 0.109112i
\(511\) 17.3205 + 10.0000i 0.766214 + 0.442374i
\(512\) 11.0000 0.486136
\(513\) 34.6410 + 20.0000i 1.52944 + 0.883022i
\(514\) −15.0263 + 4.02628i −0.662781 + 0.177592i
\(515\) 21.0000 + 7.00000i 0.925371 + 0.308457i
\(516\) −1.00000 + 1.73205i −0.0440225 + 0.0762493i
\(517\) 2.19615 8.19615i 0.0965867 0.360466i
\(518\) 0 0
\(519\) −22.0000 −0.965693
\(520\) 0 0
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 0 0
\(523\) 3.29423 12.2942i 0.144047 0.537589i −0.855749 0.517390i \(-0.826903\pi\)
0.999796 0.0201986i \(-0.00642985\pi\)
\(524\) −10.0000 + 17.3205i −0.436852 + 0.756650i
\(525\) 2.00000 + 14.0000i 0.0872872 + 0.611010i
\(526\) 1.36603 0.366025i 0.0595615 0.0159595i
\(527\) 8.66025 + 5.00000i 0.377247 + 0.217803i
\(528\) −2.00000 −0.0870388
\(529\) −4.33013 2.50000i −0.188266 0.108696i
\(530\) −15.4904 + 3.16987i −0.672859 + 0.137690i
\(531\) −9.56218 2.56218i −0.414963 0.111189i
\(532\) 10.0000 + 10.0000i 0.433555 + 0.433555i
\(533\) 0 0
\(534\) 10.0000i 0.432742i
\(535\) −4.43782 21.6865i −0.191864 0.937591i
\(536\) −6.00000 10.3923i −0.259161 0.448879i
\(537\) 27.3205 7.32051i 1.17897 0.315903i
\(538\) 12.0000i 0.517357i
\(539\) 1.09808 + 4.09808i 0.0472975 + 0.176517i
\(540\) 9.46410 8.39230i 0.407270 0.361147i
\(541\) −9.00000 + 9.00000i −0.386940 + 0.386940i −0.873595 0.486654i \(-0.838217\pi\)
0.486654 + 0.873595i \(0.338217\pi\)
\(542\) −3.29423 12.2942i −0.141499 0.528082i
\(543\) 10.9282 + 2.92820i 0.468974 + 0.125661i
\(544\) −1.83013 + 6.83013i −0.0784660 + 0.292839i
\(545\) −27.0000 9.00000i −1.15655 0.385518i
\(546\) 0 0
\(547\) −9.00000 + 9.00000i −0.384812 + 0.384812i −0.872832 0.488020i \(-0.837719\pi\)
0.488020 + 0.872832i \(0.337719\pi\)
\(548\) 13.8564 8.00000i 0.591916 0.341743i
\(549\) 12.1244 7.00000i 0.517455 0.298753i
\(550\) 6.56218 + 2.63397i 0.279812 + 0.112313i
\(551\) 0 0
\(552\) −9.00000 + 15.5885i −0.383065 + 0.663489i
\(553\) −2.00000 + 3.46410i −0.0850487 + 0.147309i
\(554\) 15.0000 + 15.0000i 0.637289 + 0.637289i
\(555\) 0 0
\(556\) −12.1244 + 7.00000i −0.514187 + 0.296866i
\(557\) 20.7846 12.0000i 0.880672 0.508456i 0.00979220 0.999952i \(-0.496883\pi\)
0.870880 + 0.491496i \(0.163550\pi\)
\(558\) 5.00000 5.00000i 0.211667 0.211667i
\(559\) 0 0
\(560\) −4.00000 + 2.00000i −0.169031 + 0.0845154i
\(561\) 0.732051 2.73205i 0.0309072 0.115347i
\(562\) −1.36603 0.366025i −0.0576223 0.0154398i
\(563\) 5.49038 + 20.4904i 0.231392 + 0.863567i 0.979742 + 0.200263i \(0.0641796\pi\)
−0.748350 + 0.663304i \(0.769154\pi\)
\(564\) 6.00000 6.00000i 0.252646 0.252646i
\(565\) −10.4904 11.8301i −0.441334 0.497697i
\(566\) 3.29423 + 12.2942i 0.138467 + 0.516765i
\(567\) 10.0000i 0.419961i
\(568\) 4.09808 1.09808i 0.171951 0.0460743i
\(569\) −3.00000 5.19615i −0.125767 0.217834i 0.796266 0.604947i \(-0.206806\pi\)
−0.922032 + 0.387113i \(0.873472\pi\)
\(570\) −12.3205 + 18.6603i −0.516049 + 0.781592i
\(571\) 6.00000i 0.251092i 0.992088 + 0.125546i \(0.0400683\pi\)
−0.992088 + 0.125546i \(0.959932\pi\)
\(572\) 0 0
\(573\) 8.00000 + 8.00000i 0.334205 + 0.334205i
\(574\) 19.1244 + 5.12436i 0.798235 + 0.213886i
\(575\) 16.6865 13.0981i 0.695877 0.546228i
\(576\) 6.06218 + 3.50000i 0.252591 + 0.145833i
\(577\) −46.0000 −1.91501 −0.957503 0.288425i \(-0.906868\pi\)
−0.957503 + 0.288425i \(0.906868\pi\)
\(578\) −12.9904 7.50000i −0.540329 0.311959i
\(579\) 24.5885 6.58846i 1.02186 0.273807i
\(580\) 0 0
\(581\) 6.00000 10.3923i 0.248922 0.431145i
\(582\) 0.732051 2.73205i 0.0303445 0.113247i
\(583\) −5.00000 8.66025i −0.207079 0.358671i
\(584\) 30.0000 1.24141
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) −2.00000 3.46410i −0.0825488 0.142979i 0.821795 0.569783i \(-0.192973\pi\)
−0.904344 + 0.426804i \(0.859639\pi\)
\(588\) −1.09808 + 4.09808i −0.0452839 + 0.169002i
\(589\) 25.0000 43.3013i 1.03011 1.78420i
\(590\) 7.00000 21.0000i 0.288185 0.864556i
\(591\) 8.19615 2.19615i 0.337145 0.0903376i
\(592\) 0 0
\(593\) −10.0000 −0.410651 −0.205325 0.978694i \(-0.565825\pi\)
−0.205325 + 0.978694i \(0.565825\pi\)
\(594\) −6.92820 4.00000i −0.284268 0.164122i
\(595\) −1.26795 6.19615i −0.0519808 0.254017i
\(596\) 4.09808 + 1.09808i 0.167864 + 0.0449790i
\(597\) −8.00000 8.00000i −0.327418 0.327418i
\(598\) 0 0
\(599\) 30.0000i 1.22577i −0.790173 0.612883i \(-0.790010\pi\)
0.790173 0.612883i \(-0.209990\pi\)
\(600\) 13.0981 + 16.6865i 0.534727 + 0.681225i
\(601\) 19.0000 + 32.9090i 0.775026 + 1.34238i 0.934780 + 0.355228i \(0.115597\pi\)
−0.159754 + 0.987157i \(0.551070\pi\)
\(602\) 2.73205 0.732051i 0.111350 0.0298362i
\(603\) 4.00000i 0.162893i
\(604\) 2.56218 + 9.56218i 0.104254 + 0.389079i
\(605\) 1.20577 20.0885i 0.0490216 0.816712i
\(606\) −12.0000 + 12.0000i −0.487467 + 0.487467i
\(607\) −4.75833 17.7583i −0.193135 0.720788i −0.992742 0.120265i \(-0.961626\pi\)
0.799607 0.600523i \(-0.205041\pi\)
\(608\) 34.1506 + 9.15064i 1.38499 + 0.371107i
\(609\) 0 0
\(610\) 14.0000 + 28.0000i 0.566843 + 1.13369i
\(611\) 0 0
\(612\) −1.00000 + 1.00000i −0.0404226 + 0.0404226i
\(613\) 17.3205 10.0000i 0.699569 0.403896i −0.107618 0.994192i \(-0.534322\pi\)
0.807187 + 0.590296i \(0.200989\pi\)
\(614\) −15.5885 + 9.00000i −0.629099 + 0.363210i
\(615\) 1.87564 31.2487i 0.0756333 1.26007i
\(616\) −6.00000 6.00000i −0.241747 0.241747i
\(617\) −11.0000 + 19.0526i −0.442843 + 0.767027i −0.997899 0.0647859i \(-0.979364\pi\)
0.555056 + 0.831813i \(0.312697\pi\)
\(618\) 7.00000 12.1244i 0.281581 0.487713i
\(619\) −25.0000 25.0000i −1.00483 1.00483i −0.999988 0.00484658i \(-0.998457\pi\)
−0.00484658 0.999988i \(-0.501543\pi\)
\(620\) −10.4904 11.8301i −0.421304 0.475109i
\(621\) −20.7846 + 12.0000i −0.834058 + 0.481543i
\(622\) 5.19615 3.00000i 0.208347 0.120289i
\(623\) −10.0000 + 10.0000i −0.400642 + 0.400642i
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) −3.29423 + 12.2942i −0.131664 + 0.491376i
\(627\) −13.6603 3.66025i −0.545538 0.146176i
\(628\) −4.75833 17.7583i −0.189878 0.708635i
\(629\) 0 0
\(630\) −4.46410 0.267949i −0.177854 0.0106754i
\(631\) −4.02628 15.0263i −0.160284 0.598187i −0.998595 0.0529946i \(-0.983123\pi\)
0.838311 0.545192i \(-0.183543\pi\)
\(632\) 6.00000i 0.238667i
\(633\) −5.46410 + 1.46410i −0.217179 + 0.0581928i
\(634\) 7.00000 + 12.1244i 0.278006 + 0.481520i
\(635\) 27.8827 5.70577i 1.10649 0.226427i
\(636\) 10.0000i 0.396526i
\(637\) 0 0
\(638\) 0 0
\(639\) 1.36603 + 0.366025i 0.0540391 + 0.0144797i
\(640\) 3.69615 5.59808i 0.146103 0.221283i
\(641\) −20.7846 12.0000i −0.820943 0.473972i 0.0297987 0.999556i \(-0.490513\pi\)
−0.850741 + 0.525584i \(0.823847\pi\)
\(642\) −14.0000 −0.552536
\(643\) −29.4449 17.0000i −1.16119 0.670415i −0.209603 0.977787i \(-0.567217\pi\)
−0.951589 + 0.307372i \(0.900550\pi\)
\(644\) −8.19615 + 2.19615i −0.322974 + 0.0865405i
\(645\) −2.00000 4.00000i −0.0787499 0.157500i
\(646\) 5.00000 8.66025i 0.196722 0.340733i
\(647\) 0.366025 1.36603i 0.0143899 0.0537040i −0.958358 0.285571i \(-0.907817\pi\)
0.972747 + 0.231867i \(0.0744834\pi\)
\(648\) −7.50000 12.9904i −0.294628 0.510310i
\(649\) 14.0000 0.549548
\(650\) 0 0
\(651\) −20.0000 −0.783862
\(652\) −2.00000 3.46410i −0.0783260 0.135665i
\(653\) 4.75833 17.7583i 0.186208 0.694937i −0.808161 0.588962i \(-0.799537\pi\)
0.994369 0.105975i \(-0.0337965\pi\)
\(654\) −9.00000 + 15.5885i −0.351928 + 0.609557i
\(655\) −20.0000 40.0000i −0.781465 1.56293i
\(656\) 9.56218 2.56218i 0.373340 0.100036i
\(657\) 8.66025 + 5.00000i 0.337869 + 0.195069i
\(658\) −12.0000 −0.467809
\(659\) 22.5167 + 13.0000i 0.877125 + 0.506408i 0.869709 0.493564i \(-0.164306\pi\)
0.00741531 + 0.999973i \(0.497640\pi\)
\(660\) −2.46410 + 3.73205i −0.0959150 + 0.145270i
\(661\) 23.2224 + 6.22243i 0.903248 + 0.242025i 0.680411 0.732831i \(-0.261801\pi\)
0.222837 + 0.974856i \(0.428468\pi\)
\(662\) −3.00000 3.00000i −0.116598 0.116598i
\(663\) 0 0
\(664\) 18.0000i 0.698535i
\(665\) −30.9808 + 6.33975i −1.20138 + 0.245845i
\(666\) 0 0
\(667\) 0 0
\(668\) 18.0000i 0.696441i
\(669\) 0.732051 + 2.73205i 0.0283027 + 0.105627i
\(670\) 8.92820 + 0.535898i 0.344927 + 0.0207036i
\(671\) −14.0000 + 14.0000i −0.540464 + 0.540464i
\(672\) −3.66025 13.6603i −0.141197 0.526956i
\(673\) 20.4904 + 5.49038i 0.789846 + 0.211639i 0.631121 0.775684i \(-0.282595\pi\)
0.158725 + 0.987323i \(0.449262\pi\)
\(674\) −4.75833 + 17.7583i −0.183284 + 0.684025i
\(675\) 4.00000 + 28.0000i 0.153960 + 1.07772i
\(676\) 0 0
\(677\) −23.0000 + 23.0000i −0.883962 + 0.883962i −0.993935 0.109973i \(-0.964924\pi\)
0.109973 + 0.993935i \(0.464924\pi\)
\(678\) −8.66025 + 5.00000i −0.332595 + 0.192024i
\(679\) 3.46410 2.00000i 0.132940 0.0767530i
\(680\) −6.29423 7.09808i −0.241373 0.272199i
\(681\) 12.0000 + 12.0000i 0.459841 + 0.459841i
\(682\) −5.00000 + 8.66025i −0.191460 + 0.331618i
\(683\) −6.00000 + 10.3923i −0.229584 + 0.397650i −0.957685 0.287819i \(-0.907070\pi\)
0.728101 + 0.685470i \(0.240403\pi\)
\(684\) 5.00000 + 5.00000i 0.191180 + 0.191180i
\(685\) −2.14359 + 35.7128i −0.0819025 + 1.36452i
\(686\) 17.3205 10.0000i 0.661300 0.381802i
\(687\) 5.19615 3.00000i 0.198246 0.114457i
\(688\) 1.00000 1.00000i 0.0381246 0.0381246i
\(689\) 0 0
\(690\) −6.00000 12.0000i −0.228416 0.456832i
\(691\) 1.09808 4.09808i 0.0417728 0.155898i −0.941889 0.335924i \(-0.890951\pi\)
0.983662 + 0.180026i \(0.0576181\pi\)
\(692\) −15.0263 4.02628i −0.571213 0.153056i
\(693\) −0.732051 2.73205i −0.0278083 0.103782i
\(694\) −3.00000 + 3.00000i −0.113878 + 0.113878i
\(695\) 1.87564 31.2487i 0.0711472 1.18533i
\(696\) 0 0
\(697\) 14.0000i 0.530288i
\(698\) −12.2942 + 3.29423i −0.465343 + 0.124688i
\(699\) −1.00000 1.73205i −0.0378235 0.0655122i
\(700\) −1.19615 + 9.92820i −0.0452103 + 0.375251i
\(701\) 12.0000i 0.453234i −0.973984 0.226617i \(-0.927233\pi\)
0.973984 0.226617i \(-0.0727665\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −9.56218 2.56218i −0.360388 0.0965657i
\(705\) 3.80385 + 18.5885i 0.143261 + 0.700082i
\(706\) 10.3923 + 6.00000i 0.391120 + 0.225813i
\(707\) −24.0000 −0.902613
\(708\) 12.1244 + 7.00000i 0.455661 + 0.263076i
\(709\) 39.6147 10.6147i 1.48776 0.398645i 0.578782 0.815482i \(-0.303528\pi\)
0.908981 + 0.416838i \(0.136862\pi\)
\(710\) −1.00000 + 3.00000i −0.0375293 + 0.112588i
\(711\) −1.00000 + 1.73205i −0.0375029 + 0.0649570i
\(712\) −5.49038 + 20.4904i −0.205761 + 0.767909i
\(713\) 15.0000 + 25.9808i 0.561754 + 0.972987i
\(714\) −4.00000 −0.149696
\(715\) 0 0
\(716\) 20.0000 0.747435
\(717\) 3.00000 + 5.19615i 0.112037 + 0.194054i
\(718\) 0.366025 1.36603i 0.0136599 0.0509796i
\(719\) 4.00000 6.92820i 0.149175 0.258378i −0.781748 0.623595i \(-0.785672\pi\)
0.930923 + 0.365216i \(0.119005\pi\)
\(720\) −2.00000 + 1.00000i −0.0745356 + 0.0372678i
\(721\) 19.1244 5.12436i 0.712228 0.190841i
\(722\) −26.8468 15.5000i −0.999134 0.576850i
\(723\) −34.0000 −1.26447
\(724\) 6.92820 + 4.00000i 0.257485 + 0.148659i
\(725\) 0 0
\(726\) −12.2942 3.29423i −0.456282 0.122260i
\(727\) −35.0000 35.0000i −1.29808 1.29808i −0.929660 0.368418i \(-0.879900\pi\)
−0.368418 0.929660i \(-0.620100\pi\)
\(728\) 0 0
\(729\) 29.0000i 1.07407i
\(730\) −12.3205 + 18.6603i −0.456002 + 0.690647i
\(731\) 1.00000 + 1.73205i 0.0369863 + 0.0640622i
\(732\) −19.1244 + 5.12436i −0.706857 + 0.189402i
\(733\) 4.00000i 0.147743i 0.997268 + 0.0738717i \(0.0235355\pi\)
−0.997268 + 0.0738717i \(0.976464\pi\)
\(734\) 0.366025 + 1.36603i 0.0135102 + 0.0504209i
\(735\) −6.29423 7.09808i −0.232166 0.261816i
\(736\) −15.0000 + 15.0000i −0.552907 + 0.552907i
\(737\) 1.46410 + 5.46410i 0.0539309 + 0.201273i
\(738\) 9.56218 + 2.56218i 0.351989 + 0.0943151i
\(739\) 1.09808 4.09808i 0.0403934 0.150750i −0.942784 0.333405i \(-0.891802\pi\)
0.983177 + 0.182655i \(0.0584691\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −10.0000 + 10.0000i −0.367112 + 0.367112i
\(743\) −29.4449 + 17.0000i −1.08023 + 0.623670i −0.930958 0.365127i \(-0.881026\pi\)
−0.149270 + 0.988797i \(0.547692\pi\)
\(744\) −25.9808 + 15.0000i −0.952501 + 0.549927i
\(745\) −7.09808 + 6.29423i −0.260053 + 0.230603i
\(746\) 15.0000 + 15.0000i 0.549189 + 0.549189i
\(747\) 3.00000 5.19615i 0.109764 0.190117i
\(748\) 1.00000 1.73205i 0.0365636 0.0633300i
\(749\) −14.0000 14.0000i −0.511549 0.511549i
\(750\) −15.7583 + 1.29423i −0.575413 + 0.0472585i
\(751\) 43.3013 25.0000i 1.58009 0.912263i 0.585240 0.810860i \(-0.301000\pi\)
0.994845 0.101403i \(-0.0323332\pi\)
\(752\) −5.19615 + 3.00000i −0.189484 + 0.109399i
\(753\) 2.00000 2.00000i 0.0728841 0.0728841i
\(754\) 0 0
\(755\) −21.0000 7.00000i −0.764268 0.254756i
\(756\) 2.92820 10.9282i 0.106498 0.397455i
\(757\) 47.8109 + 12.8109i 1.73772 + 0.465620i 0.981937 0.189207i \(-0.0605917\pi\)
0.755779 + 0.654827i \(0.227258\pi\)
\(758\) −0.366025 1.36603i −0.0132946 0.0496163i
\(759\) 6.00000 6.00000i 0.217786 0.217786i
\(760\) −35.4904 + 31.4711i −1.28737 + 1.14158i
\(761\) 2.56218 + 9.56218i 0.0928789 + 0.346629i 0.996689 0.0813044i \(-0.0259086\pi\)
−0.903810 + 0.427933i \(0.859242\pi\)
\(762\) 18.0000i 0.652071i
\(763\) −24.5885 + 6.58846i −0.890162 + 0.238518i
\(764\) 4.00000 + 6.92820i 0.144715 + 0.250654i
\(765\) −0.633975 3.09808i −0.0229214 0.112011i
\(766\) 30.0000i 1.08394i
\(767\) 0 0
\(768\) −17.0000 17.0000i −0.613435 0.613435i
\(769\) −20.4904 5.49038i −0.738902 0.197988i −0.130312 0.991473i \(-0.541598\pi\)
−0.608590 + 0.793485i \(0.708265\pi\)
\(770\) 6.19615 1.26795i 0.223294 0.0456937i
\(771\) 19.0526 + 11.0000i 0.686161 + 0.396155i
\(772\) 18.0000 0.647834
\(773\) −27.7128 16.0000i −0.996761 0.575480i −0.0894724 0.995989i \(-0.528518\pi\)
−0.907288 + 0.420509i \(0.861851\pi\)
\(774\) 1.36603 0.366025i 0.0491008 0.0131565i
\(775\) 35.0000 5.00000i 1.25724 0.179605i
\(776\) 3.00000 5.19615i 0.107694 0.186531i
\(777\) 0 0
\(778\) −9.00000 15.5885i −0.322666 0.558873i
\(779\) 70.0000 2.50801
\(780\) 0 0
\(781\) −2.00000 −0.0715656
\(782\) 3.00000 + 5.19615i 0.107280 + 0.185814i
\(783\) 0 0
\(784\) 1.50000 2.59808i 0.0535714 0.0927884i
\(785\) 39.0000 + 13.0000i 1.39197 + 0.463990i
\(786\) −27.3205 + 7.32051i −0.974490 + 0.261114i
\(787\) 19.0526 + 11.0000i 0.679150 + 0.392108i 0.799535 0.600620i \(-0.205079\pi\)
−0.120384 + 0.992727i \(0.538413\pi\)
\(788\) 6.00000 0.213741
\(789\) −1.73205 1.00000i −0.0616626 0.0356009i
\(790\) −3.73205 2.46410i −0.132780 0.0876688i
\(791\) −13.6603 3.66025i −0.485703 0.130144i
\(792\) −3.00000 3.00000i −0.106600 0.106600i
\(793\) 0 0
\(794\) 16.0000i 0.567819i
\(795\) 18.6603 + 12.3205i 0.661811 + 0.436963i
\(796\) −4.00000 6.92820i −0.141776 0.245564i
\(797\) −23.2224 + 6.22243i −0.822581 + 0.220410i −0.645474 0.763782i \(-0.723340\pi\)
−0.177106 + 0.984192i \(0.556674\pi\)
\(798\) 20.0000i 0.707992i
\(799\) −2.19615 8.19615i −0.0776943 0.289959i
\(800\) 9.82051 + 22.9904i 0.347207 + 0.812833i
\(801\) −5.00000 + 5.00000i −0.176666 + 0.176666i
\(802\) −4.02628 15.0263i −0.142173 0.530596i
\(803\) −13.6603 3.66025i −0.482060 0.129168i
\(804\) −1.46410 + 5.46410i −0.0516349 + 0.192704i
\(805\) 6.00000 18.0000i 0.211472 0.634417i
\(806\) 0 0
\(807\) 12.0000 12.0000i 0.422420 0.422420i
\(808\) −31.1769 + 18.0000i −1.09680 + 0.633238i
\(809\) −24.2487 + 14.0000i −0.852539 + 0.492214i −0.861507 0.507746i \(-0.830479\pi\)
0.00896753 + 0.999960i \(0.497146\pi\)
\(810\) 11.1603 + 0.669873i 0.392131 + 0.0235369i
\(811\) 27.0000 + 27.0000i 0.948098 + 0.948098i 0.998718 0.0506198i \(-0.0161197\pi\)
−0.0506198 + 0.998718i \(0.516120\pi\)
\(812\) 0 0
\(813\) −9.00000 + 15.5885i −0.315644 + 0.546711i
\(814\) 0 0
\(815\) 8.92820 + 0.535898i 0.312741 + 0.0187717i
\(816\) −1.73205 + 1.00000i −0.0606339 + 0.0350070i
\(817\) 8.66025 5.00000i 0.302984 0.174928i
\(818\) −7.00000 + 7.00000i −0.244749 + 0.244749i
\(819\) 0 0
\(820\) 7.00000 21.0000i 0.244451 0.733352i
\(821\) −3.29423 + 12.2942i −0.114969 + 0.429072i −0.999285 0.0378188i \(-0.987959\pi\)
0.884315 + 0.466890i \(0.154626\pi\)
\(822\) 21.8564 + 5.85641i 0.762330 + 0.204266i
\(823\) −3.29423 12.2942i −0.114830 0.428550i 0.884445 0.466645i \(-0.154538\pi\)
−0.999274 + 0.0380955i \(0.987871\pi\)
\(824\) 21.0000 21.0000i 0.731570 0.731570i
\(825\) −3.92820 9.19615i −0.136762 0.320169i
\(826\) −5.12436 19.1244i −0.178299 0.665421i
\(827\) 46.0000i 1.59958i −0.600282 0.799788i \(-0.704945\pi\)
0.600282 0.799788i \(-0.295055\pi\)
\(828\) −4.09808 + 1.09808i −0.142418 + 0.0381608i
\(829\) −17.0000 29.4449i −0.590434 1.02266i −0.994174 0.107788i \(-0.965623\pi\)
0.403739 0.914874i \(-0.367710\pi\)
\(830\) 11.1962 + 7.39230i 0.388624 + 0.256591i
\(831\) 30.0000i 1.04069i
\(832\) 0 0
\(833\) 3.00000 + 3.00000i 0.103944 + 0.103944i
\(834\) −19.1244 5.12436i −0.662222 0.177442i
\(835\) −33.5885 22.1769i −1.16238 0.767464i
\(836\) −8.66025 5.00000i −0.299521 0.172929i
\(837\) −40.0000 −1.38260
\(838\) 32.9090 + 19.0000i 1.13682 + 0.656344i
\(839\) −47.8109 + 12.8109i −1.65062 + 0.442281i −0.959785 0.280736i \(-0.909421\pi\)
−0.690830 + 0.723017i \(0.742755\pi\)
\(840\) 18.0000 + 6.00000i 0.621059 + 0.207020i
\(841\) −14.5000 + 25.1147i −0.500000 + 0.866025i
\(842\) −4.02628 + 15.0263i −0.138755 + 0.517840i
\(843\) 1.00000 + 1.73205i 0.0344418 + 0.0596550i
\(844\) −4.00000 −0.137686
\(845\) 0 0
\(846\) −6.00000 −0.206284
\(847\) −9.00000 15.5885i −0.309244 0.535626i
\(848\) −1.83013 + 6.83013i −0.0628468 + 0.234548i
\(849\) 9.00000 15.5885i 0.308879 0.534994i
\(850\) 7.00000 1.00000i 0.240098 0.0342997i
\(851\) 0 0
\(852\) −1.73205 1.00000i −0.0593391 0.0342594i
\(853\) −26.0000 −0.890223 −0.445112 0.895475i \(-0.646836\pi\)
−0.445112 + 0.895475i \(0.646836\pi\)
\(854\) 24.2487 + 14.0000i 0.829774 + 0.479070i
\(855\) −15.4904 + 3.16987i −0.529760 + 0.108407i
\(856\) −28.6865 7.68653i −0.980486 0.262720i
\(857\) −3.00000 3.00000i −0.102478 0.102478i 0.654009 0.756487i \(-0.273086\pi\)
−0.756487 + 0.654009i \(0.773086\pi\)
\(858\) 0 0
\(859\) 30.0000i 1.02359i 0.859109 + 0.511793i \(0.171019\pi\)
−0.859109 + 0.511793i \(0.828981\pi\)
\(860\) −0.633975 3.09808i −0.0216184 0.105644i
\(861\) −14.0000 24.2487i −0.477119 0.826394i
\(862\) −17.7583 + 4.75833i −0.604851 + 0.162069i
\(863\) 30.0000i 1.02121i 0.859815 + 0.510606i \(0.170579\pi\)
−0.859815 + 0.510606i \(0.829421\pi\)
\(864\) −7.32051 27.3205i −0.249049 0.929463i
\(865\) 26.0263 23.0788i 0.884920 0.784704i
\(866\) −17.0000 + 17.0000i −0.577684 + 0.577684i
\(867\) 5.49038 + 20.4904i 0.186463 + 0.695890i
\(868\) −13.6603 3.66025i −0.463659 0.124237i
\(869\) 0.732051 2.73205i 0.0248331 0.0926785i
\(870\) 0 0
\(871\) 0 0
\(872\) −27.0000 + 27.0000i −0.914335 + 0.914335i
\(873\) 1.73205 1.00000i 0.0586210 0.0338449i
\(874\) 25.9808 15.0000i 0.878812 0.507383i
\(875\) −17.0526 14.4641i −0.576482 0.488976i
\(876\) −10.0000 10.0000i −0.337869 0.337869i
\(877\) 19.0000 32.9090i 0.641584 1.11126i −0.343495 0.939155i \(-0.611611\pi\)
0.985079 0.172102i \(-0.0550559\pi\)
\(878\) 0 0
\(879\) 6.00000 + 6.00000i 0.202375 + 0.202375i
\(880\) 2.36603 2.09808i 0.0797587 0.0707261i
\(881\) 45.0333 26.0000i 1.51721 0.875962i 0.517416 0.855734i \(-0.326894\pi\)
0.999795 0.0202281i \(-0.00643924\pi\)
\(882\) 2.59808 1.50000i 0.0874818 0.0505076i
\(883\) 39.0000 39.0000i 1.31245 1.31245i 0.392853 0.919601i \(-0.371488\pi\)
0.919601 0.392853i \(-0.128512\pi\)
\(884\) 0 0
\(885\) −28.0000 + 14.0000i −0.941210 + 0.470605i
\(886\) −9.15064 + 34.1506i −0.307422 + 1.14731i
\(887\) 1.36603 + 0.366025i 0.0458666 + 0.0122899i 0.281679 0.959509i \(-0.409109\pi\)
−0.235813 + 0.971799i \(0.575775\pi\)
\(888\) 0 0
\(889\) 18.0000 18.0000i 0.603701 0.603701i
\(890\) −10.4904 11.8301i −0.351638 0.396547i
\(891\) 1.83013 + 6.83013i 0.0613116 + 0.228818i
\(892\) 2.00000i 0.0669650i
\(893\) −40.9808 + 10.9808i −1.37137 + 0.367457i
\(894\) 3.00000 + 5.19615i 0.100335 + 0.173785i
\(895\) −24.6410 + 37.3205i −0.823658 + 1.24749i
\(896\) 6.00000i 0.200446i
\(897\) 0 0
\(898\) −3.00000 3.00000i −0.100111 0.100111i
\(899\) 0 0
\(900\) −0.598076 + 4.96410i −0.0199359 + 0.165470i
\(901\) −8.66025 5.00000i −0.288515 0.166574i
\(902\) −14.0000 −0.466149
\(903\) −3.46410 2.00000i −0.115278 0.0665558i
\(904\) −20.4904 + 5.49038i −0.681500 + 0.182607i
\(905\) −16.0000 + 8.00000i −0.531858 + 0.265929i
\(906\) −7.00000 + 12.1244i −0.232559 + 0.402805i
\(907\) −14.2750 + 53.2750i −0.473993 + 1.76897i 0.151206 + 0.988502i \(0.451684\pi\)
−0.625200 + 0.780465i \(0.714982\pi\)
\(908\) 6.00000 + 10.3923i 0.199117 + 0.344881i
\(909\) −12.0000 −0.398015
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 5.00000 + 8.66025i 0.165567 + 0.286770i
\(913\) −2.19615 + 8.19615i −0.0726820 + 0.271253i
\(914\) −1.00000 + 1.73205i −0.0330771 + 0.0572911i
\(915\) 14.0000 42.0000i 0.462826 1.38848i
\(916\) 4.09808 1.09808i 0.135404 0.0362815i
\(917\) −34.6410 20.0000i −1.14395 0.660458i
\(918\) −8.00000 −0.264039
\(919\) −8.66025 5.00000i −0.285675 0.164935i 0.350315 0.936632i \(-0.386075\pi\)
−0.635990 + 0.771697i \(0.719408\pi\)
\(920\) −5.70577 27.8827i −0.188114 0.919265i
\(921\) 24.5885 + 6.58846i 0.810217 + 0.217097i
\(922\) 17.0000 + 17.0000i 0.559865 + 0.559865i
\(923\) 0 0
\(924\) 4.00000i 0.131590i
\(925\) 0 0
\(926\) 12.0000 + 20.7846i 0.394344 + 0.683025i
\(927\) 9.56218 2.56218i 0.314063 0.0841530i
\(928\) 0 0
\(929\) 6.95448 + 25.9545i 0.228169 + 0.851539i 0.981110 + 0.193451i \(0.0619680\pi\)
−0.752941 + 0.658088i \(0.771365\pi\)
\(930\) 1.33975 22.3205i 0.0439320 0.731918i
\(931\) 15.0000 15.0000i 0.491605 0.491605i
\(932\) −0.366025 1.36603i −0.0119896 0.0447456i
\(933\) −8.19615 2.19615i −0.268330 0.0718988i
\(934\) −3.29423 + 12.2942i −0.107790 + 0.402279i
\(935\) 2.00000 + 4.00000i 0.0654070 + 0.130814i
\(936\) 0 0
\(937\) −7.00000 + 7.00000i −0.228680 + 0.228680i −0.812141 0.583461i \(-0.801698\pi\)
0.583461 + 0.812141i \(0.301698\pi\)
\(938\) 6.92820 4.00000i 0.226214 0.130605i
\(939\) 15.5885 9.00000i 0.508710 0.293704i
\(940\) −0.803848 + 13.3923i −0.0262186 + 0.436809i
\(941\) −21.0000 21.0000i −0.684580 0.684580i 0.276448 0.961029i \(-0.410843\pi\)
−0.961029 + 0.276448i \(0.910843\pi\)
\(942\) 13.0000 22.5167i 0.423563 0.733632i
\(943\) −21.0000 + 36.3731i −0.683854 + 1.18447i
\(944\) −7.00000 7.00000i −0.227831 0.227831i
\(945\) 16.7846 + 18.9282i 0.546003 + 0.615734i
\(946\) −1.73205 + 1.00000i −0.0563138 + 0.0325128i
\(947\) 15.5885 9.00000i 0.506557 0.292461i −0.224860 0.974391i \(-0.572193\pi\)
0.731417 + 0.681930i \(0.238859\pi\)
\(948\) 2.00000 2.00000i 0.0649570 0.0649570i
\(949\) 0 0
\(950\) −5.00000 35.0000i −0.162221 1.13555i
\(951\) 5.12436 19.1244i 0.166169 0.620150i
\(952\) −8.19615 2.19615i −0.265639 0.0711777i
\(953\) 4.75833 + 17.7583i 0.154137 + 0.575249i 0.999178 + 0.0405460i \(0.0129097\pi\)
−0.845040 + 0.534703i \(0.820424\pi\)
\(954\) −5.00000 + 5.00000i −0.161881 + 0.161881i
\(955\) −17.8564 1.07180i −0.577820 0.0346825i
\(956\) 1.09808 + 4.09808i 0.0355143 + 0.132541i
\(957\) 0 0
\(958\) 9.56218 2.56218i 0.308940 0.0827802i
\(959\) 16.0000 + 27.7128i 0.516667 + 0.894893i
\(960\) 21.6865 4.43782i 0.699930 0.143230i
\(961\) 19.0000i 0.612903i
\(962\) 0 0
\(963\) −7.00000 7.00000i −0.225572 0.225572i
\(964\) −23.2224 6.22243i −0.747944 0.200411i
\(965\) −22.1769 + 33.5885i −0.713900 + 1.08125i
\(966\) −10.3923 6.00000i −0.334367 0.193047i
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) −23.3827 13.5000i −0.751548 0.433906i
\(969\) −13.6603 + 3.66025i −0.438831 + 0.117584i
\(970\) 2.00000 + 4.00000i 0.0642161 + 0.128432i
\(971\) 30.0000 51.9615i 0.962746 1.66752i 0.247193 0.968966i \(-0.420492\pi\)
0.715553 0.698558i \(-0.246175\pi\)
\(972\) 2.56218 9.56218i 0.0821819 0.306707i
\(973\) −14.0000 24.2487i −0.448819 0.777378i
\(974\) 16.0000 0.512673
\(975\) 0 0
\(976\) 14.0000 0.448129
\(977\) 31.0000 + 53.6936i 0.991778 + 1.71781i 0.606715 + 0.794919i \(0.292487\pi\)
0.385063 + 0.922890i \(0.374180\pi\)
\(978\) 1.46410 5.46410i 0.0468168 0.174723i
\(979\) 5.00000 8.66025i 0.159801 0.276783i
\(980\) −3.00000 6.00000i −0.0958315 0.191663i
\(981\) −12.2942 + 3.29423i −0.392525 + 0.105177i
\(982\) 19.0526 + 11.0000i 0.607992 + 0.351024i
\(983\) 24.0000 0.765481 0.382741 0.923856i \(-0.374980\pi\)
0.382741 + 0.923856i \(0.374980\pi\)
\(984\) −36.3731 21.0000i −1.15953 0.669456i
\(985\) −7.39230 + 11.1962i −0.235538 + 0.356739i
\(986\) 0 0
\(987\) 12.0000 + 12.0000i 0.381964 + 0.381964i
\(988\) 0 0
\(989\) 6.00000i 0.190789i
\(990\) 3.09808 0.633975i 0.0984633 0.0201490i
\(991\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(992\) −34.1506 + 9.15064i −1.08428 + 0.290533i
\(993\) 6.00000i 0.190404i
\(994\) 0.732051 + 2.73205i 0.0232192 + 0.0866554i
\(995\) 17.8564 + 1.07180i 0.566086 + 0.0339782i
\(996\) −6.00000 + 6.00000i −0.190117 + 0.190117i
\(997\) 3.29423 + 12.2942i 0.104329 + 0.389362i 0.998268 0.0588266i \(-0.0187359\pi\)
−0.893939 + 0.448189i \(0.852069\pi\)
\(998\) −4.09808 1.09808i −0.129722 0.0347590i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.o.b.258.1 4
5.2 odd 4 845.2.t.b.427.1 4
13.2 odd 12 845.2.f.a.408.1 2
13.3 even 3 845.2.k.a.268.1 2
13.4 even 6 845.2.o.a.488.1 4
13.5 odd 4 845.2.t.b.418.1 4
13.6 odd 12 845.2.t.b.188.1 4
13.7 odd 12 845.2.t.a.188.1 4
13.8 odd 4 845.2.t.a.418.1 4
13.9 even 3 inner 845.2.o.b.488.1 4
13.10 even 6 65.2.k.a.8.1 yes 2
13.11 odd 12 65.2.f.a.18.1 2
13.12 even 2 845.2.o.a.258.1 4
39.11 even 12 585.2.n.c.343.1 2
39.23 odd 6 585.2.w.b.73.1 2
52.11 even 12 1040.2.cd.b.993.1 2
52.23 odd 6 1040.2.bg.a.593.1 2
65.2 even 12 845.2.k.a.577.1 2
65.7 even 12 845.2.o.a.357.1 4
65.12 odd 4 845.2.t.a.427.1 4
65.17 odd 12 845.2.t.a.657.1 4
65.22 odd 12 845.2.t.b.657.1 4
65.23 odd 12 325.2.f.a.307.1 2
65.24 odd 12 325.2.f.a.18.1 2
65.32 even 12 inner 845.2.o.b.357.1 4
65.37 even 12 65.2.k.a.57.1 yes 2
65.42 odd 12 845.2.f.a.437.1 2
65.47 even 4 845.2.o.a.587.1 4
65.49 even 6 325.2.k.a.268.1 2
65.57 even 4 inner 845.2.o.b.587.1 4
65.62 odd 12 65.2.f.a.47.1 yes 2
65.63 even 12 325.2.k.a.57.1 2
195.62 even 12 585.2.n.c.307.1 2
195.167 odd 12 585.2.w.b.577.1 2
260.127 even 12 1040.2.cd.b.177.1 2
260.167 odd 12 1040.2.bg.a.577.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.f.a.18.1 2 13.11 odd 12
65.2.f.a.47.1 yes 2 65.62 odd 12
65.2.k.a.8.1 yes 2 13.10 even 6
65.2.k.a.57.1 yes 2 65.37 even 12
325.2.f.a.18.1 2 65.24 odd 12
325.2.f.a.307.1 2 65.23 odd 12
325.2.k.a.57.1 2 65.63 even 12
325.2.k.a.268.1 2 65.49 even 6
585.2.n.c.307.1 2 195.62 even 12
585.2.n.c.343.1 2 39.11 even 12
585.2.w.b.73.1 2 39.23 odd 6
585.2.w.b.577.1 2 195.167 odd 12
845.2.f.a.408.1 2 13.2 odd 12
845.2.f.a.437.1 2 65.42 odd 12
845.2.k.a.268.1 2 13.3 even 3
845.2.k.a.577.1 2 65.2 even 12
845.2.o.a.258.1 4 13.12 even 2
845.2.o.a.357.1 4 65.7 even 12
845.2.o.a.488.1 4 13.4 even 6
845.2.o.a.587.1 4 65.47 even 4
845.2.o.b.258.1 4 1.1 even 1 trivial
845.2.o.b.357.1 4 65.32 even 12 inner
845.2.o.b.488.1 4 13.9 even 3 inner
845.2.o.b.587.1 4 65.57 even 4 inner
845.2.t.a.188.1 4 13.7 odd 12
845.2.t.a.418.1 4 13.8 odd 4
845.2.t.a.427.1 4 65.12 odd 4
845.2.t.a.657.1 4 65.17 odd 12
845.2.t.b.188.1 4 13.6 odd 12
845.2.t.b.418.1 4 13.5 odd 4
845.2.t.b.427.1 4 5.2 odd 4
845.2.t.b.657.1 4 65.22 odd 12
1040.2.bg.a.577.1 2 260.167 odd 12
1040.2.bg.a.593.1 2 52.23 odd 6
1040.2.cd.b.177.1 2 260.127 even 12
1040.2.cd.b.993.1 2 52.11 even 12