Properties

Label 2299.2.a.b
Level $2299$
Weight $2$
Character orbit 2299.a
Self dual yes
Analytic conductor $18.358$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2299,2,Mod(1,2299)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2299, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2299.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2299 = 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2299.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,-2,-2,3,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.3576074247\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 19)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{3} - 2 q^{4} + 3 q^{5} + q^{7} + q^{9} + 4 q^{12} + 4 q^{13} - 6 q^{15} + 4 q^{16} + 3 q^{17} - q^{19} - 6 q^{20} - 2 q^{21} + 4 q^{25} + 4 q^{27} - 2 q^{28} - 6 q^{29} - 4 q^{31} + 3 q^{35}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −2.00000 −2.00000 3.00000 0 1.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(11\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2299.2.a.b 1
11.b odd 2 1 19.2.a.a 1
33.d even 2 1 171.2.a.b 1
44.c even 2 1 304.2.a.f 1
55.d odd 2 1 475.2.a.b 1
55.e even 4 2 475.2.b.a 2
77.b even 2 1 931.2.a.a 1
77.h odd 6 2 931.2.f.c 2
77.i even 6 2 931.2.f.b 2
88.b odd 2 1 1216.2.a.o 1
88.g even 2 1 1216.2.a.b 1
132.d odd 2 1 2736.2.a.c 1
143.d odd 2 1 3211.2.a.a 1
165.d even 2 1 4275.2.a.i 1
187.b odd 2 1 5491.2.a.b 1
209.d even 2 1 361.2.a.b 1
209.g even 6 2 361.2.c.a 2
209.h odd 6 2 361.2.c.c 2
209.p even 18 6 361.2.e.e 6
209.q odd 18 6 361.2.e.d 6
220.g even 2 1 7600.2.a.c 1
231.h odd 2 1 8379.2.a.j 1
627.b odd 2 1 3249.2.a.d 1
836.h odd 2 1 5776.2.a.c 1
1045.e even 2 1 9025.2.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
19.2.a.a 1 11.b odd 2 1
171.2.a.b 1 33.d even 2 1
304.2.a.f 1 44.c even 2 1
361.2.a.b 1 209.d even 2 1
361.2.c.a 2 209.g even 6 2
361.2.c.c 2 209.h odd 6 2
361.2.e.d 6 209.q odd 18 6
361.2.e.e 6 209.p even 18 6
475.2.a.b 1 55.d odd 2 1
475.2.b.a 2 55.e even 4 2
931.2.a.a 1 77.b even 2 1
931.2.f.b 2 77.i even 6 2
931.2.f.c 2 77.h odd 6 2
1216.2.a.b 1 88.g even 2 1
1216.2.a.o 1 88.b odd 2 1
2299.2.a.b 1 1.a even 1 1 trivial
2736.2.a.c 1 132.d odd 2 1
3211.2.a.a 1 143.d odd 2 1
3249.2.a.d 1 627.b odd 2 1
4275.2.a.i 1 165.d even 2 1
5491.2.a.b 1 187.b odd 2 1
5776.2.a.c 1 836.h odd 2 1
7600.2.a.c 1 220.g even 2 1
8379.2.a.j 1 231.h odd 2 1
9025.2.a.d 1 1045.e even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2299))\):

\( T_{2} \) Copy content Toggle raw display
\( T_{3} + 2 \) Copy content Toggle raw display
\( T_{7} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 2 \) Copy content Toggle raw display
$5$ \( T - 3 \) Copy content Toggle raw display
$7$ \( T - 1 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T - 4 \) Copy content Toggle raw display
$17$ \( T - 3 \) Copy content Toggle raw display
$19$ \( T + 1 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T + 6 \) Copy content Toggle raw display
$31$ \( T + 4 \) Copy content Toggle raw display
$37$ \( T - 2 \) Copy content Toggle raw display
$41$ \( T - 6 \) Copy content Toggle raw display
$43$ \( T - 1 \) Copy content Toggle raw display
$47$ \( T + 3 \) Copy content Toggle raw display
$53$ \( T - 12 \) Copy content Toggle raw display
$59$ \( T + 6 \) Copy content Toggle raw display
$61$ \( T - 1 \) Copy content Toggle raw display
$67$ \( T + 4 \) Copy content Toggle raw display
$71$ \( T - 6 \) Copy content Toggle raw display
$73$ \( T - 7 \) Copy content Toggle raw display
$79$ \( T + 8 \) Copy content Toggle raw display
$83$ \( T + 12 \) Copy content Toggle raw display
$89$ \( T - 12 \) Copy content Toggle raw display
$97$ \( T - 8 \) Copy content Toggle raw display
show more
show less