Defining parameters
| Level: | \( N \) | \(=\) | \( 2299 = 11^{2} \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2299.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 25 \) | ||
| Sturm bound: | \(440\) | ||
| Trace bound: | \(6\) | ||
| Distinguishing \(T_p\): | \(2\), \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2299))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 232 | 164 | 68 |
| Cusp forms | 209 | 164 | 45 |
| Eisenstein series | 23 | 0 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(11\) | \(19\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(52\) | \(38\) | \(14\) | \(47\) | \(38\) | \(9\) | \(5\) | \(0\) | \(5\) | |||
| \(+\) | \(-\) | \(-\) | \(64\) | \(46\) | \(18\) | \(58\) | \(46\) | \(12\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(-\) | \(62\) | \(45\) | \(17\) | \(56\) | \(45\) | \(11\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(+\) | \(54\) | \(35\) | \(19\) | \(48\) | \(35\) | \(13\) | \(6\) | \(0\) | \(6\) | |||
| Plus space | \(+\) | \(106\) | \(73\) | \(33\) | \(95\) | \(73\) | \(22\) | \(11\) | \(0\) | \(11\) | ||||
| Minus space | \(-\) | \(126\) | \(91\) | \(35\) | \(114\) | \(91\) | \(23\) | \(12\) | \(0\) | \(12\) | ||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2299))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2299))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(2299)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(209))\)\(^{\oplus 2}\)